University of London
MTH786U/P, Semester A, 2023/24
Coursework 0 solution
N. Perra

Problem 1

1. Compute the gradient ∇L of the function $L: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ defined as

$$
L(x, y)=\frac{x}{y}-1-\log \left(\frac{x}{y}\right) .
$$

Here \mathbb{R}_{+}^{2} is the space of all real two-dimensional vectors with positive entries.
2. Show that L from Question 1 is scalar-invariant, i.e. $L(x, y)=L(c x, c y)$ for any scalar $c>0$ and all arguments $x>0, y>0$.

Solution:

1. For the first partial derivative we obtain

$$
\frac{\partial L}{\partial x}=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{x y}
$$

and for the second one

$$
\frac{\partial L}{\partial y}=-\frac{x}{y^{2}}+\frac{1}{y}=\frac{y-x}{y^{2}} .
$$

Hence, the entire gradient reads as

$$
\nabla L(x, y)=\frac{1}{y}\left(\frac{\frac{x-y}{x}}{\frac{y-x}{y}}\right) .
$$

2. We simply observe

$$
\begin{aligned}
L(c x, c y) & =\frac{c x}{c y}-1-\log \left(\frac{c x}{c y}\right) \\
& =\frac{x}{y}-1-\log \left(\frac{x}{y}\right) \\
& =L(x, y),
\end{aligned}
$$

and, consequently, the function L is scalar-invariant.

Problem 2

1. Compute the expected value \mathbb{E}_{x} of a (discrete) Poisson-distributed random variable X with probability

$$
\begin{equation*}
\rho_{x}:=\exp (-\lambda) \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \ldots, s \tag{1}
\end{equation*}
$$

for a constant $\lambda>0$. What is the solution for $s \rightarrow \infty$?
Hint: Make use of the identity $\exp (\lambda)=\sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}$.
2. For a uniform (and absolutely continuous) random variable X in $[0,1]$ compute the expectation of $f(X)$ for

$$
f(x):= \begin{cases}-\log (x) & x \in[0,1 / 5] \\ 0 & \text { otherwise }\end{cases}
$$

Make use of the convention $0 \log (0)=0$.

Solution:

1. The expectation for a discrete Poisson-distributed random variable X reads

$$
\begin{aligned}
\mathbb{E}_{x}[x] & =\sum_{x=0}^{s} x \rho_{x}=\sum_{x=0}^{s} x \exp (-\lambda) \frac{\lambda^{x}}{x!} \\
& =\lambda \exp (-\lambda) \sum_{x=1}^{s} \frac{\lambda^{x-1}}{(x-1)!}=\lambda \exp (-\lambda) \sum_{x=0}^{s-1} \frac{\lambda^{x}}{x!} .
\end{aligned}
$$

Taking the limit $s \rightarrow \infty$ therefore yields

$$
\begin{aligned}
\mathbb{E}_{x}[x] & =\lambda \exp (-\lambda) \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!} \\
& =\lambda \exp (-\lambda) \exp (\lambda)=\lambda
\end{aligned}
$$

1. For an absolutely continuous uniform random variable on the interval $[a, b]$ the probability density function reads

$$
\rho(x)=\left\{\begin{array}{ll}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { otherwise }
\end{array} .\right.
$$

Hence, for $[a, b]=[0,1]$ we simply have $\rho(x)=1$ for $x \in[0,1]$, and we compute

$$
\begin{aligned}
\mathbb{E}_{x}[f(x)] & =\int_{0}^{1} f(x) d x=-\int_{0}^{\frac{1}{5}} \log (x) d x=-[x \log x-x]_{0}^{\frac{1}{5}} \\
& =\frac{1}{5}-\frac{1}{5}(\log (1)-\log (5))=\frac{1}{5}(1+\log (5)) \approx 0.5218875825
\end{aligned}
$$

Problem 3

1. Let X be a random variable with expectation μ and variance σ^{2}. Show that the variance of $a X+b$, where $a, b \in \mathbb{R}$, is

$$
\operatorname{Var}_{x}[a x+b]=a^{2} \sigma^{2} .
$$

Solution:

1. With the definition of the variance we compute

$$
\begin{aligned}
\operatorname{Var}_{x}[a x+b] & =\mathbb{E}_{x}\left[\left(a x+b-\mathbb{E}_{x}[a x+b]\right)^{2}\right] \\
& =\mathbb{E}_{x}\left[\left(a x+b-\mathbb{E}_{x}[a x]-\mathbb{E}_{x}[b]\right)^{2}\right] \\
& =\mathbb{E}_{x}\left[\left(a x+b-a \mathbb{E}_{x}[x]-b \mathbb{E}_{x}[1]\right)^{2}\right] \\
& =\mathbb{E}_{x}\left[\left(a x+b-a \mathbb{E}_{x}[x]-b\right)^{2}\right] \\
& =\mathbb{E}_{x}\left[\left(a x-a \mathbb{E}_{x}[x]\right)^{2}\right] \\
& =\mathbb{E}_{x}\left[a^{2}\left(x-\mathbb{E}_{x}[x]\right)^{2}\right] \\
& =a^{2} \mathbb{E}_{x}\left[\left(x-\mathbb{E}_{x}[x]\right)^{2}\right] \\
& =a^{2} \operatorname{Var}_{x}[x] \\
& =a^{2} \sigma^{2} .
\end{aligned}
$$

