
Machine Learning

Originally developed by Martin Benning
Adapted and modified by Nicola Perra

Last updated on: September 8, 2023

Lecture Notes 2023-24

2

Contents

1 Mathematical preliminaries 5
1.1 Linear algebra . 5
1.2 Calculus . 8
1.3 Probability & statistics . 9

2 Supervised learning 11
2.1 Statistical motivation . 11
2.2 Linear & polynomial regression . 13

2.2.1 Polynomial regression . 14
2.2.2 Regression with general basis functions . 15

2.3 Convex analysis . 15
2.3.1 A comment on existence and uniqueness . 19

2.4 Ill-conditioned regression problems & regularisation 20
2.4.1 Ridge regression . 22

2.5 Model selection . 23
2.6 Bias-variance decomposition . 25
2.7 The LASSO . 26

2.7.1 Gradient descent . 27
2.7.2 Gradient descent and the LASSO . 31
2.7.3 Proximal gradient descent . 32
2.7.4 Coordinate descent . 33

2.8 Deep learning . 35
2.8.1 Training deep learning models . 37

2.9 Classification . 39
2.9.1 Nearest neighbour classification . 39
2.9.2 Logistic regression . 41
2.9.3 Multinomial logistic regression . 42
2.9.4 Support-vector machines (SVMs) . 45
2.9.5 Semi-supervised binary classification with graphs 48

3

4 CONTENTS

Chapter 1

Mathematical preliminaries

In this first chapter we briefly revise basic mathematical preliminaries that we are going to use
throughout this module. Those preliminaries span topics ranging from linear algebra over calculus
to basic probability and statistics.

1.1 Linear algebra

Throughout this module, we will extensively deal with vectors and matrices. The term vector
refers to a an object that both has a magnitude and a direction. We will usually write vectors
x ∈ Rd (or x ∈ Rd×1) as

x =


x1
x2
...
xd

 ,

which we generally also refer to as column-vectors. Here each individual xj , for j ∈ {1, . . . , d}, is
a real-valued scalar, i.e. xj ∈ R for all j ∈ {1, . . . , d}. In contrast to a column-vector, we can also
consider row-vectors x⊤ ∈ R1×d, i.e.

x⊤ =
(
x1 x2 . . . xd

)
.

Both are special cases of a matrix, which is a rectangular array of scalars. We write a matrix
X ∈ Rd1×d2 of size d1 × d2 as

X =


x11 x12 . . . x1d2
x21 x22 . . . x2d2
...

. . .
...

xd11 xd12 . . . xd1d2

 .

The transpose X⊤ ∈ Rd2×d1 of matrix X ∈ Rd1×d2 is defined by interchanging the rows and
columns, i.e.

X⊤ =


x11 x21 . . . xd11
x12 x22 . . . xd12
...

. . .
...

x1d2 x2d2 . . . xd1d2

 .

5

6 1.1. LINEAR ALGEBRA

Note that we can immediately conclude (X⊤)⊤ = X, and that a row-vector is simply the transpose
of a column-vector (and vice versa), which in hindsight explains our use of the notation x⊤ for the
row-vector. Two very important concepts in the context of matrices are the range and the kernel
(or nullspace) of a matrix. The range ran(X) of a matrix X is the set of all vectors that can be
expressed in terms of X, i.e.

ran(X) := {Xz | z ∈ Rn} .

The kernel ker(X) of a matrix X is the set of all vectors that X maps onto the zero vector, i.e.

ker(X) := {z ∈ Rn |Xz = 0} .

In the following, we want to recall the two main products that are relevant for this module.
The most important vector-vector product is the so-called dot product or inner product of two
vectors x, y ∈ Rd of identical dimension, defined as

⟨x, y⟩ :=
d∑

j=1

xjyj .

Note that we simply multiply the individual coordinates of the vectors x and y and sum over all
products. Another common notation for the dot product is x · y.

The matrix-vector product for a matrix X ∈ Rd1×d2 and a column-vector y ∈ Rd2×1 is defined
as

(Xy)i :=

d2∑
j=1

xijyj for all i ∈ {1, . . . , d1} .

We denote the resulting (column) vector simply as Xy ∈ Rd1×1. In identical fashion, we can define
a matrix-matrix product for matrices X ∈ Rd1×d2 and Y ∈ Rd2×d3 as

(XY)ij :=

d2∑
l=1

xilylj for all i ∈ {1, . . . , d1} and j ∈ {1, . . . , d3} .

Again, we denote the resulting matrix simply as XY ∈ Rd1×d3 . We want to emphasise that the
inner product can be viewed as a special case of the matrix-matrix product, if we consider the
matrix-matrix product of a row-vector and a column-vector, i.e. for x, y ∈ Rd we have

⟨x, y⟩ = x⊤y .

Having defined an inner product, it is straight-forward to define the Euclidean norm of a vector.
The Euclidean norm ∥ · ∥ : Rd → R≥0 of a vector x ∈ Rd is defined as

∥x∥ :=
√

⟨x, x⟩ =

√√√√ d∑
j=1

x2j .

Please note that sometimes we will denote the Euclidean norm by ∥ · ∥2 rather than ∥ · ∥ in order
to distinguish them from other norms. Another module-relevant vector norm is the one-norm
∥ · ∥1 : Rd → R≥0, which is defined as

∥x∥1 :=
d∑

j=1

|xj | .

CHAPTER 1. MATHEMATICAL PRELIMINARIES 7

There are numerous ways of defining a matrix norm, but the only two relevant matrix norms for
this module are the Frobenius norm, i.e.

∥X∥Fro :=

√√√√ d1∑
i=1

d2∑
j=1

x2ij ,

and the standard matrix norm

∥X∥ := sup
∥y∥≤1

∥Xy∥ = sup
y ̸=0

∥Xy∥
∥y∥

.

Here ∥ · ∥ denotes the Euclidean norm, and sup is the supremum. Before we move on to recall
basic concepts of calculus, we want to briefly address the concepts of eigenvalues and eigenvectors
of square matrices. An eigenvalue λ and an eigenvector wλ are characterised by the equation

Xwλ = λwλ . (1.1)

This means that wλ is invariant under matrix multiplication albeit a scaling with factor λ. If we
take an inner product of (1.1) with wλ, we immediately observe that an eigenvalue λ takes on the
value

λ =
⟨Xwλ, wλ⟩
∥wλ∥2

.

Assuming that all eigenvectors are normalised, i.e. ∥wλ∥ = 1, we conclude λ = ⟨Xwλ, wλ⟩. For
eigenvalues σ2 and eigenvectors vσ of X⊤X, i.e.

X⊤Xvσ = σ2vσ ,

we observe σ = ∥Xvσ∥/∥vσ∥ ≥ 0. This implies that the matrix norm equals the square-root of the
largest eigenvalue of X⊤X, i.e.

∥X∥ = sup
v ̸=0

∥Xv∥
∥v∥

= sup
{
σ ∈ R≥0

∣∣∣X⊤Xv = σ2v
}
.

The square-root of the eigenvalues of X⊤X, i.e. σ, are known as singular values of X. More
information and properties of singular values can be found here. The eigenvectors are known as
the right singular vectors of X. In identical fashion we can derive eigenvectors uσ of XX⊤, which
are known as the left singular vectors of X. In this module, the most important properties are that
Xw, X⊤y, X⊤Xw and (X⊤X)−1b (if (X⊤X)−1 exists) can be expressed in terms of the singular
value decomposition of X, i.e.

X = UΣV ⊤ , (1.2)

where U ∈ Rs×min(s,d) and V ∈ Rd×min(s,d) are the matrices that contain all singular vectors
{uσi}

min(s,d)
i=1 and {vσi}

min(s,d)
i=1 as their columns, while Σ ∈ Rmin(s,d)×min(s,d) is the diagonal matrix

whose diagonal contains all singular vectors σ1 ≥ σ2 ≥ . . . ≥ σmin(s,d). With the help of Equation
(1.2), we can express Xw, X⊤y, X⊤Xw and (X⊤X)−1b as

Xw =

min(s,d)∑
j=1

σjuj⟨vj , w⟩ , X⊤y =

min(s,d)∑
j=1

σjvj⟨uj , y⟩ ,

https://en.wikipedia.org/wiki/Infimum_and_supremum
https://en.wikipedia.org/wiki/Singular_value

8 1.2. CALCULUS

and

X⊤Xw =

min(s,d)∑
j=1

σ2
j vj⟨vj , w⟩ , (X⊤X)−1b =

min(s,d)∑
j=1

σ−2
j vj⟨vj , b⟩ .

For more information on singular value decompositions we refer to this page.

1.2 Calculus

We will require the computation of (partial) derivatives, gradients and Hessian matrices during
this module. Suppose we are given a continuously differentiable function f : R → R, then its
derivative f ′ : R → R is defined as

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
.

The notation f ′ is known as Lagrange’s notation and is the most common notation for derivatives.
Another useful notation is Leibniz’s notation df

dx that emphasises that the derivative of f with
respect to (w.r.t.) x is taken. Many useful differentiation rules exist. If you require a little refresher
you can recall many of those rules here. For continuously differentiable functions f : Rd → R in
multiple variables we can define partial derivatives as

∂f

∂xj
(x1, . . . , xd) := lim

h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xd)− f(x1, . . . , xj−1, xj , xj+1, . . . , xd)

h
.

If we compute the partial derivatives w.r.t. all arguments x1, . . . , xd and store them in a column-
vector, we obtain the gradient ∇f : Rd → Rd of a function f : Rd → R, i.e.

∇f(x) =
(

∂f
∂x1

(x) ∂f
∂x2

(x) · · · ∂f
∂xd

(x)
)
.

Here x = (x1, . . . , xd) is a short-hand vector notation for all arguments x1, . . . , xd. For function
f : Rd2 → Rd1 with multiple outputs we can define the Jacobian matrix Jf : Rd2 → Rd1×d2 as

Jf (x) :=


∂f1
∂x1

· · · ∂f1
∂xd2

...
. . .

...
∂fd1
∂x1

· · · ∂fd1
∂xd2

 .

For many differentiation rules there exist higher-dimensional counterparts. Of particular interest
to us is the multi-dimensional chain-rule, which for a composition f ◦ g of functions f : Rd2 → Rd1

and g : Rd3 → Rd2 reads

Jf◦g(x) = Jf (g(x))Jg(x) .

In particular, for functions f : Rd1 → R and g : Rd2 → Rd1 we observe

∇(f ◦ g)(x) = ∇f(g(x))⊤Jg(x) .

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Function_composition

CHAPTER 1. MATHEMATICAL PRELIMINARIES 9

We conclude this section with second-order derivatives for multi-variable functions. A second
partial derivative is the application of the partial derivative to a partial derivative, assuming that
such a partial derivative exists, i.e.

∂2f

∂xi∂xj
(x) :=

∂f

∂xi

∂f

∂xj
(x) , for i, j ∈ {1, . . . , d} ,

for x = (x1, . . . , xd) and a function f : Rd → R. If i = j, we simply write ∂2f/∂x2i . Based on this
concept, one can define the Hessian matrix Hf : Rd → Rd×d of second-order partial derivatives as

Hf (x) :=


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xd

...
...

. . .
...

∂2f
∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂x2

d

 ,

for x = (x1, . . . , xd), assuming that all second-order partial derivatives exist. Note that gradient,
Jacobian and Hessian are connected via

Hf (x) = J∇f (x) .

This concludes our section on calculus. In the next and final section of the mathematical prelimi-
naries, we revisit some basic rules and notations of probability & statistics.

1.3 Probability & statistics

The expected value, or expectation, of a random variable X with finite outcomes {xi}si=1 with
probabilities {ρi}si=1 is defined as

Ei[xi] :=
s∑

i=1

xiρi . (1.3)

Since probabilities are non-negative and sum up to one, the expected value (1.3) is a weighted
average. In case all outcomes are equiprobable, i.e. ρi = 1/s for all i ∈ {1, . . . , s}, the expected
value is the normal average, or arithmetic mean.
In the absolutely continuous case, the expectation is defined as

Ex[x] =

∫
R
x ρ(x) dx ,

assuming that the cumulative distribution function of its underlying random variable X admits a
probability density function (PDF) ρ and that the above integral exists.
Please note that expectations can also be computed for measurable functions f , i.e.

Ex[f(x)] :=

∫
R
f(x) ρ(x) dx . (1.4)

For the example of an indicator function over the one-dimensional interval [a, b], i.e.

ι[a,b](x) =

{
1 x ∈ [a, b]

0 x ̸∈ [a, b]
,

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Measurable_function

10 1.3. PROBABILITY & STATISTICS

we instantly observe

Ex

[
ι[a,b](x)

]
=

∫
R
ι[a,b](x) ρ(x) dx =

∫ b

a
ρ(x) dx = P (a ≤ X ≤ b) .

The right-hand-side denotes the probability that a random variable takes a value that lies in the
interval [a, b].
The variance of a random variable X is defined as

Varx[x] := Ex

[
(x− Ex[x])

2
]
,

= Ex[x
2]− Ex[x]

2 .

