
Mid-term examination period 2021 – November – Semester A

MTH786P/U: Machine learning with Python

You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

� You may use books and notes.

� You may use calculators and computers, but you must show your work-
ing for any calculations you do.

� You may use the Internet as a resource, but not to ask for the solution
to an exam question or to copy any solution you find.

� You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 150 minutes in which to complete and submit this assessment.

When you have finished:

� scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;
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Question 1 [50 marks]. Let σ (w) = 1
1+e−w be the logistic function. Let

x = {xi}si=1 be some data samples, where xi ∈ R for all i = 1, . . . , s and

E (w = (w1, w2, . . . , ws)) = − log σ
(
x⊤w

)
= log

(
1 + e

−
s∑

i=1
xiwi

)
,

be the logistic regression cost function.

(a) Prove E (w) is a convex function.

Hint: You may wish use the fact that a twice differentiable function
σ (w) : R → R is convex if and only if its second derivative satisfies

σ′′ (w) ≥ 0, ∀w ∈ R.

Solution: We start by showing that ℓ (z) = − log σ (z) is a convex

function. We can prove this by evaluating the second derivative of

ℓ (z). [2]

d2

d z2
ℓ (z) =

d2

d z2
log
(
1 + e−z

)
= − d

d z

e−z

1 + e−z
= − d

d z

1

1 + ez
=

ez

(1 + ez)
> 0. [4]

The second derivative is positive and thus the function ℓ (z) is

convex. [2]
The logistic cost function L (w) can be written as a composition of

the convex function ℓ (z) and a linear function h (w) = x⊤w.

Therefore, as it was shown in the lecture, L (w) is convex. [2]

(b) Show that E (w) is an L-smooth function for L = 1
4
∥x∥2.

Hint: You may wish to use the following inequality (without proving it)

|σ (a)− σ (b)| ≤ 1

4
|a− b| ,

valid for any a, b ∈ R.
Solution: Function E (w) : Rs → R is L-smooth if for any u,v ∈ Rs

one has

∥∇E (u)−∇E (v)∥ ≤ L ∥u− v∥ . [2]

The gradient of E (w) is given by

∇E (w) =

(
∂

∂w1

E (w) , . . . ,
∂

∂ws

E (w) ,

)
. [1]

Corresponding partial derivatives are equal to

∂

∂wj

E (w) = −xj
e
−

s∑
i=1

xiwi

1 + e
−

s∑
i=1

xiwi

= −xj · σ
(
−x⊤w

)
, [2]
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and the gradient is thus equal to

∇E (w) = −xσ
(
−x⊤w

)
. [1]

Plugging in the above we get [4]

∥∇E (u)−∇E (v)∥ =
∥∥xσ (−x⊤v

)
− xσ

(
−x⊤u

)∥∥
= ∥x∥

∣∣σ (−x⊤v
)
− σ

(
−x⊤u

)∣∣
(1)

≤ 1

4
∥x∥

∣∣x⊤ (u− v)
∣∣ ≤ 1

4
∥x∥2 ∥u− v∥ ,

where in (1) we have used an inequality

|σ (a)− σ (b)| ≤ 1

4
|a− b| ,

for a = −x⊤u and b = −x⊤v.

We say that a random variable ξ follows the Rayleigh distribution with parameter α if
its probability density function is given by

p (x|α) =

{
2αxe−αx2

, x ≥ 0,

0, otherwise.

Let the parameter α be equal to the maximum between the fifth digit of your student
ID and one.

(c) Calculate the variance Var [ξ] of a random variable ξ drawn from the Rayleigh
distribution with the parameter α as described above.

Solution: The variance of a random variable is given by

Var [ξ] = E
[
ξ2
]
− E2 [ξ] , [1]

where

E [ξ] =

∫
xp (x|α) dx, E

[
ξ2
]
=

∫
x2p (x|α) dx. [2]

The mean is then equal to [3]

E [ξ] =

∞∫
0

2αx2e−αx2

dx = −
∞∫
0

x de−αx2

=

∞∫
0

e−αx2

dx =

∣∣∣∣∣x → s/
√
2α

∣∣∣∣∣
=

1√
2α

∞∫
0

e−
s2

2 ds =
1

2

√
π

α
.

The second moment is equal to [3]

E [ξ] =

∞∫
0

2αx3e−αx2

dx = −
∞∫
0

x2 de−αx2

=

∞∫
0

2xe−αx2

dx

=
1

α

∞∫
0

de−αx2

=
1

α
.

