University of London
MTH786U/P, Semester A, 2023/24
Coursework 0
N. Perra

Problem 1

1. Compute the gradient ∇L of the function $L: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ defined as

$$
L(x, y)=\frac{x}{y}-1-\log \left(\frac{x}{y}\right) .
$$

Here \mathbb{R}_{+}^{2} is the space of all real two-dimensional vectors with positive entries.
2. Show that L from Question 1 is scalar-invariant, i.e. $L(x, y)=L(c x, c y)$ for any scalar $c>0$ and all arguments $x>0, y>0$.

Problem 2

1. Compute the expected value \mathbb{E}_{x} of a (discrete) Poisson-distributed random variable X with probability

$$
\rho_{x}:=\exp (-\lambda) \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \ldots, s
$$

for a constant $\lambda>0$. What is the solution for $s \rightarrow \infty$?
Hint: Make use of the identity $\exp (\lambda)=\sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}$.
2. For a uniform (and absolutely continuous) random variable X in $[0,1]$ compute the expectation of $f(X)$ for

$$
f(x):=\left\{\begin{array}{ll}
-\log (x) & x \in[0,1 / 5] \\
0 & \text { otherwise }
\end{array},\right.
$$

Make use of the convention $0 \log (0)=0$.

Problem 3

1. Let X be a random variable with expectation μ and variance σ^{2}. Show that the variance of $a X+b$, where $a, b \in \mathbb{R}$, is

$$
\operatorname{Var}_{x}[a x+b]=a^{2} \sigma^{2}
$$