The square-root of the variance, i.e. σx :=
√

Varx[x], is known as the standard deviation.
Note that expectations and variances can easily be extended to multi-variable functions. If we

have functions f in two (absolutely continuous) random variables X and Y from a joint cumulative
distribution with underlying PDF ρ for example, we simply write

Ex,y[f(x, y)] =

∫
R

∫
R
f(x, y) ρ(x, y) dx dy .

Note that two random variables X and Y are said to be independent if their probabilities or their
PDFs factor, i.e.

ρ(x, y) = ρX(x)ρY (y) .

For an arbitrary number n of random variables {Xi}ni=1, we have

ρ(x1, . . . , xn) =

n∏
i=1

ρXi(xi) .

A collection of random variables is independent and identically distributed (iid) if each random
variable has the same probability distribution (and thus the same PDF) and if all random variables
are independent. Hence, we can write the joint PDF as

ρ(x1, . . . , xn) =
n∏

i=1

ρ̃(xi) ,

where ρ̃ denotes the PDF of the underlying probability distribution. We conclude this chapter with
the definitions of the likelihood function and the posterior probability. Let X be a (continuous)
random variable with probability density function ρθ(x) that depends on parameters θ. Then the
function

ρ(x | θ) := ρθ(x)

is the likelihood function of θ, given the outcome x of X, or the probability of outcome x for the
parameter value θ.

Example 1.1 (Probability vs Likelihood). Rat or mouse example here...?

The posterior probability on the other hand is the probability of the parameters θ given the
outcome x of X, i.e. ρ(θ |x). Given the prior probability distribution function ρ(θ) for the
parameters θ, both are connected via Bayes’ rule or Bayes’ theorem for PDFs:

ρ(θ |x) = ρ(x | θ)ρ(θ)
ρ(x)

, (1.5)

named after Reverend Thomas Bayes. With this we conclude this chapter on mathematical pre-
liminaries and begin our introduction of supervised machine learning.

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability_distribution

Chapter 2

Supervised learning

In this module we extensively study numerous aspects of supervised machine learning. The two
predominant problems in supervised machine learning are regression and classification problems.
Beginning with a statistical motivation for supervised linear regression problems, we spent the
first half of this module on regression problems, before moving on to classification problems.

2.1 Statistical motivation

In supervised machine learning, the goal is to find a function mapping f : Rn → Rm that approx-
imately maps a collection of s known input arguments {xi}si=1, with xi ∈ Rn for all i ∈ {1, . . . , s},
onto a collection of s output elements {yi}si=1, with yi ∈ Rm for all i ∈ {1, . . . , s}, i.e.

f(xi) ≈ yi , ∀i ∈ {1, . . . , s} . (2.1)

The name ’supervised’ stems from the fact that a collection of outputs {yi}si=1 needs to be known
in advance. In the following, we want to specify what we mean by ’approximately’, and why it is
not necessarily desirable to have a strict equality in (2.1).

In Figure 2.1 we see a collection of data points {(xi, yi)}si=1 that represent the weight- and
height-information for s individuals, so the goal is to find a mapping that approximately returns
the height-information when given the weight-information. We observe that the data points seem
to follow a linear trend, but with substantial and presumably random deviations from this line.
Instead of seeking a function that maps every xi onto each corresponding yi, one could rather try
to find a line that has minimal distance to each point (xi, yi). What distance, you may ask? If
we collect the error in prediction for each sample we obtain a plot like the one in Figure 2.1. The
error seems to follow a normal distribution, which is why it makes sense to model the deviation
as normal-distributed independent random variables with mean zero and variance σ2, i.e. for

εi := yi − f(xi) , ∀i ∈ {1, . . . , s} ,

we know that every εi is distributed according to

ρ(εi|0, σ) = N (εi|0, σ) :=
1√
2πσ2

e−
ε2i
2σ2 =

1√
2πσ2

e−
(f(xi)−yi)

2

2σ2 .

Assuming that all εi are independent random variables, the joint probability density reads as

ρ(ε|0, σ) =
s∏

i=1

ρ(εi|0, σ) = (2πσ2)−
s
2

s∏
i=1

e−
(f(xi)−yi)

2

2σ2 .

11

12 2.1. STATISTICAL MOTIVATION

Figure 2.1: A simple linear regression example for data points with weights- (x-axis) and height-
information (y-axis). The figure on the left shows a line fitted to the given data points that has minimal
mean-squared error w.r.t. all data points in the sense that it minimises (2.3). The plot on the right-hand-
side shows the the mean-squared error of the individual samples w.r.t. the fitted line.

If we assume that our model f is parametrised with parameters w, which in the following we denote
as fw, it seems wise to choose those parameters such that the likelihood for the joint probability
distribution is maximised, i.e. we look for parameters ŵ that satisfy

ŵ = argmax
w

{
s∏

i=1

ρ(εi|0, σ)

}
,

= argmax
w

{
(2πσ2)−

s
2

s∏
i=1

e−
(fw(xi)−yi)

2

2σ2

}
.

Due to the monotonicity of the natural logarithm, we can alternatively estimate ŵ by estimating
the minimiser of the negative log-likelihood, i.e.

ŵ = argmin
w

{
− log

(
s∏

i=1

ρ(εi|0, σ)

)}
,

= argmin
w

{
−

s∑
i=1

log (ρ(εi|0, σ))

}
,

= argmin
w

{
s

2
log(2πσ2) +

1

2σ2

s∑
i=1

(fw(xi)− yi)
2

}
,

= argmin
w

{
1

2

s∑
i=1

(fw(xi)− yi)
2

}
,

= argmin
w

{
1

2s

s∑
i=1

(fw(xi)− yi)
2

}
. (2.2)

Hence, optimal parameters ŵ have to be chosen in order to minimise the squared Euclidean norm

CHAPTER 2. SUPERVISED LEARNING 13

w.r.t. each sample {(xi, yi)}si=1. The function

MSE(w) :=
1

2s

s∑
i=1

(fw(xi)− yi)
2 (2.3)

is known as the mean-squared error (MSE) and minimising it is known as the method of least-
squares. In the following we want to address the question of how to parametrise fw and start with
a linear model.

2.2 Linear & polynomial regression

In linear regression, we parametrise our model fw in terms of a linear transformation, i.e. for a
weight w ∈ Rd+1 and fw : Rd → R we choose

fw(x) := ⟨x,w⟩ =
d∑

j=0

xjwj , (2.4)

where we define x0 = 1 in order to allow scalar translations w0. Suppose we are given s pairs of
input/output samples {(xi, yi)}si=1, we can estimate a weight w following (2.2) by minimising the
least-squares error with respect to all samples, i.e.

wt = argmin
w∈Rd+1

{
1

2s

s∑
i=1

|⟨xi, w⟩ − yi|2
}

. (2.5)

An alternative way of writing (2.5) is in terms of matrix multiplication and Euclidean norm as
for a matrix

X :=


1 x11 x12 · · · x1d
1 x21 x22 · · · x2d
...

...
. . .

...
1 xs1 xs2 · · · xsd

 ,

and a vector y :=
(
y1 y2 . . . ys

)
. Later in this module we will verify that the unique solution

to (2.5) are weights wt that satisfy

∇MSE(wt) = 0 . (2.6)

It will be left as a coursework exercise to show that the solution of (2.6) is the linear system of
equations of the form

s∑
i=1


x2i0 xi0xi1 · · · xi0xid

xi1xi0 x2i1 · · · xi1xid
...

...
. . .

...
xidxi0 xidxi1 · · · x2id

 ŵ =

s∑
i=1

yixi ,

⇔


∥x0∥2 ⟨x0, x1⟩ · · · ⟨x0, xd⟩
⟨x1, x0⟩ ∥x1∥2 · · · ⟨x1, xd⟩

...
...

. . .
...

⟨xd, x0⟩ ⟨xd, x1⟩ · · · ∥xd∥2

 ŵ =

s∑
i=1

yixi . (2.7)

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Least_squares

14 2.2. LINEAR & POLYNOMIAL REGRESSION

Note that here the inner product is with respect to the sample-dimension, i.e. ⟨xk, xl⟩ =
∑s

i=1 xikxil.
We want to mention that we can easily extend (2.4) to functions with m-dimensional output via

fW (x) :=


⟨x,w1⟩
⟨x,w2⟩

...
⟨x,wm⟩

 ,

or equivalently fW (x) = W⊤x in matrix-multiplication form, for the matrix W ∈ R(d+1)×m defined
as

W :=

 | | |
w1 w2 . . . wm

| | |


In many applications, the underlying true function f is nonlinear in its argument and linear models
are insufficient in terms of their systematic bias. A simple class of nonlinear model functions are
polynomials.

2.2.1 Polynomial regression

In polynomial regression the goal is to fit polynomials of degree d to the data samples. This can
easily be achieved by equipping (2.4) with a vector of polynomials of degree d, i.e.

fw(x) := ⟨ϕ(x), w⟩ =
d∑

j=0

ϕ(x)jwj , (2.8)

with ϕ : R → Rd+1 defined as

ϕ(x) :=
(
1 x x2 . . . xd

)⊤
.

Note that (2.8) is nonlinear in the argument x, but linear in the weight vector w. Suppose we have
s pairs {(xj , yj)}sj=1 as usual, then for each xi we have ϕ(xi) ∈ Rd+1. We can, therefore, define
the short-hand notations

Φ(X) :=


ϕ(x1)

⊤

ϕ(x2)
⊤

...
ϕ(xs)

⊤

 =


1 x1 x21 . . . xd1
1 x2 x22 . . . xd2
...
1 xs x2s . . . xds

 ∈ Rs×(d+1) , and y :=


y1
y2
...
ys

 ∈ Rs .

As in the linear regression case we can find optimal weights by solving the least-squares problem

wt = argmin
w∈R(d+1)

{
1

2s
∥Φ(X)w − y∥2

}
(2.9)

where ∥ · ∥ denotes the Euclidean norm, or

Wt = argmin
W∈R(d+1)×m

{
1

2s
∥Φ(X)W − Y ∥2Fro

}
in case we want to parametrise a function with m-dimensional output. Here ∥ · ∥Fro denotes the
Frobenius matrix norm, and Y ∈ Rs×m is a matrix.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

CHAPTER 2. SUPERVISED LEARNING 15

2.2.2 Regression with general basis functions

The previous example of polynomial regression is just a special case of regression with more general
(nonlinear) basis functions. The parametrisation of fw remains the same as in (2.8), but the basis
functions ϕ : Rm → Rd+1 can represent more general classes of functions and not just polynomials.
A typical example are radial basis functions, i.e.

ϕ(x) :=
(
φ(∥x− µ0∥) φ(∥x− µ1∥) . . . φ(∥x− µd∥)

)⊤
,

for a function φ : R → R and points {µi}di=0 with µi ∈ Rm for each i ∈ {0, . . . , d}. Classical
choices for φ are

φ(x) :=

{
1− 1

α |x| |x| ≤ α

0 |x| > α
, and φ(x) := exp

(
− x2

2σ2

)
.

In later sections we want to discuss how to analyse and minimise rather general empirical risk
functions with loss functions ℓ that are not necessarily quadratic functions. Before we do so, we
want to recall some basic concepts in convex analysis first.

2.3 Convex analysis

In this section we want to more closely investigate cost- or loss-functions such as the MSE (2.3)
introduced in the previous section. In particular, we want to define convexity of a function, verify
when a function is convex and show why convexity is useful.

Definition 2.1 (Convex set). A subset C ⊂ Rn is said to be convex if

λw + (1− λ)v ∈ C ,

for all elements w, v ∈ C and λ ∈ [0, 1].

Based on this definition we can go ahead and define convex functions.

Definition 2.2 (Convex function). A function E : C → R is said to be convex if for all arguments
w, v ∈ Rn and scalars λ ∈ [0, 1] we observe

E(λw + (1− λ)v) ≤ λE(w) + (1− λ)E(v) .

In return, we can define concave functions as follows.

Definition 2.3 (Concave function). A function E : C → R is said to be concave if for all arguments
w, v ∈ Rn and scalars λ ∈ [0, 1] we observe

E(λw + (1− λ)v) ≥ λE(w) + (1− λ)E(v) .

Note that for a convex function E we automatically observe that −E is concave, and vice versa.
Before we continue, we want to introduce an extremely useful concept for the analysis of convex
and continuously differentiable functions: Bregman distances, respectively Bregman divergences.

Definition 2.4 (Bregman distance). Let E : Rn → R be a continuously differentiable function,
i.e. ∇E(w) exists for all w ∈ Rn and is continuous. Then its corresponding Bregman distance
DE : Rn × Rn → R is defined as

DE(u, v) := E(u)− E(v)− ⟨∇E(v), u− v⟩ ,

for all arguments u, v ∈ Rn.

https://en.wikipedia.org/wiki/Radial_basis_function

16 2.3. CONVEX ANALYSIS

Note that Bregman distances are not necessarily distances in the sense of a metric. They
merely describe the distance of a function E at point u to its linearisation around v. Before we
continue to show that this distance is non-negative if and only if E is convex, we first want to
introduce another useful distance based on the sum of two Bregman distances.

