
Midterm Examination period 2020 – Week 8 – Semester A

MTH786: Machine learning with Python

You should attempt ALL questions. Marks available are shown next to the ques-
tions.

In completing this midterm assessment, you may use books, notes, and the
Internet. You may use calculators and computers, but you must show your work
for any calculations you do. You must not seek or obtain help from anyone else.

At the start of your work, please copy out and sign the following declaration:

I declare that my submission is entirely my own, and I have not sought
or obtained help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 150 minutes in which to complete and submit this assessment.

When you have finished your work:

• scan your work, convert it to a single PDF file, and submit this file on QMPlus;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

You are expected to spend about 90 minutes to complete the assessment, plus the
time taken to scan and upload your work. Please try to upload your work well before
the end of the submission window, in case you experience computer problems. Only
one attempt is allowed – once you have submitted your work, it is final.

Examiners: M. Benning
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The notation log refers to the natural logarithm.

Question 1 [50 marks].

(a) For a uniform (and absolutely continuous) random variable X in [0, 1] compute
the expectation of f (X) for

f (x) :=

{
a log(x + b) x ∈ [0, 1/2]
0 otherwise

,

where a and b are the maximum of the seventh, respectively eighth, digit of
your student ID and one. [10]

(b) Compute the probability P(a ≤ X ≤ b) that an exponentially distributed
random variable X with parameter λ = 1/b lies in the interval [a, b]. Here a and
b are the last two digits of your student ID that are ordered such that a < b. If
a = b, consider a and b + 1 instead. [10]

(c) Compute the gradient of the function J(x) := 1
2〈Q(x− y), (x− y)〉 for fixed

y ∈ Rn. Here Q ∈ Rn×n is a (square) matrix. What does the gradient simplify to
if Q is also symmetric? [10]

(d) Compute the MSE for the 1-parameter model by hand:

MSE(w0) =
1
2s

s

∑
i=1
|yi − w0|2

Fill in the missing entries of the following table:

w0 =
−7

w0 =
−5

w0 =
−3

w0 =
−1

w0 =
1

w0 =
3

w0 =
5

y1 = -1
y2 = -2
y3 = -3
y4 = -4

MSE(w) · 2s
y5 = 10 d

MSE(w) · 2s

Here d is the maximum of the seventh digit of your student ID and one. [10]

(e) Repeat the same exercise for what is known as the Mean Absolute Error (MAE),
i.e.

MAE(w0) =
1
s

s

∑
i=1
|yi − w0| .

Fill in the missing entries of the following table:
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w0 =
−7

w0 =
−5

w0 =
−3

w0 =
−1

w0 =
1

w0 =
3

w0 =
5

y1 = -1
y2 = -2
y3 = -3
y4 = -4

MAE(w) · s
y5 = 10 d

MAE(w) · s

The value d is once more the maximum of the seventh digit of your student ID
and one. What do you observe, in particular with regards to the outlier y5? [10]
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Solution:

(a) The expectation for a uniform and absolutely continuous random variable X in
[0, 1] simply reads

Ex[x] =
∫ 1

0
x dx .

Hence, we compute

Ex[ f (x)] =
∫ 1

2

0
a log(x + b) dx = a ((x + b) log(x + b)− x)|

1
2
0

= a
(

1 + 2b
2

log
(

1 + 2b
2

)
− 1

2

)
− a (b log(b))

= a
(

1
2

log (1 + 2b)− log(2)− 1
2
+ b log

(
1 +

1
2b

))
.

If the student id digits are a = 3 and b = 7, we compute Ex[ f (x)] ≈ 2.971 for
example.

(b) The probability of a random variable X in the interval [a, b] can be computed via

P(a ≤ X ≤ b) =
∫ b

a
ρ(x) dx .

In this exercise, ρ is the PDF of an exponential distribution with parameter
λ = 1/b, i.e.

ρ(x) =

{
exp(− x

b )
b x ≥ 0

0 otherwise
.

