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Question 1 [45 marks].

Consider the following matrix A =

(
a 1
1 a

)
where a ∈ R.

(a) Compute the eigenvalues and correspondent eigenvectors of A. [10]

(b) Compute the inner product of the eigenvectors of A. What do we learn from it? [5]

(c) Consider the following matrix B =

1 −2
1 1
0 0

 compute its singular values. [10]

(d) Compute the left and right singular vectors of the matrix B. [10]

(e) Consider a matrix D ∈ Rm,n, a vector x ∈ Rn,1, and the function
E(x) = 1

2∥Dx∥2. Show that ∇E(x) = D⊤Dx. [10]

Solution:

(a) The eigenvectors and eigenvalues are the defined by Ax = λx which is
equivalent to (A − λI)x = 0. This admits solutions, besides the trivial x = 0,
only if det[A − λI] = 0. Hence:

A − λI =

(
a − λ 1

1 a − λ

)
(1)

Imposing the determinant to be equal zero, we obtain the characteristic
equation (a − λ)2 − 1 = λ2 − 2aλ + a2 − 1 = 0 which yields λ1,2 = a ± 1.
The eigenvectors can be derived imposing Axi = λixi:(

a 1
1 a

)(
x(1)1
x(2)1

)
=

(
(a + 1)x(1)1
(a + 1)x(2)1

)
(2)

and (
a 1
1 a

)(
x(1)2

x(2)2

)
=

(
(a − 1)x(1)2

(a − 1)x(2)2

)
(3)

From the first set of equations we obtain x(1)1 = x(2)1 hence x1 = (c, c) = ( 1√
2
, 1√

2
)

where the last condition can be easily obtained imposing ∥x1∥2 = 1

From the second set of equations we obtain x(1)2 = −x(2)2 hence
x2 = (c,−c) = ( 1√

2
,− 1√

2
) where the last condition can be easily obtained

imposing ∥x2∥2 = 1. Note that since x(1)2 = −x(2)2 also x2 = (−c, c) = (− 1√
2
, 1√

2
)

can be a solution. This is a vector pointing to the opposite direction with respect
to the previous.

(b) The inner product x⊤2 x1 = ⟨x2, x1⟩ = 0. The eigenvectors are orthogonal. This
result is to be expected since the matrix is symmetric.
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(c) The singular values of the matrix B are obtained solving B⊤BV = σ2V. Hence,
we need to compute the eigenvalues of the matrix:

B⊤B =

(
1 1 0
−2 1 0

)1 −2
1 1
0 0

 =

(
2 −1
−1 5

)
(4)

we note that the matrix B⊤B is symmetric. Following the process outlined
above, we obtain σ2

1,2 = 7±
√

13
2

(d) The right singular vector is obtained solving B⊤BV = σ2V. Following the
process outlined above we obtain V1 =

(
c,−c 3+

√
13

2

)
and V2 =

(
b, b

√
13−3
2

)
where the constants c and b can be defined imposing the vectors to be
normalised.
Note how also the vectors V1 =

(
c 3−

√
13

2 , c
)

(which is proportional to the

previous with a factor 3−
√

13
2 ) and V2 =

(
b
√

13+3
2 , b

)
(which is proportional to

the previous with a factor
√

13+3
2 ) are solutions.

The left singular vectors Ui can be computed recalling that Ui = σ−1
i BVi, hence

by using the first expression for Vi we get:

U1 =

√
2

7 +
√

13

1 −2
1 1
0 0

( c
−c 3+

√
13

2

)
(5)

= c

√
2

7 +
√

13

4 +
√

13
−1+

√
13

2
0

 (6)

Furthermore

U2 =

√
2

7 −
√

13

1 −2
1 1
0 0

( b
b
√

13−3
2

)
(7)

= b

√
2

7 −
√

13

4 −
√

13√
13−1
2
0

 (8)

Instead, by using the second expression for the Vi:

U1 =

√
2

7 +
√

13

1 −2
1 1
0 0

(c 3−
√

13
2
c

)
(9)

= c

√
2

7 +
√

13

−1+
√

13
2

5−
√

13
2
0

 (10)