Definition 2.5 (Jensen-Shannon distance). Suppose E : C ⊂ Rn → R is a continuously differen-
tiable function defined over a convex set C. Then its Jensen-Shannon distance is defined as

Jλ
E(u, v) := λDE(u,w) + (1− λ)DE(v, w) ,

for w := λu+ (1− λ)v ∈ C and λ ∈ [0, 1].

Straight-forward computations reveal that this Jensen-Shannon distance is nothing but the
difference between the convex combination of E(u) and E(v) and E applied to the convex combi-
nation of u and v, i.e.

Jλ
E(u, v) = λE(u) + (1− λ)E(v)− E(λu+ (1− λ)v) . (2.10)

Remark 2.1. From the Definition 2.2 we instantly observe that Jλ
E(u, v) ≥ 0 for all u, v ∈ C if

and only if E is convex.

Remark 2.2. For the special choice λ = 1
2 the Jenson-Shannon distance reads

J
1
2
E (u, v) =

1

2
(DE(u,w) +DE(v, w)) =

1

2
(E(u) + E(v))− E

(
u+ v

2

)
,

and is known as the Burbea-Rao distance. In particular, the Burbea-Rao distance is symmetric,
i.e J

1
2
E (u, v) = J

1
2
E (v, u).

From (2.10) we immediately observe that the Jensen-Shannon distance is non-negative if and
only if E is convex, which immediately follows from the definition of convexity, Definition 2.2.
The following corollary shows that also the Bregman distance is non-negative if and only if E is
convex.

Corollary 2.1. Let E : C → R be a differentiable function defined over a convex set C ⊂ Rn.
Then E is convex if and only if its corresponding Bregman distance DE is non-negative for all
arguments, i.e.

DE(u, v) ≥ 0 ,

for all u, v ∈ C.

Proof (non-examinable). ⇒: We first consider the case n = 1. Given u, v ∈ C, we conclude
u+ λ(v − u) ∈ C due to the convexity of C. From the convexity of E we observe

E(u+ λ(v − u)) ≤ (1− λ)E(u) + λE(v) ,

⇒ λE(v)− λE(u)− (E(u+ λ(v − u))− E(u)) ≥ 0 ,

⇒ E(v)− E(u)− E(u+ λ(v − u))− E(u)

λ
≥ 0 .

Taking the limit λ → 0 of the left-hand-side then yields

lim
λ→0

E(v)− E(u)− E(u+ λ(v − u))− E(u)

λ
= E(v)− E(u)− E′(u)(v − u) ;

CHAPTER 2. SUPERVISED LEARNING 17

hence, we can conclude

E(v)− E(u)− E′(u)(v − u) ≥ 0 . (2.11)

For general n we define the function g(λ) := E((1 − λ)u + λv). By applying the chain rule we
obtain

g′(λ) = ⟨∇E((1− λ)u+ λv), v − u⟩ .

Since E is convex, it is straight-forward to see that g is also convex and that (2.11) therefore
implies

g(s)− g(t)− g′(t)(s− t) ≥ 0 ,

for any s, t ∈ [0, 1]. For the particular choices s = 1 and t = 0 this inequality reads as g(1) −
g(0)− g′(0) ≥ 0, which is equivalent to

E(v)− E(u)− ⟨∇E(u), v − u⟩ ≥ 0 .

Consequently, the Bregman distance DE is non-negative for all input arguments in C.
⇐: suppose we have u, v ∈ C, then w ∈ C with w := u+ λ(v− u) due to the convexity of C. Since
the Bregman distance is non-negative for all arguments in C, we can conclude

DE(u,w) ≥ 0 and DE(v, w) ≥ 0 ,

and therefore also

Jλ
E(u, v) = λDE(u,w) + (1− λ)DE(v, w) ≥ 0

for λ ∈ [0, 1]. This implies

0 ≤ Jλ
E(u, v) = λE(u) + (1− λ)E(v)− E(λu+ (1− λ)v) .

Hence, the function E is indeed convex.

There is a close connection between convexity and global minimisers of a function. A global
minimiser is defined as follows.

Definition 2.6 (Global minimiser). Suppose E : Rn → R is a function for which there exists a
constant Ê with

−∞ < Ê ≤ E(w) , ∀w ∈ Rn ,

i.e. the infimum of E exists and is attained. Then Ê is called the global minimum. Moreover, let
ŵ denote the argument for which E(ŵ) = Ê and, hence,

E(ŵ) ≤ E(w)

holds true, for all w ∈ Rn. Then ŵ is known as the global minimiser of E.

For convex functions E : C ⊂ Rn → R that are also differentiable, i.e. ∇E(w) exists for all
w ∈ Rn, we observe that their gradient can help us to determine a global minimiser of E.

18 2.3. CONVEX ANALYSIS

Lemma 2.1. Suppose E : C ⊂ Rn → R is a convex function that is bounded from below and also
differentiable. Then an argument ŵ satisfies ∇E(ŵ) = 0 if and only if ŵ is a global minimiser.

Proof. Since E is convex, we know DE(w, ŵ) ≥ 0 for all w ∈ C due to Corollary 2.1. This is
equivalent to

E(w)− E(ŵ)− ⟨∇E(ŵ)︸ ︷︷ ︸
=0

, w − ŵ⟩ ≥ 0 ,

which proves that ŵ is a global minimiser.

Last but not least, we verify that a twice differentiable function in one variable is convex if
and only if the second derivative is non-negative for all arguments.

Corollary 2.2 (Second order convexity). A twice differentiable one-dimensional function E : C →
R over a convex set C ⊂ R is convex if and only if E′′(x) ≥ 0 for all x ∈ C.

Proof (non-examinable). We verify that this condition is equivalent to Corollary 2.1:
⇒: We assume that E satisfies E′′(w) ≥ 0 for all w ∈ C. Then we can conclude for arbitrary
w, v ∈ C with v < w that

0 ≤
∫ w

v
E′′(u)(w − u) du =

[
E′(u)(w − u)

]u=w

u=v
+

∫ w

v
E′(u) du = E(w)− E(v)− E′(v)(w − v)

is satisfied, which proves that E′′(w) ≥ 0 implies DE(w, v) ≥ 0.
⇐: We assume that DE(w, v) ≥ 0 is true for all w, v ∈ C. Hence, we conclude

E′(v)(w − v) ≤ E(w)− E(v) ≤ E′(w)(w − v) ,

which implies E′(v)(w − v) ≤ E′(w)(w − v). Subtracting E′(v)(w − v) on both sides of the
inequality and dividing by (w − v)2 then yields 0 ≤ E′(w)−E′(v)

w−v for all w, v ∈ C. Taking the limit
w → v, i.e.

0 ≤ lim
w→v

E′(w)− E′(v)

w − v
= E′′(w) ,

concludes the proof.

Based on the previous considerations we know that (2.7) can only be a solution of (2.5) if
∇E(ŵ) = 0 for E(w) := 1

2s

∑s
i=1 |⟨xi, w⟩ − yi|2 and

ŵ =


∥x1∥2 ⟨x1, x2⟩ · · · ⟨x1, xn⟩
⟨x2, x1⟩ ∥x2∥2 · · · ⟨x2, xn⟩

...
...

. . .
...

⟨xn, x1⟩ ⟨xn, x2⟩ · · · ∥xn∥2


−1

s∑
i=1

yixi .

In order to verify this, we need to compute the gradient ∇E and show that it coincides with the
previous equation, which is left as a coursework exercise.

CHAPTER 2. SUPERVISED LEARNING 19

Note that we can also write the scalar product as the multiplication of a row with a column
vector, i.e. ⟨x,w⟩ = x⊤w. With this notation we can write the previous problem in a more
compact form by defining

X :=


x⊤1
x⊤2
...
x⊤s

 ∈ Rs×n and y :=


y1
y2
...
ys

 ∈ Rs .

Using this notation the linear regression problem (2.5) then reads

ŵ = argmin
w∈Rn

{
1

2s
∥Xw − y∥2

}
.

The corresponding optimality condition ∇E(ŵ) = 0 reads as

X⊤Xŵ = X⊤y , (2.12)

which is also known as the normal equation associated with Xŵ = y.

2.3.1 A comment on existence and uniqueness

Before we investigate issues of regression problems due to ill-conditioning of the data matrices we
want to briefly talk about existence and uniqueness of regression problems of the form (2.12). Do
solutions to (2.12) always exist, and if they exist, are they unique? To answer the first question,
we require the following lemma.

Lemma 2.2. For every matrix X ∈ Rs×(d+1) we observe

ker(X⊤X) = ker(X) and ran(X⊤X) = ran(X⊤) .

Proof (non-examinable). For w ∈ ker(X) we know Xw = 0. Multiplying X⊤ from the left,
i.e. X⊤Xw = 0, therefore implies w ∈ ker(X⊤X) and, thus, ker(X) ⊂ ker(X⊤X). For w ∈
ker(X⊤X) we know X⊤Xw = 0. Taking the inner product with w then yields 0 = ⟨X⊤Xw,w⟩ =
⟨Xw,Xw⟩ = ∥Xw∥2, which already implies Xw = 0. Hence, we concluded w ∈ ker(X), and thus,
ker(X⊤X) ⊂ ker(X). As an immediate consequence, we conclude ker(X) = ker(X⊤X).

A fundamental statement in linear algebra says that ker(X)⊥ = ran(X⊤), where ⊥ denotes
the orthogonal complement. Based on the first part of the proof, we verify

ran(X⊤) = ker(X)⊥ = ker(X⊤X)⊥ = ker((X⊤X)⊤)⊥ = ran(X⊤X) ,

which concludes the proof.

An immediate consequence of Lemma 2.2 is that a solution of (2.12) always exists.

Theorem 2.1. There always exists a solution of the Normal Equation (2.12), for all X ∈ Rs×(d+1)

and y ∈ Rs.

Proof (non-examinable). By definition we have X⊤y ∈ ran(X⊤). From Lemma 2.2 we know that
ran(X⊤) = ran(X⊤X), which implies X⊤y ∈ ran(X⊤X). This means that there must exist a
w ∈ Rd+1 with X⊤Xw = X⊤y.

https://en.wikipedia.org/wiki/Orthogonal_complement

20 2.4. ILL-CONDITIONED REGRESSION PROBLEMS & REGULARISATION

Now that we know that a solution to (2.12) always exists, we need to ask ourselves when that
solution is unique. We immediately see that this is the case if and only if ker(X) = {0}. If the
kernel of X contains elements v other than 0, we observe

X⊤y = X⊤Xŵ = X⊤(Xŵ + Xv︸︷︷︸
=0

) = X⊤X(ŵ + v) ,

due to the linearity of the matrix-matrix- and matrix-vector product. Hence, ŵ + v is also a
solution of (2.12). Note that this is not a contradiction to ŵ being a global minimiser of (2.3),
since

MSE(ŵ + v) = MSE(ŵ) .

Amongst other challenges, we are going to address the non-uniqueness issue in the following
section.

2.4 Ill-conditioned regression problems & regularisation

Solving a finite-dimensional regression problem can be challenging if the underlying data matrix
is ill-conditioned. Before we define what this means, we want to lead with a simple example.
Suppose we want to fit a line to two data point pars (x1, y1) and (x2, y2) with x1 = 1− c, y1 = 1,
x2 = 1 + c and y2 = 1. As in the previous section, we can solve the regression problem via (2.12)
for the matrix

X =

(
1 1− c
1 1 + c

)
and the data vector y = (y1, y2)

⊤ =
(
1 1

)⊤. The linear system that we obtain reads(
1 1
1 1 + c2

)
ŵ =

(
1
1

)
,

or

ŵ =

(
1 + c−2 −c−2

−c−2 c−2

)(
1
1

)
,

if we solve for ŵ directly. It is straight-forward to see (or to calculate) that ŵ =
(
1 0

)⊤ is the
unique solution of this linear system, which makes perfect sense as the data points lie on a line with
constant shift ŵ0 = 1 and slope ŵ1 = 1. We now want to investigate how things change if we make
an error when taking our measurements. Suppose instead of y we measure yδ =

(
1− ε 1 + ε

)⊤,
for some constant ε > 0. The linear system remains the same, but the right-hand-side changes,
and we have to solve (

1 1
1 1 + c2

)
ŵδ =

(
1

1 + cε

)
,

respectively

ŵδ =

(
1 + c−2 −c−2

−c−2 c−2

)(
1

1 + cε

)
;

CHAPTER 2. SUPERVISED LEARNING 21

hence, the solution to this problem reads ŵδ =
(
1− c−1ε c−1ε

)⊤. Now we observe something
interesting: if ε is reasonably small and the constant c is significantly larger, not much changes in
terms of the solution. Consider e.g. the values c = 1/2 and ε = 1/100. We immediately compute
ŵδ =

(
0.98 0.02

)⊤, which is not very different from ŵ =
(
1 0

)⊤. However, we get a completely
different picture if c is substantially smaller than ε. If we for instance choose c = 1/1000 while
ε remains ε = 1/100, the solution ŵδ changes to ŵδ =

(
−9 10

)⊤. This is very different from
ŵ. The error in the data δ := ∥y − yδ∥ =

√
2ε is very small (

√
2/100 ≈ 0.0141), whereas the

error in the reconstruction, i.e. ∥ŵ − ŵδ∥ =
√
164 ≈ 12.8063 ≫ 0.0141, is heavily amplified. In

this particular example it is probably not surprising to see such a phenomenon: the closer the
two inputs x1 and x2 move together, the more significant the impact of small variations in y on
the slope and shift of the regression line. But can this phenomenon also appear in more complex
scenarios?