Hence, we compute

P(a ≤ X ≤ b) =
1
b

∫ b

a
e−

x
b dx = e−

a
b − 1

e
.

If the student id digits are a = 2 and b = 5 for example, we have
P(2 ≤ X ≤ 5) ≈ 0.30244.

(c) In order to compute the gradient, we need to compute the partial derivatives of
J w.r.t. individual arguments xl, for l ∈ {1, . . . , n}, i.e.

∂

∂xl
J(x) =

∂

∂xl

1
2
〈Q(x− y), x− y〉 = ∂

∂xl

1
2

n

∑
i=1

(
n

∑
j=1

Qij(xj − yj)

)
(xi − yi) .

With the product rule we easily compute

∂

∂xl
J(x) =

1
2

(
n

∑
i=1

Qil(xi − yi) +
n

∑
j=1

Ql j(xj − yj)

)
=

(
1
2

(
Q> + Q

)
(x− y)

)
l

.

Hence, the gradient ∇J reads ∇J(x) = 1
2

(
Q> + Q

)
(x− y) for the column

vector definition of the gradient, or ∇J(x) = 1
2(x− y)>

(
Q> + Q

)
for the

row-vector definition (both are acceptable solutions). The gradient simplifies to
∇J(x) = Q(x− y) if Q is symmetric, since Q> = Q and thus Q> + Q = 2Q.
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(d) The MSE for the 1-parameter model for d = 1 reads

w0 =
−7

w0 =
−5

w0 =
−3

w0 =
−1

w0 =
1

w0 =
3

w0 =
5

y1 = -1 36 16 4 0 4 16 36
y2 = -2 25 9 1 1 9 25 4
y3 = -3 16 4 0 4 16 36 64
y4 = -4 9 1 1 9 25 49 81

MSE(w) · 2s 86 30 6 14 54 126 230
y5 = 10 289 225 169 121 81 49 25

MSE(w) · 2s 375 255 175 135 135 175 255

(e) The MAE for the 1-parameter model for d = 1 reads

w0 =
−7

w0 =
−5

w0 =
−3

w0 =
−1

w0 =
1

w0 =
3

w0 =
5

y1 = -1 6 4 2 0 2 4 6
y2 = -2 5 3 1 1 3 5 7
y3 = -3 4 2 0 2 4 6 8
y4 = -4 3 1 1 3 5 7 9

MAE(w) · s 18 10 4 6 14 22 30
y5 = 10 17 15 13 11 9 7 5

MAE(w) · s 35 25 17 17 23 29 35

The MAE is less sensitive to extreme outliers compared to the MSE.
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Question 2 [50 marks].

(a) Suppose we have s i.i.d. samples x1, . . . , xs that are drawn from a discrete
Poisson distribution with parameter λ. Write down the likelihood for the data
and use the maximum likelihood principle to compute the parameter λ. [10]

(b) Show that the function f (x) = α|x| is convex for fixed α > 0. [10]

(c) Compute the proximal map for the function f (x) = 1
2〈Qx, x〉 for a square and

symmetric matrix Q ∈ Rn. [10]

(d) Show that the proximal map of the characteristic function

f (x) =

{
0 x ∈ [0, 1]
∞ x 6∈ [0, 1]

is

(I + ∂ f )−1(z) =


1 z > 1
z z ∈ [0, 1]
0 z < 0

.

[10]

(e) The rectifier or ramp function f (x) =

{
x x ≥ 0
0 x < 0

can also be written as the

maximisation problem

f (x) = max
p∈[0,1]

xp .

Show that the smoothed ramp function

fτ(x) := max
p∈[0,1]

xp− τ

2
|p|2

for a parameter τ > 0 has the closed-form solution

fτ(x) =


x− τ

2 x > τ
1

2τ x2 x ∈ [0, τ]

0 x < 0
.

[10]
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Solution:

(a) The likelihood for the data reads

ρ(x1, . . . , xs|λ) =
s

∏
i=1

λxi exp(−λ)

xi!
. (1)

We use the maximum likelihood principle and minimise the negative logarithm
of (1) w.r.t. λ, i.e.