© Queen Mary University of London (2022) Continue to next page



MTH786 (2022) Page 4

Furthermore

U2 =

√
2

7 −
√

13

1 −2
1 1
0 0

(b
√

13+3
2

b

)
(11)

= b

√
2

7 −
√

13


√

13−1
2

5+
√

13
2
0

 (12)

The matrix BB⊤ is a 3x3 matrix with another eigenvalue equal to zero. The
associate vector needs to be orthogonal to the others, hence U3 = (0, 0, 1⊤)

(e) By definition of Euclidian norm we can write

E(x) = 1
2∥Dx∥2 = 1

2 ∑m
i=1(Dx)2

i = 1
2 ∑m

i=1

(
∑n

j=1 Di,jxj

)2
. The gradient of the

norm as function of x can be then written as:

(∇E(x))p =
∂

∂xp
E(x) =

1
2

m

∑
i=1

∂

∂xp

(
n

∑
j=1

Di,jxj

)2

= (13)

1
2

m

∑
i=1

2

(
n

∑
j=1

Di,jxj

)
∂

∂xp

(
n

∑
j=1

Di,jxj

)
m

∑
i=1

n

∑
j=1

Di,jxjDi,p =
m

∑
i=1

n

∑
j=1

D⊤
p,iDi,jxj = (D⊤Dx)p

Alternatively, we can write E(x) = 1
2∥Dx∥2 = 1

2(Dx)⊤Dx = 1
2 x⊤D⊤Dx. It is

easy to show that ∇(x⊤Bx) = (B + B⊤)x. Indeed, we have

(∇x⊤Bx)p =
∂

∂xp
∑

i
xi ∑

j
Bijxj (14)

= ∑
j

Bpjxj + ∑
i

Bipxi = ∑
j

Bpjxj + ∑
i

B⊤
pixi

= (Bx)p + (B⊤x)p

We can make use of this observation when calculating ∇E(x) = 1
2∇(x⊤D⊤Dx).

Indeed, let us define B = D⊤D, hence
∇E(x) = 1

2∇(x⊤Bx) = 1
2(B + B⊤)x = 1

2

(
D⊤D + (D⊤D)⊤

)
x. Finally we

observe that (D⊤D)⊤ = D⊤(D⊤)⊤ = D⊤D. Hence,
∇E(x) = 1

2

(
D⊤D + (D⊤D)⊤

)
x = D⊤Dx
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Question 2 [25 marks].

Consider the following data samples
(

x(1), y(1)
)
= (1, 0),

(
x(2), y(2)

)
= (2, 1),(

x(3), y(3)
)
= (3, 2)

(a) Write down, in explicit matricial form, the normal equation assuming a simple
linear model. [5]

(b) Determine the solution of the normal equation. [5]

(c) Let us now assume that you made some errors measuring the output variables
y(i) with i ∈ {1, 2, 3}. The perturbed measurements yδ read y(1)δ = ϵ,

y(2)δ = 1 + ϵ and y(3)δ = 2 − ϵ. Determine the solution of the normal equation
considering these perturbed samples and considering the same initial data
matrix. [5]

(d) Compute the error between ŵ and ŵδ in the Euclidean norm. [5]

(e) Compare the error computed in the previous question (i.e., question d) with the
data error δ := ∥y − yδ∥. [5]

Solution:

(a) The normal equation reads X⊤Xŵ = X⊤y where

X =

1 1
1 2
1 3

 , X⊤ =

(
1 1 1
1 2 3

)
, ŵ =

(
ŵ0
ŵ1

)
, Y =

0
1
2

 (15)

hence: (
1 1 1
1 2 3

)1 1
1 2
1 3

(ŵ0
ŵ1

)
=

(
1 1 1
1 2 3

)0
1
2

 (16)

(b) Performing the multiplications on the left and right hand side we have(
3 6
6 14

)(
ŵ0
ŵ1

)
=

(
3
8

)
(17)

which leads to ŵ0 = −1 and ŵ1 = 1

(c) Considering the errors in the outputs our problem becomes(
3 6
6 14

)(
ŵ0
ŵ1

)
=

(
3 + ϵ

8

)
(18)

which yields the solutions ŵ0,δ =
−3+7ϵ

3 and ŵ1,δ = 1 − ϵ. Note how for ϵ = 0
we recover the previous values for ŵ.
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(d) From what derived above we have