To address this question we want to look at the solution of (2.12) for more general data matrices
X (or matrices Φ(X)) and outputs y and yδ with the help of the singular value decomposition.
For simplicity, we focus on the X notation, but all steps can be carried out for any matrix.
Suppose that X = UΣV ⊤ is the singular value decomposition of X. Let us remind how in the
classic regression problem X ∈ Rs×d+1 where s are the samples and d is the number independent
variables used. In these settings U ∈ Rs×s, Σ ∈ Rs×d+1, and V ∈ Rd+1×d+1. Hence we can easily
see how X⊤X = V Γ2V ⊤, where Γ2 is defined as a squared Rd+1×d+1 matrix with squared singular
values on the diagonal. Indeed:

X⊤X = (UΣV ⊤)⊤UΣV ⊤ = V Σ⊤U⊤UΣV ⊤ = V Σ⊤ΣV ⊤ = V Γ2V ⊤ (2.13)

We assume that X⊤X is invertible and that d < s we can write:

(X⊤X)−1 = (V Γ2V ⊤)−1 = V Γ−2V ⊤ (2.14)

where we used the orthogonality of V , i.e., V ⊤V = V −1V = 1. Hence, we rewrite (2.3) in terms
of the singular value decomposition of X, we obtain

ŵ = V Γ−2V ⊤X⊤y and ŵδ = V Γ−2V ⊤X⊤yδ ,

we can now use that X⊤y (where in these settings y ∈ Rs×1 and X⊤ ∈ Rd+1×s) can be written as
X⊤y = V Σ⊤U⊤y. Hence, we have

ŵ = V Γ−2V ⊤V Σ⊤U⊤y and ŵδ = V Γ−2V ⊤V Σ⊤U⊤yδ ,

that leads to

ŵ = V (Σ⊤)−1U⊤y and ŵδ = V (Σ⊤)−1U⊤yδ ,

where (Σ⊤)−1 is a Rd+1×s matrix whose elements are all zero except for a Rd+1×d+1 block where
in the diagonal we have the inverse of the singular values. Hence,

ŵ − ŵδ = V (Σ⊤)−1U⊤(y − yδ)

for their difference. Computing the Euclidean norm of this difference yields

∥ŵ − ŵδ∥2 = ∥V (Σ⊤)−1U⊤(y − yδ)∥2

≤ ∥V ∥2∥(Σ⊤)−1∥2∥U⊤∥2∥(y − yδ)∥2

≤ ∥(Σ⊤)−1∥2∥(y − yδ)∥2

=
δ2

σ2
d+1

.

22 2.4. ILL-CONDITIONED REGRESSION PROBLEMS & REGULARISATION

The previous estimate implies that, in the worst case scenario, the error in the data gets amplified
by a factor of 1/σd+1, where σd+1 is the smallest singular value. If σd+1 get arbitrarily close to
zero, this factor can become arbitrarily large. If we assume that y and yδ are of the form y = Xw†

and yδ = Xvδ with ∥w† − vδ∥ ≤ ϵ, we can further estimate

∥ŵ − ŵδ∥2 ≤ ∥(Σ⊤)−1∥2∥y − yδ∥2

= ∥(Σ⊤)−1∥2∥X(w† − vδ)∥2

≤ ∥(Σ⊤)−1∥2∥X∥2∥w† − vδ∥
= κ(X)2∥w† − vδ∥2 ≤ κ(X)2ϵ2 ,

where κ(X) := σ1/σd+1 is the so-called condition number of X that determines the amplification
of the error ε in the worst case scenario. The consequence of this exercise is that we now know that
the ratio of the largest and smallest singular value of X is important for the amplification of errors
in our data. If we have any influence on the data collection process, we should aim to collect data
points {xi}si=1 such that the matrix X has a small condition number, i.e. X is well-conditioned.
Matrices X with large condition numbers are called ill-conditioned. In the following we discuss
how to compensate ill-conditioning with what is known to be Tikhonov regularisation or ridge
regression.

2.4.1 Ridge regression

In the previous section we have seen that worst-case error amplification is a consequence of data
matrices with large condition numbers. A relatively straight-forward idea to combat instability
is by approximating the original regression problem by a problem with lower condition number.
Writing the left-hand-side of the normal equation (2.12), i.e. X⊤Xŵ = X⊤y, in terms of its
singular value decomposition reads

d+1∑
j=1

σ2
j vj⟨vj , ŵ⟩ . (2.15)

We now replace (2.15) with a version where we shift the singular values by a constant, positive
factor α, i.e.

d+1∑
j=1

(σ2
j + α)vj⟨vj , wα⟩ . (2.16)

Reverting back from (2.16) to the matrix-vector-multiplication representation, we have effectively
modified the normal equation to (

X⊤X + αI
)
wα = X⊤y , (2.17)

where I ∈ {0, 1}(d+1)×(d+1) denotes the identity matrix. The nice thing about X⊤X + αI is that
its condition number is κ(X⊤X + αI) =

√
(σ2

1 + α)/(σ2
d+1 + α), instead of κ(X⊤X) = σ1/σd+1.

If we have a matrix X⊤X with σ1 =
√
2 and σd+1 = 1/

√
2000000 as in the previous section for

example, we have a large condition number of κ = 2000. If we consider (2.17) instead of (2.12)
for α = 1, we observe κ(X⊤X + αI) ≈

√
3 ≪ 2000 = κ(X⊤X). As a consequence, any worst-case

error amplification for the ridge regression is much smaller, at the cost of potentially altering the

CHAPTER 2. SUPERVISED LEARNING 23

original problem dramatically. One thing that is also not clear is how to choose the parameter
α; we will address this question in the next section. Before we do so, we want to present an
alternative characterisation of (2.17).

Theorem 2.2 (Ridge regression). The solution wα of (2.17) is the unique solution of the optimi-
sation problem

wα = argmin
w∈Rd+1

{
1

2
∥Xw − y∥2 + α

2
∥w∥2

}
. (2.18)

Proof. This proof is left as an exercise.

The beauty of formulation (2.18) is that we immediately see that we still try to minimise
the mean-squared error, but at the same time also ensure that the squared norm of the weights
does not become too large. Both goals have to be balanced with a reasonable choice of α. We
discuss this choice in the next section. Note that Problem (2.18) is known as ridge regression in
the context of machine learning and Tikhonov regularisation in the context of inverse & ill-posed
problems. The parameter α is known as the regularisation parameter. In the following section we
want to investigate how to choose hyperparameters such as the regularisation parameter in some
optimal way.

2.5 Model selection

Generally speaking, the major goal in most machine learning problems is to approximate (or
interpolate) an unknown function f̂ : Rn → Rm for a given set of data points sampled from an
unknown distribution D. The assumption that we are in a supervised learning setting implies that
we sample corresponding pairs (x, y) of input and output data points. The goal of supervised
machine learning is then to find f̂ such that it minimises the population risk, expected risk or
expected error, which is defined as

E(f) := Ex,y [ℓ(f(x), y)] , (2.19a)

=

∫
(x,y)∈D

ℓ(f(x), y)ρ(x, y) dx dy . (2.19b)

Here ℓ : Rm × Rm → R is a so-called loss function that measures the difference between f(x) and
y, while ρ : D → R is the unknown joint probability density function. Note that the latter implies

ρ(x, y) ≥ 0 a.e. and
∫
(x,y)∈D

ρ(x, y) dx dy = 1 .

The key problem with computing the population risk E, let alone minimise it, is that we do not
have access to it as we do not know ρ. In practice, all we can do is to draw |S| i.i.d. samples from
D and consider minimising the empirical risk

LS(f) :=
1

|S|
∑

(xi,yi)∈S

ℓ(f(xi), yi) (2.20)

24 2.5. MODEL SELECTION

instead. Here |S| denotes the cardinality of the set S, respectively the number of elements of S.
The difference of (2.19) and (2.20) is known as the generalisation error

GS(f) = E(f)− LS(f) ,

= Ex,y [ℓ(f(x), y)]−
1

|S|
∑

(xi,yi)∈S

ℓ(f(xi), yi) .

Note that we have defined f̂ as the function that minimises (2.19), i.e.

f̂ = argmin
f∈F

E(x,y)∈D [ℓ(f(x), y)] ,

where F denotes some suitable function space. Now we assume that we want to approximate f̂
with a parametric function fwt , whose parameters wt are computed by minimising the empirical
risk on a set of data points St that are sampled from the distribution D; we will refer to this set
of points as the training set. The empirical risk for this function over the set St is then known as
the training error, which reads

LSt(fwt) =
1

|St|
∑

(xi,yi)∈St

ℓ(fwt(xi), yi) ,

and we have fwt with wt defined as

wt := argmin
w∈Rd+1

LSt(fw) .

If we sample a different set of data points from the same distribution D and denote this set as the
validation set or test set Sv, then we can define the validation error

LSv(fwt) =
1

|Sv|
∑

(xi,yi)∈Sv

ℓ(fwt(xi), yi) .

The validation error is of particular interest, as it approximates the population risk in expectation.
An algorithm or method that aims at approximating f̂ via a parametric function fwt is said to
generalise, if the generalisation error GSv converges to zero if the number of samples converges
to infinity, i.e lim|Sv |→∞GSv(fwt) = 0. Since E cannot be computed, the generalisation error
cannot be computed either. Instead, the goal of research in statistical learning is to bound the
generalisation error in probability.

Example 2.1 (Ridge regression). Suppose we have collected a set of samples and use them as our
training dataset St := {(xi, yi) ∈ D | i ∈ {1, . . . , s}}. In linear ridge regression, we recall that the
idea is to approximate f̂ via fwt(x) := ⟨ϕ(x), wt⟩, where the weights wt are computed via

wt = argmin
w∈Rd+1

{
1

2|St|

s∑
i=1

|⟨ϕ(xi), w⟩ − yi|2 +
α

2
∥w∥2

}
.

Here, ϕ : Rm → Rd+1 is the data-augmentation map that we had introduced earlier and α > 0
is the regularisation parameter. We can then compute the validation error on a set of different
samples Sv := {(xi, yi) ∈ D \ St | i ∈ {1, . . . , s}} via

LSv(fwt) = LSv(⟨ϕ(xi), wt⟩) =
1

2|Sv|
∑

(xi,yi)∈Sv

(⟨ϕ(xi), wt⟩ − yi)
2 .

CHAPTER 2. SUPERVISED LEARNING 25

Choosing an optimal regularisation parameter α̂ in terms of the validation error can then be
formulated as the bilevel optimisation problem

α̂ = argmin
α≥0

LSv(⟨ϕ(xi), wt⟩) subject to wt = argmin
w∈Rd+1

{
1

2s

s∑
i=1

|⟨ϕ(xi), w⟩ − yi|2 +
α

2
∥w∥2

}
.

(2.21)

In practice, this hyperparameter α̂ is often determined by applying a grid-search strategy to
approximately solve (2.21).

In the following section we will further analyse the validation error for a new sample in expec-
tation over all possible training sets in the context of ℓ being the mean-squared error function.

2.6 Bias-variance decomposition

Following up on the previous section, we now assume the abstract data generation model

yε = f̂(x) + ε ,

where f̂ is some unknown, deterministic function mapping inputs x onto outputs y. We assume
that the outputs yε that we measure are y = f̂(x) plus a random variable ε drawn from some
distribution Dε with zero expectation, and variance σ2, i.e.

Eε [ε] = 0 and Varε[ε] = σ2 .