© Queen Mary University of London (2021) Continue to next page



MTH786P/U (2021) Page 4

And the variance is thus equal to

Var [ξ] =
1

α
− π

4α
=

4− π

4α
. [1]

(d) Suppose you get s i.i.d. samples {ξi}si=1 drawn from the Rayleigh distribution
with the parameter α described above. Derive the optimisation problem for the
negative log-likelihood estimator for α of the form

α̂ = min
α>0

E (α) ,

where E (α) is an energy function.

Solution: Random samples ξi are i.i.d, and thus the likelihood of

getting corresponding values is equal to the product of independent

likelihoods for each data sample. [2]

p (ξ1, ξ2, . . . , ξs|α) =
s∏

i=1

p (ξi|α) =
s∏

i=1

2αξie
−αξ2i . [3]

The negative log-likelihood is equal to

− log p (ξ1, . . . , ξs|α) =
s∑

i=1

αξ2i − logα− log (2ξi) = α
s∑

i=1

ξ2i −s logα−
s∑

i=1

log (2ξi) .

[3]
Maximisation of the likelihood is equivalent to a minimisation of

negative log-likelihood. We also note the last term in the above

expression doesn’t depend on α and thus the optimisation problem can

be written as

α̂ = argmin
α>0

[
α

s∑
i=1

ξ2i − s logα

]
. [2]

(e) Solve the maximum likelihood estimator problem for the parameter α based on
these samples.

Solution: Let

E (α) = α
s∑

i=1

ξ2i − s logα,

be a cost function from the last question. The energy function E
is equal to a sum of linear functions and a convex one, thus it is

convex and its minimiser can be found by solving [2]

∇E (α̂) = 0.

The gradient (in this case just a derivative) of the energy function

is equal to

E ′ (α) =
s∑

i=1

ξ2i −
s

α
. [4]
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The solution of the optimisation problem is then equal to

s∑
i=1

ξ2i −
s

α̂
= 0 ⇒ α̂ =

s
s∑

i=1

ξ2i

. [4]

Question 2 [50 marks]. Suppose you are given s = 5 samples {(xi, yi)}5i=1 with

(x1, y1) = (−2,−1) ,

(x2, y2) = (−1, 1) ,

(x3, y3) = (0, 3) ,

(x4, y4) = (1, 5) ,

(x5, y5) = (2, 7) .

In this question you are asked to build a one-feature linear regression model

yi ≈ fθ (xi) := θxi,

where θ is the only weight parameter.
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(a) Start with the mean-squared error (MSE) as a measure of a deviation, where

MSE (θ) =
1

2s

s∑
i=1

(yi − fθ (xi))
2 . (1)

Run the grid search algorithm to minimise MSE (θ) over the grid θ ∈ G, with
G = {1, 2, 3, 4}. Fill in the missing entries of the following table by evaluating
yi − θxi for corresponding values of the parameters, and find the minimiser θ̂
given by

θ̂ = argmin
θ∈G

MSE (θ) .

θ = 1 θ = 2 θ = 3 θ = 4

x1 = −2, y1 = −1
x2 = −1, y2 = 1
x3 = 0, y3 = 3
x4 = 1, y4 = 5
x5 = 2, y5 = 7

MSE (θ)

Solution: The table reads [8]
θ = 1 θ = 2 θ = 3 θ = 4

x1 = −2, y1 = −1 1 3 5 7

x2 = −1, y2 = 1 2 3 4 5

x3 = 0, y3 = 3 3 3 3 3

x4 = 1, y4 = 5 4 3 2 1

x4 = 2, y4 = 7 5 3 1 -1

MSE (θ) 5.5 4.5 5.5 8.5

The minimiser is then equal to θ̂ = 2. [2]

(b) Derive the gradient descent update formula that aims at minimising MSE (θ).

Solution: The gradient descent update rule takes the form

θ(k+1) = θ(k) − τ∇MSE
(
θ(k)
)
. [2]

The gradient of MSE defined in (1) is equal to

∇MSE (θ) =
d

dθ

1

2s

s∑
i=1

(yi − θxi)
2 =

1

s

s∑
i=1

xi (θxi − yi) = θx2 − xy, [6]

where x2 = 1
s

s∑
i=1

x2
i and xy = 1

s

s∑
i=1

xiyi. The gradient descent update

formula then takes the form

θ(k+1) = θ(k)
(
1− τx2

)
+ τxy. [2]

(c) Let θ(0) be the sixth digit of your student ID. Perform two steps of the gradient
descent method with the step-size set to τ = 1

