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The terms MSE and MAE are abbreviations for Mean Squared Error and Mean Ab-
solute Error, respectively. Note that for all multiple choice questions there will

. n . . .
only be one correct answer. The notation ( k) denotes the binomial coefficient

ny _ n!
k) kl(n—k)!

Question 1. [50 marks]

(a) Which one of the following strategies is not a regularisation strategy?

A. Adding a positive multiple of the squared two-norm of the weights to
the MSE.

. Early stopping of gradient descent.

N w

. Subtracting a constant from the MSE.

)

. Adding a positive multiple of the one-norm of the weights to the MSE.
[5]

(b) The difference between incremental and stochastic gradient descent (with
batch-size one) is

A. one is a descent method while the other one is not.

B. that for stochastic gradient descent the indices are drawn randomly
whilst for incremental gradient descent the ordering is deterministic.

C. that one uses the Hessian in order to accelerate convergence.

D. only in name; otherwise they are identical.
[5]
(c) Compute the MSE for the 1-parameter model by hand:

1 S
MSE(wy) = % Y lyi —wol?
=1

Fill in the missing entries of the following table:

Wy = |Wy =|Wy =|Wy =|Wy =|Wy = | Wy =
-5 -3 —1 0 1 3 5
y1=-3
Y2 =-2
y3=-1
y4=0
ys=1
2 MSE(wy)s
y6=-15
2 MSE(wp)s

[7]
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(d) Repeat the same exercise with the MAE, i.e.

1 S
MAE(ZUO) = E Z |y1 — ZUO‘ .
i=1

Fill in the missing entries of the following table:

Wy =|Wy =|Wy =|Wy =|Wy =|Wy = | Wy =
-5 -3 -1 0 1 3 5
y1=-3
Yo =-2
yz3=-1
ya=0
ys =1
MAE(wy)s
Y6 = 15
MAE(wp)s
What do you observe, in particular with regards to the outlier y¢? [7]

(e) Compute the gradient VL of the cost function L : RZ — R defined as
X X
Lx,y)==—-1-1o (—)
/ Yy & Yy
[5]

(f) Show that L is scalar-invariant, i.e. L(x,y) = L(cx,cy) for any scalar ¢ > 0 and
all arguments x > 0,y > 0. [5]

(g) Derive the corresponding gradient descent update formula for L as defined in

(e). [5]
(h) Verify that the function f,(x) := L(x,y) is convex for fixed y > 0. [5]

(i) Show that the Hessian Hy (x,y) of L with respect to arguments x > 0and y > 0

equals
2
1 (4L -1
HL<xry) = ]? (_le 2x—y> :

y

Further verify that the Hessian is not positive semi-definite, i.e. there exist
x>0,y >0,a>0and b > 0such that

(a b)Hp(x,y) (Z) <0.

[6]
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Question 2. [30 marks]

(a) When a function is convex and a minimiser exists, then this minimiser
A. is always unique.
B. is never unique.
C. is a global minimiser.

D. is a local but not a global minimiser.

(b) Proximal gradient descent applied to the lasso problem is known as
A. incremental soft-thresholding algorithm.
B. iterative soft-thresholding algorithm.
C. inertial soft-thresholding algorithm.

D. inertial soft-tissue algorithm.

(c) State the definitions of convexity and concavity of a function.

(d) Verify that the function f : R — R, with

0 x>0

f(x)::{—l—oo x<0’ 1)

is convex.

(e) State the definition of the proximal mapping prox; : R" — R" of a convex
function f : R" — R.

(f) Derive a closed-form solution of the proximal mapping prox, : R — R for the

function defined in (1).
Hint: use case-differentiation to derive the proximal mapping.

(g) Show that any linear function f : R” — IR is both convex and concave.

(© Queen Mary University of London (2020)

[5]

[5]
[4]

[4]

[4]

[4]
[4]



MTH?786P (2020) Page 5

Question 3. [20 marks]
(a) The problem of estimating the weight of a person given their height based on
other pairs of weight/height samples is
A. amulti-class classification problem with more than two classes.
B. a binary classification problem.
C. an unsupervised learning task.

D. aregression problem with continuous output.
[5]

(b) What is the maximum likelihood estimator (MLE)? Derive the MLE of a linear
model assuming that the data {y;};_, areii.d. samples of a binomial
distributed random variable with probability mass function

plolrir) = ( £) o001~ )5,

for a constant ¢ € IN and a function o : R — [0, 1].

1 X1 x{
e Derive p(y|X,w) fory=| : |[eR%,x;=| : [eR, X=| : | e R
Ys Xn XST

e Compute the negative log-likelihood.

e Inserto(x) = 1/(1+ e *) in the negative log-likelihood and simplify as
much as possible.

[15]

End of Paper.
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