One can easily verify that this implies

Eε[yε] = Eε[f̂(x)] = f̂(x) and Varε(yε) = σ2

in particular. Further, we assume that each pair (x, yε) is a sample from an unknown distribution
D and that we have collected a finite number of samples from this distribution in each set St.
Given a parametrised prediction function fwt based on one set St, we want to investigate the
expected squared error of the difference of yε = f̂(x)+ ε and fwt at a specific pair of points (x̃, ỹ).
Hence, we investigate

Et,ε

[(
f̂(x̃) + ε− fwt(x̃)

)2]
,

where Et denotes the expectation over the sets St, while x̃ is a new sample outside of the training
set. We have also dropped the factor 1/2 for notational convenience. In the following, we want to
show that we can split this expectation into three important components: the so-called bias, the

26 2.7. THE LASSO

variance and the noise variance. In particular, we observe

Et,ε

[(
f̂(x̃) + ε− fwt(x̃)

)2]
,

= Et,ε

[
ε2 + 2 ε

(
f̂(x̃)− fwt(x̃)

)
+
(
f̂(x̃)− fwt(x̃)

)2]
,

= Varε[ε] + Et

[
2Eε[ε]

(
f̂(x̃)− fwt(x̃)

)]
+ Et

[(
f̂(x̃)− fwt(x̃)

)2]
,

= σ2 + Et

[(
f̂(x̃)− fwt(x̃)

)2]
,

= σ2 + Et

[(
f̂(x̃)− Et [fwt(x̃)] + Et [fwt(x̃)]− fwt(x̃)

)2]
,

= σ2 + Et

[(
f̂(x̃)− Et [fwt(x̃)]

)2]
+ Et

[
(Et [fwt(x̃)]− fwt(x̃))

2
]

+ 2Et

[(
f̂(x̃)− Et [fwt(x̃)]

)
(Et [fwt(x̃)]− fwt(x̃))

]
,

= σ2 + Et

[(
f̂(x̃)− Et [fwt(x̃)]

)2]
+ Et

[
(Et [fwt(x̃)]− fwt(x̃))

2
]

+ 2Et

[
f̂(x̃)Et [fwt(x̃)]

]
− 2Et

[
f̂(x̃)fwt(x̃)

]
− 2Et

[
E2
t [fwt(x̃)]

]
+ 2Et [fwt(x̃)Et [fwt(x̃)]] ,

= σ2 + Et

[(
f̂(x̃)− Et [fwt(x̃)]

)2]
+ Et

[
(Et [fwt(x̃)]− fwt(x̃))

2
]

+ 2f̂(x̃)Et [fwt(x̃)]− 2f̂(x̃)Et [fwt(x̃)]− 2E2
t [fwt(x̃)] + 2E2

t [fwt(x̃)] ,

= σ2 +
(
f̂(x̃)− Et [fwt(x̃)]

)2
+ Et

[
(Et [fwt(x̃)]− fwt(x̃))

2
]
,

= σ2 + Biast [fwt(x̃)]
2 + Vart [fwt(x̃)] ,

for

σ2 := Varε[ε] ,

Biast [fwt(x̃)] := Et [fwt(x̃)]− f̂(x̃) ,

Vart [fwt(x̃)] = Et

[
(fwt(x̃)− Et [fwt(x̃)])

2
]
.

Intuitively, the noise variance is an irreducible error in the measurements, the bias refers to a
systematic model error, while the variance of a learning method indicates how much it will move
around its mean. If we for example try to approximate a nonlinear function f̂ with a linear function
fwt , we will inevitably observe a systematic bias of our model fit. In the previous lecture we referred
to this phenomenon as underfitting. If we try to fit a fwt to even the smallest fluctuation of f̂ , we
observe the phenomenon of overfitting.

2.7 The LASSO

In Section 2.4.1 we have introduced the ridge regression model as a way to deal with ill-conditioned
regression problems. In the previous two sections we have further explained how ridge regression
can be used to prevent overfitting of a model function. In Theorem 2.2 we have characterised the

CHAPTER 2. SUPERVISED LEARNING 27

ridge regression problem as an optimisation problem of the form

wα = argmin
w∈Rd+1

{
1

2
∥Φ(X)w − y∥2 + α

2
∥w∥2

}
.

In this section we want to replace the squared Euclidean norm regularisation term in (2.18) with
a one-norm, i.e.

wα = argmin
w∈Rd+1

{
1

2
∥Φ(X)w − y∥2 + α∥w∥1

}
, (2.22)

with ∥w∥1 :=
∑d

j=0 |wj |. The motivation behind using the one-norm instead of the squared
Euclidean lies in recovering simpler weights. Simple in this context means sparse, i.e. that we
only want some coefficients of wα to be non-zero while most coefficients are in fact zero. If we
think of polynomial regression as an example, we could think of fitting a polynomial with a very
high degree. Without knowing which coefficients of a polynomial should be relevant, we could
potentially use the minimisation problem in Equation (2.22) to recover a weight vector with only
a few non-zero entries. Intuitively, we can prevent overfitting this way, and we do not have to limit
the degree in advance in order to do so. A regression problem of the form of (2.22) is known as the
Least Absolute Shrinkage and Selection Operator (LASSO). Before we discuss how to solve (2.22)
computationally, we want to introduce a very basic and popular method for smooth optimisation,
known as gradient descent.

2.7.1 Gradient descent

Gradient descent is an iterative procedure that aims at minimising general, differentiable functions
E. Gradient descent is of the form

wk+1 = wk − τ∇E(wk) , (2.23)

for some energy E, an initial value w0 ∈ Rn and a step-size parameter τ > 0. In case of E(w) =
1
2s∥Xw − y∥2 for example, gradient descent reads

wk+1 = wk − τ

s
X⊤

(
Xwk − y

)
,

=
(
I − τ

s
X⊤X

)
wk +

τ

s
X⊤y . (2.24)

The advantage of iteratively solving (2.24) is that we only need to compute matrix multiplications
and basic arithmetic operations that are reasonably cheap. Also, with an algorithm like (2.23)
we can address minimisation problems more general than minimising the MSE, which is going
to be useful for the LASSO problem (2.22). On the downside, we yet have to determine when
and under which conditions (2.23) really converges to a solution of the minimisation problem
ŵ = argminw∈Rn E(w) and how quickly it converges to that solution. For this, we rewrite Equation
(2.23) to

wk+1 = argmin
w∈Rn

{
E(wk) + ⟨∇E(wk), w⟩+ 1

2τ
∥w − wk∥2

}
,

= argmin
w∈Rn

{
E(w) +

1

2τ
∥w − wk∥2 − E(w) + E(wk) + ⟨∇E(wk), w − wk⟩

}
= argmin

w∈Rn

{
E(w) +

1

2τ
∥w − wk∥2 −DE(w,w

k)

}
.

28 2.7. THE LASSO

Algorithm 1 Gradient descent
Specify: Differentiable, convex function E : Rn → R, step-size τ > 0, index K
Initialise: w0 ∈ Rn

Iterate:
1: for k = 0, . . . ,K − 1 do
2: wk+1 = wk − τ∇E(wk)
3: end for

return wK .

The objective function Lk(w) := ⟨∇E(wk), w⟩ + 1
2τ ∥w − wk∥2 is convex and differentiable with

gradient ∇L(w) = ∇E(wk) + 1
τ (w − wk). Hence, the global minimiser can be determined via

∇L(wk+1) = 0, which yields (2.23). Gradient descent is summarised in Algorithm 1. The questions
that we need to ask ourselves now are the following: does Algorithm 1 converge to a minimiser
of the objective function E and if yes, under what conditions does it converge? The following
definition will come in handy for answering this question.

Definition 2.7 (L-smooth functions). A continuously differentiable function E : C ⊂ Rn → R is
called L-smooth if

∥∇E(w)−∇E(v)∥ ≤ L∥w − v∥

is guaranteed for all w, v ∈ C and a positive constant L > 0.

Theorem 2.3 (Convergence of Algorithm 1). Let E : C ⊂ Rn → R be a convex and 1/τ -smooth
function in the sense of Definition 2.7. Suppose ŵ denotes a global minimiser of E, i.e. ŵ =
argminw∈Rn E(w). Then the iterates of Algorithm 1 satisfy

E(wk)− E(ŵ) ≤ C

k
, (2.25)

for a constant C > 0 that is independent of k. As a direct consequence, we observe limk→∞E(wk) =
E(ŵ).

As usual, the proof of this statement is non-examinable and is left to the interested reader. In
order to prove Theorem 2.3 we need to verify the following two lemmas first. The first one verifies
a convenient property of smooth functions E: if E is 1/τ -smooth, then a function J := 1

2τ ∥·∥
2−E

is automatically convex.

Lemma 2.3. Let E : C → R be a 1/τ -smooth function over a convex domain C ⊂ Rn, for a
positive constant τ > 0. Then J : C → R, with

J(w) :=
1

2τ
∥w∥2 − E(w) ,

is a convex function, for all w ∈ C.

Proof (non-examinable): As E is 1/τ -smooth we conclude

∥∇E(w)−∇E(v)∥ ≤ 1

τ
∥w − v∥ .

CHAPTER 2. SUPERVISED LEARNING 29

Multiplying both sides with ∥w − v∥ and making use of the Cauchy-Schwartz inequality ⟨x, y⟩ ≤
∥x∥∥y∥ leaves us with

⟨∇E(w)−∇E(v), w − v⟩ ≤ 1

τ
∥w − v∥2 = 1

τ
⟨w − v, w − v⟩ .

Subtracting the left-hand-side from the right-hand-side yields the inequality

0 ≤
〈
1

τ
w −∇E(w)−

(
1

τ
v −∇E(v)

)
, w − v

〉
= DJ(w, v) +DJ(v, w) ,

for J := 1
2τ ∥ · ∥

2 − E. From DJ(w, v) +DJ(v, w) ≥ 0 for all u, v we can conclude DJ(y + t(x −
y), y) +DJ(y, y + t(x− y)) ≥ 0 for all x, y and t ∈ [0, 1], which implies

⟨∇J(y + t(x− y))−∇J(y), x− y⟩ ≥ 0 . (2.26)

If we define

f(t) := J(y + t(x− y)) ,

we observe f ′(t) = ⟨∇J(y+ t(x− y)), x− y⟩ and can therefore conclude f ′(t) ≥ f ′(0) from (2.26).
Hence, we can estimate

J(x) = f(1) = f(0) +

∫ 1

0
f ′(t) dt ≥ f(0) + f ′(0)

= J(y)− ⟨∇J(y), x− y⟩ ,

which is true for all x, y. Hence, DJ(w, v) + DJ(v, w) ≥ 0 for all arguments already implies
DJ(u, v) ≥ 0 for all arguments u, v. Corollary 2.1 then implies convexity of J .

Before we continue with the actual proof of Theorem 2.3 we also verify the following interme-
diate result.

Lemma 2.4. Let the same assumptions hold true as in Theorem 2.3 and suppose w∗ is defined as
w∗ := argminw∈Rn {E(w) +DJ(w,w)} for some w ∈ Rn. Then the identity

E(w∗) +DE(w,w
∗) +DJ(w,w

∗) +DJ(w
∗, w) = E(w) +DJ(w,w)

holds for any w ∈ Rn. Here J : Rn → R is defined as J(w) := 1
2τ ∥w∥

2 − E(w) and DE and DJ

denote the Bregman distances with respect to the functions E, respectively J .

Proof (non-examinable): As a consequence of Lemma 2.1 we can characterise w∗ via the optimality
condition

0 = ∇E(w∗) +∇J(w∗)−∇J(w) .

Taking an inner product with w∗ − w then yields

0 = −⟨∇E(w∗), w − w∗⟩ − ⟨∇J(w∗)−∇J(w), w − w∗⟩ ,
= DE(w,w

∗)− E(w) + E(w∗)− ⟨∇J(w∗), w − w∗⟩+ ⟨∇J(w), w − w∗⟩ ,
= DE(w,w

∗)− E(w) + E(w∗) +DJ(w,w
∗)− J(w) + J(w∗) + ⟨∇J(w), w − w∗⟩ ,

= DE(w,w
∗)− E(w) + E(w∗) +DJ(w,w

∗)− J(w) + J(w∗) + ⟨∇J(w), w − w + w − w∗⟩ ,
= DE(w,w

∗)− E(w) + E(w∗) +DJ(w,w
∗)−DJ(w,w) +DJ(w

∗, w) ,

which concludes the proof.

30 2.7. THE LASSO

Example 2.2 (Convergent gradient descent for minimising the MSE). For the MSE function
E(w) := 1

2s∥Xw − y∥2 we have already verified ∇E(w) = 1
sX

⊤(Xw − y). We further verify

∥∇E(w)−∇E(v)∥ =
1

s
∥X⊤X(w − v)∥ ≤ ∥X⊤X∥

s
∥w − v∥ =

∥X∥2

s
∥w − v∥ ,

where ∥X∥ denotes the operator norm of X (based on the Euclidean vector norm). Hence, E is
1/τ -smooth for τ ≤ s/∥X∥2. As a consequence of Theorem 2.3 we know that gradient descent,
respectively Algorithm 1, applied to the MSE is convergent for any step-size τ with τ ≤ s/∥X∥2.

Remark 2.3. We want to emphasise that Theorem 2.3 not only guarantees convergence of Algo-
rithm 1, but also provides a rate of convergence. This rate is 1/k, and often this rate of convergence
is highlighted with the big O-notation, i.e.

E(wk)− E(ŵ) = O
(
1

k

)
.