ŵ =

(
−1
1

)
, ŵδ =

(−3+7ϵ
3

1 − ϵ

)
(19)

We can write

∥ŵ − ŵδ∥ =

√(
−1 − −3 + 7ϵ

3

)2

+ (1 − 1 + ϵ)2 (20)

=

√(
−1 − −3 + 7ϵ

3

)2

+ (1 − 1 + ϵ)2

=
ϵ

3

√
58 = Ξ

(e) By computing ∥y − yδ∥ = δ we obtain δ = ϵ
√

3. By taking the ratio

δ

Ξ
=

3
√

3√
58

< 1 (21)

which implies δ < Ξ. The error in the output is amplified in the regression.
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Question 3 [30 marks].

(a) Consider the following probability density function of a (continuous) random
variable x: p(x|α) = Ax−α for x ⩾ 1 where A ∈ R and α ∈ R. Compute the
value A as function of α and discuss where it is defined. [10]

(b) Compute the expectation value E[x] and the second moment of the distribution
E[x2] as function of α and discuss where they are defined. [10]

(c) Discuss the convex properties of the function f (x) = ax2 where a ∈ R . [5]

(d) Discuss the convex properties the function f (x) = −a log(x) where a ∈ R. [5]

Solution:

(a) Since the PDF need to be normalized and the variable is continuous we can
write ∫ ∞

1
p(x|α)dx = 1 (22)

or
A
∫ ∞

1
x−αdx = 1 → A =

1∫ ∞
1 x−αdx

(23)

The integral can be easily computed as
∫ ∞

1 x−αdx = 1
1−α x|∞1 .

We note that only for α > 1 that integral is finite. In this case, we obtain
A = α − 1

(b) By definition the expectation value is

E[x] =
∫

xp(x|α)dx = (α − 1)
∫ ∞

1
x1−αdx (24)

= (α − 1)
1

2 − α
x2−α|∞1

It can be easily seen how for any α ⩽ 2 the expectation value is divergent. For
α > 2 we get E[x] = α−1

α−2

(c) By definition the second moment of the distribution reads

E[x2] =
∫

x2p(x|α)dx = (α − 1)
∫ ∞

1
x2−αdx (25)

= (α − 1)
1

3 − α
x3−α|∞1

It can be easily seen how for any α ⩽ 3 the second moment is divergent. For
α > 3 we get E[x2] = α−1

α−3
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(d) We can study the convexity of the function with two approaches. In the first we
don’t use any information about the other properties of the function and apply
directly the definition of the convexity:

f (λx + (1 − λ)y) ⩽ λ f (x) + (1 − λ) f (y) (26)

Let us apply this condition to our function

a (λx + (1 − λ)y)2 ⩽ λax2 + (1 − λ)ay2 (27)

a
(

λ2x2 + (1 − λ)2y2 + 2λ(1 − λ)xy
)

⩽ λax2 + (1 − λ)ay2 (28)

−aλ(1 − λ)x2 − aλ(1 − λ)y2 + 2aλ(1 − λ)xy ⩽ 0 (29)

Since λ(1 − λ) > 0 we can write:

−aλ(1 − λ)x2 − aλ(1 − λ)y2 + 2aλ(1 − λ)xy ⩽ 0 (30)
−ax2 − ay2 + 2axy ⩽ 0 (31)

−a(x − y)2 ⩽ 0 (32)

which holds only if a ⩾ 0. Hence the function f (x) is convex for any a ⩾ 0.
The second approach notes that the function is differentiable at least twice.
These types of functions are convex if the second derivative is always equal or
larger than zero. Hence f (x) = ax2, dx f = 2ax and d2

x f (x) = 2a. Hence only if
a ⩾ 0 the function is convex

(e) Following the same argument we can compute the first and second derivates of
the function f (x) = −a log x as follows dx f (x) = −ax−1 and d2

x f (x) = ax−2.
The second derivative is negative only if a < 0, hence the function is convex for
any a ⩾ 0.

End of Paper.
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