λ̂ = arg min
λ∈R
− log

(
s

∏
i=1

λxi exp(−λ)

xi!

)

= arg min
λ∈R
−

s

∑
i=1

log
(

λxi exp(−λ)

xi!

)
= arg min

λ∈R

s

∑
i=1

[log(xi!)− log (λxi exp(−λ))]

= arg min
λ∈R
−

s

∑
i=1

[log (λxi) + log (exp(−λ))]

= arg min
λ∈R

s

∑
i=1

[λ− xi log (λ)]

= arg min
λ∈R

sλ−
s

∑
i=1

xi log(λ) .

Computing the gradient of the function w.r.t. λ and setting it to zero yields

0 = s−
s

∑
i=1

xi

λ̂
.

Solving for λ̂ then yields

λ̂ =
1
s

s

∑
i=1

xi .

Hence, the parameter that maximises the likelihood is the mean of all samples
x1, . . . , xs.

(b) With the triangle inequality we instantly observe

f (λx + (1− λ)y) = α|λx + (1− λ)y| ≤ α|λx|+ α|(1− λ)y|
≤ λα|x|+ (1− λ)α|y| = λ f (x) + (1− λ) f (y) ,

for any x, y ∈ R, α > 0 and λ ∈ [0, 1]. Hence, f (x) = α|x| is convex.
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(c) The proximal map for the function f (x) = 1
2〈Qx, x〉 reads

(I + ∂ f )−1(z) = arg min
x∈Rn

{
1
2
‖x− z‖2 +

1
2
〈Qx, x〉

}
.

The objective function is differentiable, so we can simply compute the gradient
and set it to zero. From Question 1, Exercise (c), we already know that the
gradient of 1

2〈Qx, x〉 for symmetric Q is Qx, hence, the full gradient set to zero
reads

(I + ∂ f )−1(z)− z + Q(I + ∂ f )(z) = 0 .

Solving this for (I + ∂ f )(z) yields

(I + ∂ f )−1(z) = (I + Q)−1z .

(d) The proximal map is

(I + ∂ f )−1(z) = arg min
x

{
1
2
|x− z|2 + f (x)

}
= arg min

x∈[0,1]

{
1
2
|x− z|2

}
.

We consider the three cases z ∈ [0, 1], z < 0 and z > 1. If z ∈ [0, 1], we easily
observe that x = z yields 1

2 |x− z|2 + f (x) = 0, which is the global minimum
since 1

2 |x− z|2 ≥ 0 and f (z) ≥ 0 by definition. For z < 0 we observe that x = 0
makes the objective smallest. The last part can be verified through

1
2
| − z|2 ≤ 1

2
|x− z|2

⇔ |z|2 ≤ |x− z|2

⇔ |z|2 ≤ |x|2 − 2xz + |z|2

⇔ 2xz ≤ |x|2

⇔ 2z ≤ x .

The last inequality is always true, since we assumed z < 0 and x ≥ 0 by
definition. If z > 1 we observe that x = 1 makes the objective smallest, which
we can verify in similar fashion as for the case z < 0. Hence, the proximal map
reads

(I + ∂ f )−1(z) = min (1, max(0, z)) .

(e) Similar to Coursework 5, we can reformulate f as f (x) = xp̂− τ p̂2/2 with p̂
satisfying

p̂ = arg max
p∈[0,1]

xp− τ

2
p2

= arg min
p∈[0,1]

τ

2
p2 − xp

= arg min
p∈[0,1]

τ

2

(
p− x

τ

)2
.
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This is exactly the proximal map from Question 2 (e); hence, the solution is

p̂ =


1 x > τ
x
τ x ∈ [0, τ]

0 otherwise
.

As a direct consequence, the function f reads

f (x) =


x− τ

2 x > τ
1

2τ x2 x ∈ [0, τ]

0 otherwise
.

End of Paper.
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