This means that the left-hand-side is proportional to 1/k. Suppose DJ(ŵ, w
0) = 10, then we

require approximately k = 1000 iterations to ensure E(wk)−E(ŵ) ≤ 10−2 according to Theorem
2.3. Next semester in Machine Learning II we want to address the question of whether we can
have a 1/k2-convergence rate (or faster). To illustrate the gain in convergence speed, we would
only require k = 32 instead of k = 1000 iterations in order to get the same accuracy, i.e. E(wK)−
E(ŵ) ≤ 10−2.

Remark 2.4. The convergence rate in Remark 2.3 holds for general convex and differentiable
functions E. However, for E in Example 2.2 we can show that the convergence is linear and that
it can be characterised in terms of the condition number κ(X) of X that we have introduced in
Section 2.4. Note that for E(w) = 1

2s∥Xw − y∥2 we have

1

2
∥∇E(w)∥2 = 1

2s2
∥X⊤(Xw − y)∥2 = 1

2s2
∥X⊤(Xw − y − (Xŵ − y))∥2

≥
σ2
d+1

s2

(
1

2
∥Xw − y − (Xŵ − y)∥2

)
=

σ2
d+1

s2

(
1

2
∥Xw − y∥2 − 1

2
∥Xŵ − y∥2

)
=

σ2
d+1

s2
(E(w)− E(ŵ)) ,

for any argument w, where ŵ is a minimiser of E that satisfies ∇E(ŵ) = 1
sX

⊤(Xŵ − y) = 0,
and where σd+1 denotes the smallest singular value of X. Note that this inequality is also known
as the Polyak-Łojasiewicz inequality. If we choose τ = s2/∥X∥2 = s2/σ2

1, where σ1 denotes
the largest singular value of X, we know that J(w) = 1

2τ ∥w∥
2 − E(w) is convex, which implies

DJ(w
k+1, wk) ≥ 0 because of Corollary 2.1, which in return implies the inequality

E(wk+1)− E(wk) ≤ ⟨∇E(wk), wk+1 − wk⟩+ σ2
1

2s2
∥wk+1 − wk∥2 .

If we now replace wk+1 −wk with the gradient descent update formulate (2.23), i.e. wk+1 −wk =
−τ∇E(wk) for τ = s2/σ2

1 and ∇E(wk) = 1
sX

⊤(Xwk − y), we observe

E(wk+1)− E(wk) ≤ − s2

2σ2
1

∥∇E(wk)∥2 .

CHAPTER 2. SUPERVISED LEARNING 31

Using the Polyak-Łojasiewicz inequality 1
2∥∇E(wk)∥2 ≥ σ2

d+1

s2

(
E(wk)− E(ŵ)

)
then yields

E(wk+1)− E(wk) ≤
σ2
d+1

σ2
1

(
E(wk)− E(ŵ)

)
,

= κ(X)−2
(
E(wk)− E(ŵ)

)
,

where κ(X)−2 = 1/κ(X)2 denotes the squared inverse of the condition number κ(X) of X. Adding
E(wk) and subtracting E(ŵ) on both sides of the inequality leaves us with

E(wk+1)− E(ŵ) ≤
(
1− κ(X)−2

) (
E(wk)− E(ŵ)

)
.

Applying the result recursively for k = 0, . . . ,K − 1 then yields

E(wK)− E(ŵ) ≤
(
1− κ(X)−2

)K (
E(w0)− E(ŵ)

)
.

Hence, for E(w) = 1
2s∥Xw− y∥2 the convergence rate can be linear but depends on the condition

number κ. If κ is very large, κ−2 will be very small, so that (1 − κ(X)−2)K will remain close to
one, which yields very slow convergence. However, if κ is reasonably small, we can easily get a
better convergence rate than 1/k. Suppose E(w0)−E(ŵ) = 10 and κ = 2, then K = 25 iterations
are sufficient to ensure E(wK) − E(ŵ) ≤ 10−2, which is much less than the K = 1000 iterations
that we considered in Remark 2.3.

2.7.2 Gradient descent and the LASSO

In this section we want to discuss how we can use gradient descent to solve the LASSO problem
(2.22). The key challenge is the non-differentiability of the one-norm ∥ · ∥1. We therefore have to
make this problem differentiable. We can do this by using the following neat trick. We can rewrite
the modulus-function | · | in the one-norm as

|z| = max
p∈[−1,1]

zp ,

for any arbitrary scalar z ∈ R. We now modify the modulus function by subtracting a multiple of
a quadratic of the additional variable p and define

|z|τ := max
p∈[−1,1]

zp− τ

2
|p|2 , (2.27)

for some scalar parameter τ > 0. A nice thing about this modification is that it has a closed-form
solution that we can compute by computing p̂ = argmaxp∈[−1,1] zp, which reads

p̂ =


1 z > τ
z
τ |z| ≤ τ

−1 z < −τ

,

(left as a coursework exercise) and inserting p̂ into (2.27). This yields

|z|τ =

{
|z| − τ

2 |z| > τ
1
2τ |z|

2 |z| ≤ τ
,

32 2.7. THE LASSO

which is also known as the Huber loss. This function is differentiable, and we can replace the
one-norm ∥w∥1 =

∑d
j=0 |wj | in (2.22) with the funtion Hτ (w) =

∑d
j=0 |wj |τ , i.e.

wτ
α = argmin

w∈Rd+1

{
1

2
∥Φ(X)w − y∥2 + αHτ (w)

}
. (2.28)

Since all terms in Problem (2.28) are differentiable, we can solve (or approximate a solution of)
(2.28) with Algorithm 1. There are obviously a few open questions, such as convexity of the
Huber loss, Lipschitz-continuity of the overall gradient and whether minimisers of (2.28) and
(2.22) coincide, which we won’t address for now. The reason for this is that there is a minor but
powerful modification of gradient descent known as proximal gradient descent or forward-backward
splitting that is much for suitable for the minimisation of problems of the form (2.22).

2.7.3 Proximal gradient descent

Problems like the LASSO are problems where we minimise the sum of two functions. More
precisely, they are of the form

w = argmin
w∈C

{E(w) +R(w)} , (2.29)

where E : Rn → R is a convex and continuously differentiable function, while R : C ⊂ Rn →
R ∪ {∞} is a proper, convex and lower semi-continuous function. Please do not worry too much
about the assumptions on R; these are obviously important from a mathematical point of view
but are not really relevant for this module. I have included them for the interested reader, but
you can very well survive this module without knowing what those assumptions mean. As already
mentioned, typical examples of (2.29) include the LASSO problem (2.22), i.e.

w = argmin
w∈Rd+1

{
1

2s
∥Xw − y∥2 + α∥w∥1

}
,

but also other problems such as constrained MSE minimisation, i.e.

w = argmin
w∈C

{
1

2s
∥Xw − y∥2

}
= argmin

w∈Rd+1

{
1

2s
∥Xw − y∥2 + χC(w)

}
,

where χC : Rd+1 → R ∪ {∞} is the characteristic function over the convex set C ⊂ Rd+1, i.e.

χC(w) :=

{
0 w ∈ C
∞ w ̸∈ C

.

We aim to minimise (2.29) with a modification of Algorithm 1 of the form

wk+1 = argmin
w∈C

{
E(w) +R(w) +DJ(w,w

k)
}
,

https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Proper_convex_function
https://en.wikipedia.org/wiki/Semi-continuity
https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Characteristic_function_(convex_analysis)

CHAPTER 2. SUPERVISED LEARNING 33

Algorithm 2 Proximal gradient descent
Specify: Continuously differentiable, convex function E : Rn → R, proper, lower semi-continuous
and convex function R : C ⊂ Rn → R ∪ {∞}, step-size τ > 0, index K
Initialise: w0 ∈ Cn

Iterate:
1: for k = 0, . . . ,K − 1 do
2: wk+1 = proxτR

(
wk − τ∇E(wk)

)
3: end for

return wK .

again for the function J(w) := 1
2τ ∥w∥

2−E(w). This method yields the so-called proximal gradient
method that reads

wk+1 = argmin
w∈C

{
E(wk) + ⟨∇E(wk), w − wk⟩+R(w) +

1

2τ
∥w − wk∥2

}
,

= argmin
w∈C

{
E(wk) + ⟨∇E(wk), w − wk⟩+R(w) +

1

2τ
∥w − wk∥2

}
,

= argmin
w∈C

{
1

2

∥∥∥w −
(
wk − τ∇E(wk)

)∥∥∥2 + τR(w)

}
,

= proxτR
(
wk − τ∇E(wk)

)
,

for the short-hand notation

proxτR(z) := argmin
x∈Rn

{
1

2
∥x− z∥2 + τR(x)

}
.

The mapping proxτR : Rn → C is known as the proximal operator or proximal map with respect
to R, and the success of the proximal gradient method relies on the simplicity of this map. In the
examples mentioned above, the proximal maps read

(
proxτα∥·∥1(z)

)
j
=


zj − τα zj > τα

0 |zj | ≤ τα

zj + τα zj < −τα

and proxταχC(z) = projC(z) ,

where projC denotes the orthogonal projector onto the set C. If C := {x ∈ R |x ≥ 0} for example,
then projC(z) = max(0, z). We have summarised the proximal gradient descent algorithm in
Algorithm 2. Convergence can be deduced in very similar fashion as for gradient descent, but
we leave this for the Machine Learning II course in the next semester where this becomes more
relevant.

2.7.4 Coordinate descent

An interesting observation when minimising convex functions with vector-valued arguments like
(2.3), (2.18) or (2.22) is that we can also minimise these functions with respect to each individual
argument of the vector-valued argument. Suppose, we have a proper, convex and lower semi-
continuous function F : R1+d → R ∪ {∞} with vector-valued argument w = (w0, w1, . . . , wd)

⊤.
We can then construct an iterative optimisation procedure by minimising F with respect to each

https://en.wikipedia.org/wiki/Proximal_gradient_method
https://en.wikipedia.org/wiki/Proximal_gradient_method
https://en.wikipedia.org/wiki/Proximal_operator
https://en.wikipedia.org/wiki/Projection_(mathematics)

34 2.7. THE LASSO

Algorithm 3 Coordinate descent
Specify: Proper, convex and lower semi-continuous function F : Rn → R ∪ {∞}, index K
Initialise: w0 ∈ R1+d

Iterate:
1: for k = 0, . . . ,K − 1 do
2: for j = 0, . . . , d do
3: wk+1

j = argminw∈R

{
F (wk+1

0 , wk+1
1 , . . . , wk+1

j−1 , w, w
k
j+1, . . . , w

k
d)
}

4: end for
5: end for

return wK .

individual coordinate wj for j ∈ {0, . . . , d} whilst keeping all other coordinates fixed, before moving
to the next coordinate. Cycling through the coordinates multiple times then yields what is known
as coordinate descent, i.e.

wk+1
j = argmin

w∈R

{
F (wk+1

0 , wk+1
1 , . . . , wk+1

j−1 , w, w
k
j+1, . . . , w

k
d)
}
, (2.30)

for j ∈ {0, . . . , d} and k ∈ N. A nice property of (2.30) is that we are guaranteed a decrease of
the function F after each coordinate descent upddate, i.e.

F (wk+1
0 , wk+1

1 , . . . , wk+1
j−1 , w

k+1
j , wk

j+1, . . . , w
k
d) ≤ F (wk+1

0 , wk+1
1 , . . . , wk+1

j−1 , w
k
j , w

k
j+1, . . . , w

k
d) ,

simply because of the definition of the coordinate descent iteration. Hence, we can conclude a
decrease of the function F after each iteration, i.e.

F (wk+1
0 , wk+1

1 , . . . , wk+1
d) ≤ F (wk

0 , w
k
1 , . . . , w

k
d) .

However, this does not necessarily mean that coordinate descent is guaranteed to find a global
minimiser of F , and you are invited to construct a counter example. The good news is that it
can be shown that (2.30) is guaranteed to converge to a global minimiser if the function F is of
the form of (2.3), (2.18) or (2.22). The coordinate descent algorithm is summarised in Algorithm
3. In the following, we are taking a closer look at coordinate descent in the context of LASSO
regression (2.22).

Example 2.3 (Solving the LASSO with coordinate descent). Note that we can write the function
that we minimise in (2.22) as

F (w0, . . . , wl, . . . , wd) =
1

2

s∑
i=1

∣∣∣∣∣∣
d∑

j=0

xjiwj − yi

∣∣∣∣∣∣
2

+ α
d∑

j=0

|wj | ,

=
1

2

s∑
i=1

∣∣∣∣∣∣xliwl −

yi −

 l−1∑
j=0

xjiwj +

d∑
j=l+1

xjiwj

∣∣∣∣∣∣
2

+ α

|wl|+
d∑

j ̸=l

|wj |

 .

