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The terms MSE and MAE are abbreviations for Mean Squared Error and Mean Ab-
solute Error, respectively. Note that for all multiple choice questions there will only
be one correct answer. The notation i ~ U suggests that i is drawn from a (discrete)
uniform distribution.

Question 1. [34 marks]

(a) How can we prevent overfitting in polynomial regression?
A. Increase the degree of the polynomial.
B. Increase the number of data samples.
C. Decrease the number of data sampes.

D. Use gradient descent to fit the polynomial.
[5]

(b) If we try to solve Ax = b for x € R"” where b € R™ is a vector and A € R"*" an
ill-conditioned matrix, then

A. small errors in b have almost no effect on the solution x.
B. large errors in b have almost no effect on the solution x.
C. small errors in b can lead to large errors in the solution x.
D.

this means that the condition number of A is very small.
[5]
(c) Compute the MSE for the 1-parameter model by hand:

1 S
MSE(wy) = % Y lyi —wol?
=

Fill in the missing entries of the following table:

Wy = |Wy =|Wy = |Wy = |Wy =|Wy = | Wy =
-3 —2 -1 0 1 2 3
y1=-2
Yy2=-
y3=0
ya=1
Y5 =2
2 MSE(wp)s
Y6 =20
2 MSE(wyg)s
Some help: 232 = 529,222 = 484,212 = 441,207 = 400,19 = 361,18% = 324,172 = 289. [5]
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(d) Repeat the same exercise with the MAE, i.e.
1 S
MAE(ZUQ) = 2— Z ’yl — w0] .
S i=1
Fill in the missing entries of the following table:
Wy = |Wy = |Wy = |Wy = |Wy = |Wy = | Wy =
-3 —2 -1 0 1 2 3
y1=-2
y2=-1
y3=0
ya=1
y5=2
2 MAE(wy)s
Y6 = 20
2 MAE(wp)s
What do you observe, in particular with regards to the outlier y¢? [7]
(e) For given datay € {0,1} compute the gradient VL of the cost function
L(z1,22) = log (exp(z1) + exp(z2)) — (yz1 + (1) z2)
[5]
(f) Derive the gradient descent update formula that aims at minimising L as
defined in (e). [4]

(g) Is the Newton-Raphson method, which aims at finding the root Z of VL(2) = 0,

well defined for L in (e)? If yes, please state the update formula. If not, please
explain the problem. [3]
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Question 2. [33 marks]
(a) Computing the gradient of a function and finding parameters that map the
gradient to zero implies that
A. those parameters minimise the function globally.
B. those parameters minimise the function if the function is also convex.
C. those parameters minimise the function locally.
D.

the function is not convex.
(4]

(b) Projected gradient descent is a special case of
A. the grid search method.
B. the Newton-Raphson method.
C. stochastic gradient descent with batch-size one.

D. proximal gradient descent.
[4]

(c) The max-min inequality states max, min, f(x,y) < min, max, f(x,y). In which
of the following cases can we guarantee equality?

A. fisconcave in its first and concave in its second argument.

B. f is convex in its first argument and non-convex in its second
argument.

C. fisnon-convex in its first argument and concave in its second
argument.

D. fis convex inits first and concave in its second argument.
[4]
(d) State the definitions of convexity and concavity of a function. [6]

(e) State the definition of the inner product (-, -) : R” x R" — R and show that it is
bilinear, i.e.

(ax +b,y) = alx,y) + (b,y),
fora € R,and x,y,b € R". [6]
(f) Show that for fixed x € R"” and y € R the affine-linear function
h(w) := (x,w) —y

satisfies h(Aw + (1 — A)v) = Ah(w) + (1 — A)h(v) for all w, v € R" and
A €10,1]. [4]
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(g) Show that the MSE function of the form
1 D)
MSE(w) = o) [(w, ;) = yil
5im1
is convex.

Hint: use (f) to show that the composition g(h(w)) of a convex function g and
an affine-linear function # is convex for all arguments w € R". [5]
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Question 3. [33 marks]

(@) The problem to decide whether a flight is delayed by more than four hours or
notisa

A. regression problem with continuous output variables.

B. multi-class classification problem with more than two classes.

C. problem that has no solution.

D. binary classification problem. 6]
(b) Which of the following statements is generally not true for singular value

decomposition?

A. Tt splits a matrix A intoasum A = B + C.

B. It decomposes a matrix A into A = UZVT.

C. It can be used to compress signals such as digital images.

D. It can be used for matrix factorisation.

[6]
(c) Show that for

L) = L 34

the gradient and the expected value of the stochastic gradient coincide, i.e.
Eiou [V6(x)] = VL(x).
[6]

(d) Derive the maximum likelihood estimator of a linear model assuming that the
error follows a Laplacian distribution with location zero and scale 1, i.e.

yi — <w1xi> +€i/

where each ¢; is an i.i.d. random variable that has a Laplace(0, 1) distribution,
i.e. its probability density function is

ples) = 5l
forallie {1,...,s}.
A X1 x]
e Derive p(y|X,w)fory=| : |[eR’, x;=| : |eR", X =] : | € R®*"
Ys Xn xsT

e Compute the negative log-likelihood.

e Compare the negative log-likelihood to the MAE.
[15]

End of Paper.
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