2
to evaluate θ(1) and θ(2). Comment

on your findings.
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Solution: For given data samples one can easily evaluate

x2 =
1

5
(4 + 1 + 0 + 1 + 4) = 2, xy =

1

5
(2− 1 + 0 + 5 + 14) = 4. [2]

Plugging the above to the gradient descent update rule one gets

θ(1) = θ(0)
(
1− 1

2
· 2
)
θ(0) +

1

2
· 4 = 0 + 2 = 2. [2]

θ(2) = θ(0)
(
1− 1

2
· 2
)
θ(1) +

1

2
· 4 = 0 + 2 = 2. [2]

Because the sequence has stabilised, it is clear that the gradient

descent algorithm achieved a minimiser. Thus the minimiser for an

MSE function defined in (1) is equal to θ̂ = 2. [4]

(d) Let a and b be the maximum between the seventh, respectively eighth, digit of
your student ID and one. The leaky rectifier function

Ra,b(x) =

{
ax, x ≥ 0,

−bx, x < 0.

can also be written via the maximisation problem

Ra,b (x) = max
p∈[−b,a]

xp .

Show that the smoothed leaky rectifier function

Ra,b,τ (x) := max
p∈[−b,a]

xp− τ

2
|p|2

for a parameter τ > 0 has the closed-form solution

Ra,b,τ (x) =


ax− τ

2
a2, x > aτ,

x2

2τ
, −bτ < x ≤ aτ,

−bx− τ
2
b2, x ≤ −bτ.

Solution: Let fx (p) = xp− τ
2
p2. Then the smoothed parametric

rectifier function Ra,b,τ is equal to

Ra,b,τ (x) = max
p∈[−b,a]

fx (p) .

Let us first evaluate the derivative of fx (p):

f ′
x (p) = x− τp. [1]

Let us now consider three cases:
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� x > aτ: then f ′
x (p) > aτ − τp ≥ 0, for every p ∈ [−b, a]. This

yields that the function fx (p) is an increasing function over

the interval [−b, a] and

max
p∈[−b,a]

fx (p) = fx (a) ,

and Ra,b,τ (x) = ax− τ
2
a2. [3]

� −bτ < x ≤ aτ: then fx (p) is a quadratic function whose maximum

is achieved at the point p∗ such that f ′
x (p

∗) = 0. It is easy to

see that p∗ = x/τ and thus Ra,b,τ (x) = p∗x− τ
2
(p∗)2 = 1

2τ
x2. [3]

� x ≤ −bτ: then f ′
x (p) ≤ −bτ − τp ≤ 0, for every p ∈ [−b, a]. This

yields that the function fx (p) is a decreasing function over the

interval [−b, a] and

max
p∈[−b,a]

fx (p) = fx (−b) ,

and Ra,b,τ (x) = −bx− τ
2
b2. [3]

(e) Consider a regularised optimisation problem of the form

θ̂ = argmin
θ∈R

[MSE (θ) +Ra,b,τ (θ)] , (2)

where the MSE and the parametric rectifier Ra,b,τ functions are defined above.
Derive the gradient descent update formula that aims at solving (2). Let θ(0) be
the seventh digit of your student ID. Perform two steps of the gradient descent
starting from θ(0) with step-size set to τ = 1

2
to evaluate θ(1) and θ(2).

Solution: The gradient descent update rule takes the form

θ(k+1) = θ(k) − τ∇ [MSE +Ra,b,τ ]
(
θ(k)
)
. [1]

The gradient of a regularised MSE defined in (2) is equal to

∇ [MSE (θ) +Ra,b,τ (θ)] = θx2 − xy +R′
a,b,τ (θ) , [1]

where the derivative R′
a,b,τ (θ) can be calculated as

R′
a,b,τ (θ) =


a, x > aτ,
x
τ
, −bτ < x ≤ aτ,

−b, x ≤ −bτ.

[2]

Combining the above one can write the gradient descent update rule

as

θ(k+1) =
(
1− τx2

)
θ(k) + τxy −


aτ, θ(k) > aτ,

θ(k), −bτ < θ(k) ≤ aτ,

−bτ, θ(k) ≤ −bτ.

[2]
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Using the values obtained before we get

θ(k+1) = 2−


a
2
, θ(k) > a

2
,

θ(k), − b
2
< θ(k) ≤ a

2
,

− b
2
, θ(k) ≤ − b

2
.

[2]

The result of gradient descent execution depends on values a, b that

are individual for every student. [2]

End of Paper.
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