Since α
∑d

j ̸=l |wj | does not depend on wl, we can drop it for the minimisation and write

wk+1
l = argmin

w∈R

{
F (wk+1

0 , wk+1
1 , . . . , wk+1

l−1 , w, w
k
l+1, . . . , w

k
d)
}

= argmin
w∈R

1

2

s∑
i=1

∣∣∣∣∣∣xliw −

yi −

 l−1∑
j=0

xjiw
k+1
j +

d∑
j=l+1

xjiw
k
j

∣∣∣∣∣∣
2

+ α|w|

 , (2.31)

CHAPTER 2. SUPERVISED LEARNING 35

for l ∈ {0, . . . , d} and k ∈ N. Despite being a nonlinear and non-differentiable minimisation
problem, the nice thing about (2.31) is that this minimisation problem has a closed-form solution
that reads

wk+1
l =

1∑s
i=1 x

2l
i


∑s

i=1 x
l
iz

l
i − α

∑s
i=1 x

l
iz

l
i > α

0
∣∣∑s

i=1 x
l
iz

l
i

∣∣ ≤ α∑s
i=1 x

l
iz

l
i + α

∑s
i=1 x

l
iz

l
i < −α

, (2.32)

for zli := yi −
(∑l−1

j=0 x
j
iw

k+1
j +

∑d
j=l+1 x

j
iw

k
j

)
. Hence, we can use (2.32) in combination with

Algorithm 3 to numerically compute a solution of the LASSO problem (2.22).

2.8 Deep learning

So far, all supervised machine learning models that we have considered were regression models
that were either linear or nonlinear in the input arguments x but linear in the weights w. We
now want to shift our focus to a particular class of models that are nonlinear in both the input
arguments and the weights: so-called deep neural networks.

Deep neural networks

In mathematical terms, a deep neural network is simply a function that is a composition of simple,
parametrised functions and potentially many of them, i.e.

fw(x) := φL (φL−1 (· · ·φ1 (φ0(x,w1), w2) · · · , wL−1) , wL) . (2.33)

Here {φl}Ll=1 is a family of L so-called activation functions that are parametrised with weights
w := {wl}Ll=1. To be more precise, (2.33) is a deep neural network with L layers.
Typical activation functions are affine-linear transformations, i.e.

φ(x,W, b) := W⊤x+ b .

In terms of terminology, W ∈ Rn×m is a weight matrix and b ∈ Rm×1 is the bias vector. This way
φ : Rn → Rm maps inputs x ∈ Rn onto outputs φ(x) ∈ Rm.
An example for a nonlinear activation function is the Heaviside function

φ(x) = H(x) :=

{
1 x ≥ 0

0 x < 0
.

Together with an affine-linear transformation, Heaviside functions paved the way for the definition
of the perceptron, a simplified model loosely based on a neuron.

Example 2.4 (Perceptron). An artificial neuron known as perceptron is defined as the nonlinear
activation function

φ(x,w, b) := H(w⊤x+ b) =

{
1 w⊤x ≥ −b

0 w⊤x < −b
,

for a weight vector w ∈ Rn and a bias b ∈ R. Note that this function is a composition and itself
could already be seen as two-layer neural network of the form

f(x,w, b) = φ1(φ0(x,w, b))

with φ1(x) := H(x) and φ0(x,w, b) := w⊤x+ b.

36 2.8. DEEP LEARNING

Another popular activation function is the so-called rectifier φ : R → R≥0, defined as

φ(x) := max(0, x) .

Simple activation functions such as the Heaviside function or the rectifier can easily be extended
to activation functions operating on vectors x ∈ Rn by defining φ : Rn → Rn with

φ(x) := (φ(x1), φ(x2), . . . , φ(xn))
⊤ .

We will often abuse notation and use the same notation for the scalar and vector-valued variants
of such simple activation functions. When we write a vector-valued rectifier φ : Rn → Rn as

φ(x) = max(0, x) ,

we mean φ(x) = (max(0, x1),max(0, x2), . . . ,max(0, xn)) but write max(x, 0) for the sake of no-
tational simplicity.

In combination with the affine-linear transformations they form what is known as Rectified
Linear Unit (ReLU), i.e.

φ(x,W, b) := max
(
0, W⊤x+ b

)
,

where we have used the simplified notation for the vector-valued rectifier.

Example 2.5 (ReLU neural networks). Based on the previous considerations, an L-layer neural
network with ReLU activation functions has the form

φ(x,w) = max
(
0, W⊤

L max
(
0, W⊤

L−1max
(
. . .max

(
0,W⊤

1 x+ b1

)
. . .
)
+ bL−1

)
+ bL

)
,

or

φ(x,w) = max
(
0,W⊤

L xL + bL

)
,

for

xl :=

{
max

(
0,W⊤

l xl−1 + bl
)

l ∈ {2, . . . , L}
max

(
0,W⊤

1 x+ b1
)

l = 1
.

Here the parameters w are defined as the collection of all weight matrices and bias vectors, i.e.
w =

{
{Wl}Ll=1, {bl}Ll=1

}
.

One last notable activation function that we want to discuss is the softmax activation function,
which is defined as φ : Rn → Rn with

φ(x1, . . . , xn) =

(
exp(x1)∑n
j=1 exp(xj)

, . . . ,
exp(xn)∑n
j=1 exp(xj)

)⊤

.

This activation function is extremely useful as it allows us to map arguments onto the (probability)
simplex, i.e. φ(x1, . . . , xn)i ≥ 0 for all i ∈ {1, . . . , n} and

∑
i=1 φ(x1, . . . , xn)i = 1. The name

stems from the fact that this activation function can be seen as a smooth approximation of the
argmax function.

CHAPTER 2. SUPERVISED LEARNING 37

A general nonlinear regression model with deep neural networks then simply reads as minimising
the empirical risk (2.20) of the form

wt = argmin
w∈Rn

{
1

s

s∑
i=1

ℓi(fw(xi), yi)

}
, (2.34)

for a family of loss functions {ℓi}si=1 with ℓi : Rn → Rm for each i ∈ {1, . . . , s}. As for the previous
examples we can for instance choose ℓi(z) := 1

2 |z − yi|2 in order to minimise the mean-squared
error, but with a deep neural network as the model function, i.e.

wt = argmin
w∈Rn

{
1

2s

s∑
i=1

|fw(xi)− yi|2
}

,

= argmin
w∈Rn

{
1

2s

s∑
i=1

|xLi − yi|2
}

,

for

xli = φl(x
l−1
i , wl) , for ∀i ∈ {1, . . . , s}, ∀l ∈ {1, . . . , L} ,

assuming x0i = xi for all i ∈ {1, . . . , s}. Other choices such as the mean absolute error can certainly
be used as well, and some will also be explored next semester. An important question that we
want to address in the following section is the optimisation of the parameters wt, also referred to
as training or empirical risk minimisation as discussed in Section 2.5.

2.8.1 Training deep learning models

In the previous section we learned that training the parameters of a deep neural network is equiv-
alent to minimising objective functions of the form (2.34). In principle, there is no reason why we
cannot use algorithms such as gradient descent (Algorithm 1) and modifications such as stochastic
gradient descent or subgradient descent that we will learn more about in the next semester. How-
ever, the key difference is that the objective in (2.34) is in general not a convex function anymore.
This means that the convergence results that we have derived in earlier sections do not apply. This
does not mean that there do not exist other conditions that could guarantee convergence, but this
is beyond the scope of this module. We nevertheless will apply the same algorithms, keeping in
mind that we do not necessarily have convergence guarantees as in the convex setting.

If we have a differentiable deep neural network with differentiable activation functions, we
can (try to) train a deep neural network simply by minimising (2.34) via gradient descent, i.e.
Algorithm 1. In order to do so, we are required to compute the gradient of the objective function
w.r.t. the network parameters w. This can be done via backpropagation, which is a fancy name
for applying the chain rule to the particular network architecture.
In the following, we focus on architectures of the form

xli = σ(zli) , (2.35a)

zli = W⊤
l xl−1

i + bl , (2.35b)

for x0i = xi, nonlinear activation functions σ and all i ∈ {1, . . . , s} and l ∈ {1, . . . , L} and the
empirical risk minimisation problem for the empirical risk function

L(W1, . . . ,WL, b1, . . . , bL) =
1

s

s∑
i=1

ℓ(xLi , yi) . (2.36)

38 2.8. DEEP LEARNING

Algorithm 4 Backpropagation
Specify: Activation function σ, samples {(xi, yi)}si=1, weight and bias dimensions, and no. of
layers L
Iterate:
1: for i = 1, . . . , s do
2: for l = 1, . . . , L do
3: Forward pass: compute zli = W⊤

l xl−1
i + bl

4: Forward pass: compute xli = σ(zli)
5: end for
6: end for
7: for i = 1, . . . , s do
8: for l = L, . . . , 1 do

9: Backward pass: compute δli =

{
σ′(zLi)⊙ 1

s∇1ℓ(x
L
i , yi) l = L

σ′(zli)⊙Wl+1δ
l+1 l ∈ {1, . . . , L− 1}

10: end for
11: end for
12: Partial derivatives: compute ∂L

∂blj
= δlj , for all j ∈ {1, . . . , nl}

13: Partial derivatives: compute ∂L
∂wl

jk

= δljx
l−1
k , for all j ∈ {1, . . . , nl} and k ∈ {1, . . . , nl−1}.

return {Wl}Ll=1 and {bl}Ll=1.

Other backpropagation rules for more general architectures can be derived in similar fashion. The
following lemma characterises the partial derivatives of the empirical risk function with respect to
the parameters.

Lemma 2.5. When we define the quantity

δlj :=
∂L

∂xlj

for j ∈ {1, . . . , nl} and l ∈ {2, . . . , L}, we can show that the partial derivatives of L with respect
to the weights and biases satisfy

δli =

{
σ′(zLi)⊙ 1

s∇1ℓ(x
L
i , yi) l = L

σ′(zli)⊙Wl+1δ
l+1 l ∈ {1, . . . , L− 1}

,

∂L

∂blj
= δlj ,

∂L

∂wl
jk

= δljx
l−1
k .

Here ⊙ denotes the Hadamard product, which is simply a pointwise multiplication, and ∇1ℓ is the
gradient of ℓ with respect to the first argument.

Theorem 2.4 (Backpropagation). The gradient of the function (2.36) subject to the neural network
constraint (2.35) with respect to the parameters {Wl}Ll=1 and {bl}Ll=1 can be computed via the
backpropagation Algorithm 4.

As a consequence, we can train the network parameters via Algorithm 1 aka gradient descent
where we use the gradient that we have computed with Algorithm 4.

CHAPTER 2. SUPERVISED LEARNING 39

2.9 Classification

For the remainder of this chapter we move on from regression problems to classification problems.
Classification is the task of associating a certain class from a number of pre-defined classes to the
input of a function. Suppose we have a set of s input and output samples {(xi, yi)}si=1, then the
goal of classification is to find a function f : Rd → {C1, C2, . . . , Cn} that approximately satisfies

f(xi) ≈ yi ,

for all i ∈ {1, . . . , s}. You may say: hold on, this looks exactly like the general supervised learning
formulation that we have introduced in (2.1) and this is correct! The only difference compared
to supervised regression is that the function f no longer maps onto continuous values, but onto
a discrete set of values {C1, C2, . . . , Cn}. Here {Cj}nj=1 are the so-called class labels that are
numerical values associated with the n individual classes. Note that each yi has to take on one of
those values as well, i.e. yi ∈ {C1, . . . , Cn} for all i ∈ {1, . . . , s}. If there are only two classes to
map to, i.e. the range of the function is {C1, C2}, then we speak of a binary classification problem.
For more than two classes we speak of a multiclass classification problem. In the following, we
introduce a very basic classification method known as nearest neighbour classification, discuss its
limitations and then continue to introduce other classification models such as logistic regression
and support vector machines.

2.9.1 Nearest neighbour classification

One of the most simple classification ideas is to classify a new data sample x based on classes
of the K-nearest neighbours of that sample in the training set. We can do this by assigning a
probability to the unknown output label based on the labels of the K nearest neighbours. This
probability is of the form

ρ(y = c |x,K) :=
1

K

∑
l∈NK(x)

ι(yl = c) , (2.37)

with ι defined as

ι(z) :=

{
1 if z is true
0 if z is false

. (2.38)

Here NK denotes the neighbourhood of x, which includes the K nearest neighbours of x. There are
obviously many different ways of measuring distances between data points. One example is to sim-
ply measure the Euclidean distances between data points. In that case the neighbourhood can be
defined as NK(x) :=

{
xi(1), . . . , xi(K)

∣∣ ∥x− xi(j)∥ ≤ ∥x− xl∥ , ∀ l ∈ {1, . . . , s} \ {i(1), . . . , i(K)}
}
.

The definition (2.38) assigns a probability to the event that a label y equals a class label
c ∈ {C0, . . . , Cn}. This is done by computing the averages among the K nearest neighbours with
identical class label. You can find particular examples in the corresponding video lecture that
accompanies these lecture notes. Once we have computed all probabilities for the different class
labels, we assign the class label with the highest probability to the output of our classifier f , i.e.

f(x) := argmax
c∈{C0,C1,...,Cn}

ρ(y = c |x,K) . (2.39)

The entire strategy is known as the K-nearest neighbours classification. The number of neighbours
K is a hyperparameter that has to be determined with model selection strategies such a cross
validation.

