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The terms MSE and MAE are abbreviations for Mean Squared Error and Mean Ab-
solute Error, respectively. Note that for all multiple choice questions there will only
be one correct answer.

Question 1. [34 marks]

(a) Which of the following properties is not true for a Hessian matrix?

A. The Hessian is symmetric.

B. The Hessian is always invertible.

C. The Hessian is the transpose of the Jacobi matrix of the gradient.

D. The Hessian is used in the Newton-Raphson method.

[5]

(b) Mini-batch gradient descent coincides with

A. stochastic gradient descent if every batch contains exactly one
randomly chosen index

B. gradient descent if every batch contains exactly one index

C. the Newton-Raphson method if every batch contains all indices.

D. none of the above.

[5]

(c) Compute the MSE for the 1-parameter model by hand:

MSE(w0) =
1
2s

s

∑
i=1
|yi − w0|2

Fill in the missing entries of the following table:

w0 =
−3

w0 =
−2

w0 =
−1

w0 =
0

w0 =
1

w0 =
2

w0 =
3

y1 = -3
y2 = -2
y3 = -1
y4 = 0
y5 = 1

2 MSE(w0)s
y6 = -20

2 MSE(w0)s

Some help: 232 = 529, 222 = 484, 212 = 441, 202 = 400, 192 = 361, 182 = 324, 172 = 289. [5]

(d) Repeat the same exercise with the MAE, i.e.

MAE(w0) =
1
s

s

∑
i=1
|yi − w0| .
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Fill in the missing entries of the following table:

w0 =
−3

w0 =
−2

w0 =
−1

w0 =
0

w0 =
1

w0 =
2

w0 =
3

y1 = -3
y2 = -2
y3 = -1
y4 = 0
y5 = 1

MAE(w0)s
y6 = -20

MAE(w0)s
What do you observe, in particular with regards to the outlier y6? [6]

(e) Compute the gradient ∇L of the cost function L : R2 → R defined as

L(z1, z2) = z1 log
(

z1

z2

)
+ z2 − z1 .

[5]

(f) Derive the gradient descent update formula that aims at minimising L as
defined in (e). [4]

(g) Show that the Hessian HL(z1, z2) of L with respect to arguments z1 and z2
equals

HL(z1, z2) =
1
z2

(
z2
z1
−1

−1 z1
z2

)
.

Further verify that the Hessian is is positive semi-definite, i.e.

(
x y

)
HL(z1, z2)

(
x
y

)
≥ 0

holds true for all x, y ∈ R and all z1 > 0 and z2 > 0. [4]
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Question 2. [33 marks]

(a) Computing the gradient of a function and finding parameters that map the
gradient to zero implies that

A. those parameters minimise the function globally.

B. those parameters maximise the function if the function is also concave.

C. those parameters maximise the function locally.

D. the function is not concave.

[4]

(b) Proximal gradient descent is a special case of

A. the Newton-Raphson method.

B. the grid search method.

C. gradient descent if the function R in the proximal mapping is chosen
to be zero for all arguments.

D. stochastic gradient descent with batch-size one.

[4]

(c) For the function f (x, y) = sin(x + y) we observe

A. minx maxy f (x, y) < maxy minx f (x, y).

B. minx maxy f (x, y) = maxy minx f (x, y).

C. maxx miny f (x, y) < miny maxx f (x, y).

D. maxx miny f (x, y) > miny maxx f (x, y).

[2]

(d) State the definition of convexity of a function. [4]

(e) State the definition of the Euclidean vector norm (also known as two-norm). [4]

(f) State the definition of the matrix product Xw for a matrix X ∈ Rs×n and a
vector w ∈ Rn and show that it is linear, i.e.

X(aw + b) = aXw + Xb ,

for a ∈ R and b ∈ Rn. [6]

(g) Show that for given X ∈ Rs×n and y ∈ Rs the affine-linear function

h(w) := Xw− y

satisfies h(λw + (1− λ)v) = λh(w) + (1− λ)h(v) for all w, v ∈ Rn and
λ ∈ [0, 1]. [4]
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(h) Show that the MSE function of the form

MSE(w) =
1
2s
‖Xw− y‖2

is convex.
Hint: use (g) to show that the composition g(h(w)) of a convex function g and
an affine-linear function h is convex for all arguments w ∈ Rn. [5]
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Question 3. [33 marks]

(a) The problem to decide whether given fruits are either apples, bananas or
strawberries is a

A. binary classification problem.

B. regression problem with continuous output variables.

C. problem that has no solution.

D. multi-class classification problem with more than two classes.

[6]

(b) Which of the following statements is generally not true for matrix
factorisations?

A. They factorise matrices A into products of the form A = BC for
matrices B and C.

B. There is always a unique solution to the matrix factorisation problem.

C. They can be used to model recommender systems.

D. Singular value decomposition is a special case of matrix factorisation.

[6]

(c) Suppose {pi}s
i=1 with ∑s

i=1 pi = 1 and pi ≥ 0. Show that for

L(x) =
s

∑
i=1

pi`i(x)

the gradient and the expected value of the stochastic gradient coincide, i.e.

Ei∼D [∇`i(x)] = ∇L(x) ,

where the expected value is defined with respect to {pi}s
i=1, i.e.

Ei∼D[yi] = ∑s
i=1 piyi. [6]

(d) What is the maximum likelihood estimator (MLE)? Derive the MLE of a linear
model assuming that the data {yi}s

i=1 are i.i.d. random variables with
probability density function

p(yi|xi, w) =
1

〈xi, w〉 e
− yi
〈xi ,w〉 .

• Derive p(y|X, w) for y =

y1
...

ys

∈Rs, xi =

x1
...

xn

∈Rn, X =

xT
1
...

xT
s

 ∈ Rs×n.

• Compute the negative log-likelihood.

• Substitute zi = log(〈xi, w〉) in the negative log-likelihood and simplify as
much as possible.

c© Queen Mary University of London (2019)



MTH786P (Late Summer 2019) Page 7

[15]

End of Paper.
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