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

40 2.9. CLASSIFICATION

In the following we want to shed some light on why nearest neighbour classification works well
for lower dimensional problems (small d) but fails to deliver meaningful results when the dimension
d increases.

The curse of dimensionality

Nearest neighbour classification is a very simple classification strategy that, unfortunately, falls
victim to the so-called curse of dimensionality . In the context of supervised machine learning, the
curse of dimensionality usually takes the following form.

(a) “Generalising correctly becomes exponentially harder as the dimensionality grows because
fixed-size training sets cover a dwindling fraction of the input space.”

(b) In high-dimensions, data-points are far from each other. Consequently, “as the dimensionality
increases, the choice of nearest neighbour becomes effectively random.”

These quotes are taken from Pedro Domingos review article "A few useful things to know about
machine learning". In the following, we want to dissect what those claims mean mathematically.
For the first claim, imagine that we have m data inputs {xi}mi=1 that all lie in the d-dimensional
unit cube [0, 1]d with a total volume of 1d = 1. Now we consider a sub-cube [a, a+r]d ⊂ [0, 1]d with
0 ≤ a and a+ r ≤ 1 with volume rd ≤ 1. This sub-cube can be seen as our training set, containing
s training samples. The question we want to address here is the following: how large does this
cube have to be in order to cover a certain fraction α of the m data samples (in expectation)?
In other words: how do we need to choose the length r of the sub-cube such that α = rd? The
straight-forward answer to this question is

r = d
√
α .

If we are in a d = 10 dimensional space for example, covering only α = 1% of the data already
requires a cube with length r ≈ 0.63. To cover α = 10% of the data in the overall cube, a length
of r ≈ 0.8 is required. In other words, for a fixed sub-cube with fixed length r < 1 increasing the
dimension d dramatically reduces the fraction of data samples that the sub-cube covers.

For the second claim, we consider the d-dimensional unit cube again, but this time our sub-
cube is located around the centre point (12 ,

1
2 , . . . ,

1
2), i.e. we have [(1 − r)/2, (1 + r)/2]d ⊂ [0, 1]d

with 0 ≤ r ≤ 1. Suppose m input samples {xi}si=1 are uniformly distributed in the cube [0, 1]d.
What is the chance that a random sample is in the overall cube [0, 1]d but not in the sub-cube
[(1− r)/2, (1+ r)/2]d? This chance is simply 1− rd. Considering m i.i.d. samples, the chance that
none of these m samples is in the sub-cube then becomes(

1− rd
)m

.

For a fixed probability ρ, we can solve this equation for r, i.e.

r = d

√
1− m

√
ρ .

To have a probability of 50% (which means ρ = 0.5) that none of m = 500 samples in a d = 10
dimensional space is in the sub-cube, the length of the sub-cube only has to be r ≈ 0.52. Again,
keeping r fixed and increasing the dimension d will quickly increase the probability ρ to values
close to 100%, rendering the concept of nearest neighbours useless in higher dimensions.

All these considerations tell us that the K-nearest neighbours classification strategy suffers
from the curse of dimensionality, which is why we have to consider other classification strategies
that do not rely on the concept of neighbours. In the following sections we will consider three
alternative classification strategies.

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://dl.acm.org/doi/pdf/10.1145/2347736.2347755?casa_token=sGtzNFp1cHYAAAAA:onsZCZ1PTbUltDJ7FPC9AXs2jnObYmJJLjOePfTuBbwe8xH3dqj2LxvvUKD2RkKxAxBfrafBr0b7XA
https://dl.acm.org/doi/pdf/10.1145/2347736.2347755?casa_token=sGtzNFp1cHYAAAAA:onsZCZ1PTbUltDJ7FPC9AXs2jnObYmJJLjOePfTuBbwe8xH3dqj2LxvvUKD2RkKxAxBfrafBr0b7XA

CHAPTER 2. SUPERVISED LEARNING 41

2.9.2 Logistic regression

One could think of solving classification problems with the same tools that we have used for
tackling regression problems, i.e. mean-squared-error regression. After all, the only difference
is that the output of the trained prediction function f(x,w) is supposed to be discrete and not
continuous, which we could achieve by thresholding the function output. However, as you find
out in the weekly lecture videos, this strategy is not working in practice, since the mean-squared
error is not really related to the objective of minimising the number of misclassified samples.
Starting with the concept of binary classification, it seems reasonable to transform the prediction
f(x,w) into a probability. In order, to do so, we consider σ(f(x,w)) instead of f(x,w), where
σ : (−∞,∞) → [0, 1] is the so-called logistic function defined as

σ(z) :=
1

1 + e−z
=

ez

1 + ez
. (2.40)

We can then define the following probabilities for the events that the output f(x,w) belongs the
class with class label zero or the class with class label one:

ρ(1|x) := σ(f(x,w)) , (2.41a)
ρ(0|x) := 1− σ(f(x,w)) . (2.41b)

From the definition of σ we instantly observe ρ(1|x) ≥ 0, ρ(0|x) ≥ 0 and ρ(1|x) + ρ(0|x) = 1.
Hence, when we speak of ρ we can indeed speak of a probability. Now assume we have s pairs of
samples {(xi, yi)}si=1 where yi ∈ {0, 1} for all i ∈ {1, . . . , s} that are iid and follow the probability
density function that we have just defined in (2.41). The corresponding likelihood then reads

ρ (y |X,w) =

s∏
i=1

ρ(yi|xi) , (2.42)

where X and y are abbreviations of the matrix and vector that we obtain from the samples {yi}si=1

and {xi}si=1. Note that we can rewrite (2.42) as

ρ (y |X,w) =
∏

{i | yi=1}

ρ(yi = 1|xi)
∏

{i | yi=0}

ρ(yi = 0|xi) ,

=
s∏

i=1

σ(f(xi, w))
yi (1− σ(f(xi, w))

1−yi .

As in the regression case with the normal distribution, we can obtain parameters ŵ that maximise
the likelihood (2.42) by minimising the negative log-likelihood, i.e.

ŵ = argmin
w

{− log (ρ (y |X,w))} ,

= argmin
w

{
− log

(
s∏

i=1

σ(f(xi, w))
yi (1− σ(f(xi, w)))

1−yi

)}
,

= argmin
w

{
−

s∑
i=1

[yi log (σ(f(xi, w))) + (1− yi) log ((1− σ(f(xi, w))))]

}
,

= argmin
w

{
s∑

i=1

[log (1 + exp (f(xi, w)))− yif(xi, w)]

}
.

https://en.wikipedia.org/wiki/Logistic_function

42 2.9. CLASSIFICATION

This alternative form of regression is known as logistic regression as it is based on the logistic
function (2.40). We can choose any model function f – linear or polynomial basis function, or
even a neural network – that we like, as long as it maps onto the real numbers. To determine
a unique minimiser, a model linear with respect to the weights w has its advantages, as we will
discuss later. Before we discuss how to compute an argument that minimises this expression
numerically, we want to discuss how to extend logistic regression to classification problems with
more than two classes first.

2.9.3 Multinomial logistic regression

In order to derive a logistic regression problem that can deal with more than two classes, we need
to come up with a probability model that can associate the highest probability to the label that
corresponds to the correct class. We can do this with the help of the so-called softmax -function.
Assume for K > 2 classes that we have a model function f(x,w1, . . . , wK) that depends on multiple
weight vectors {wk}Kk=1, and more importantly, that maps onto a K-dimensional vector rather than
a scalar output. Given such a function, we compose it with the softmax function σ : RK → [0, 1]K

that is defined as

σ(z1, z2, . . . , zK)k :=
exp(zk)∑K
j=1 exp(zj)

, ∀ k ∈ {1, . . . ,K} .

We can then associate a probability for each class based on this composition, i.e.

ρ(yi = k |xi, w1, . . . , wK) := σ (f(xi, w1, . . . , wK))k =
exp(f(xi, w1, . . . , wK)k)∑K
j=1 exp(f(xi, w1, . . . , wK)j)

,

for all k ∈ {1, . . . ,K}. By definition of the softmax-function, we observe ρ(yi = k |xi, w1, . . . , wK) ≥
0 for all k ∈ {1, . . . ,K} as well as

∑K
k=1 ρ(yi = k |xi, w1, . . . , wK) = 1; hence, we can talk of ρ as

a probability. We can then proceed as in the binary logistic regression case and define a likelihood
for s data samples {(xi, yi)}si=1 via

ρ(ŷ = y |X,W) :=

s∏
i=1

ρ(ŷi = yi |xi, w1, . . . , wK) ,

for the short-hand notations y = (y1, . . . , ys)
⊤, X =

(
x1 . . . xs

)⊤ and W =
(
w1 w2 . . . wK

)
.

We can simplify this likelihood to

ρ(ŷ = y |X,W) =
∏

{i | yi =1}

ρ(ŷi = 1 |xi, w1, . . . , wK) · · ·
∏

{i | yi =K}

ρ(ŷi = K |xi, w1, . . . , wK) ;

We can use the indicator function 1yi=k defined as

1yi=k :=

{
1 yi = k

0 otherwise

to further simplify the likelihood to

ρ(ŷ = y |X,W) :=

s∏
i=1

K∏
k=1

ρ(ŷi = k |xi, w1, . . . , wK)1yi=k .

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Softmax_function

CHAPTER 2. SUPERVISED LEARNING 43

As before, we can maximise this likelihood by choosing the parameters W such that they minimise
the negative log-likelihood, i.e.

Ŵ = argmin
W

− log (ρ(ŷ = y |X,W)) ,

= argmin
W

− log

 s∏
i=1

K∏
j=1

ρ(ŷi = k |xi, w1, . . . , wK)1yi=k

 ,

= argmin
W

−
s∑

i=1

K∑
k=1

1yi=k log (ρ(ŷi = k |xi, w1, . . . , wK)) ,

= argmin
W

−
s∑

i=1

K∑
k=1

1yi=k log

(
exp(f(xi, w1, . . . , wK)k)∑K
j=1 exp(f(xi, w1, . . . , wK)j)

)
,

= argmin
W

s∑
i=1

K∑
k=1

1yi=k

log

 K∑
j=1

exp(f(xi, w1, . . . , wK)j)

− f(xi, w1, . . . , wK)k

 ,

= argmin
W

s∑
i=1

K∑
k=1

1yi=k log

 K∑
j=1

exp(f(xi, w1, . . . , wK)j)

−
s∑

i=1

K∑
k=1

1yi=kf(xi, w1, . . . , wK)k ,

= argmin
W

s∑
i=1

log

(
K∑
k=1

exp(f(xi, w1, . . . , wK)k)

)
−

s∑
i=1

K∑
k=1

1yi=kf(xi, w1, . . . , wK)k .

Hence, with the more compact notation f(x,W) we can estimate optimal parameters Ŵ via

Ŵ = argmin
W

s∑
i=1

log

(
K∑
k=1

exp(f(xi,W)k)

)
−

s∑
i=1

K∑
k=1

1yi=kf(xi,W)k .

A typical choice for f based on polynomial augmentation would be

f(x,W) =
(
⟨ϕ(x), w1⟩ ⟨ϕ(x), w2⟩ . . . ⟨ϕ(x), wK⟩

)
= ϕ(x)⊤W .

If we store all input samples {xi}si=1 in a matrix X =
(
x1 . . . xs

)⊤, we can write

f(X,W) = Φ(X)W

in matrix form. The multinomial logistic regression problem then reads

Ŵ = argmin
W∈R(1+d)×K

s∑
i=1

log

(
K∑
k=1

exp(⟨ϕ(xi), wk⟩)

)
−

s∑
i=1

K∑
k=1

1yi=k⟨ϕ(xi), wk⟩ ,

or

Ŵ = argmin
W∈R(1+d)×K

s∑
i=1

log

(
K∑
k=1

exp((Φ(X)W)ik)

)
−

s∑
i=1

K∑
k=1

1yi=k(Φ(X)W)ik⟩

in matrix form. The key question that remains for both the binary and the multinomial logistic
regression problem is: how do we solve these minimisation problems computationally?

https://en.wikipedia.org/wiki/Multinomial_logistic_regression

44 2.9. CLASSIFICATION

We will focus on the binary logistic regression case with polynomial data model f(x,w) =
⟨ϕ(x), w⟩; the multinomial logistic regression case can be covered in almost identical fashion, just
with different computations. The first thing that we observe is that the objective- (or cost-)function

L(w) :=
s∑

i=1

[log (1 + exp (⟨ϕ(xi), w⟩))− yi⟨ϕ(xi), w⟩] (2.43)

is differentiable. So can we maybe compute the gradient, set the gradient to zero and solve for the
weights w as we did for the mean-squared error regression? Computing the partial derivative of L
with respect to wl, for l ∈ {0, . . . , d}, yields

∂L

∂wl
=

s∑
i=1

ϕ(xi)l (σ (⟨ϕ(xi), w⟩)− yi) ,

=

s∑
i=1

Φ(X)il (σ ((Φ(X)w)i)− yi) .

Here σ denotes the logistic function as defined in (2.40). Hence, the entire gradient of L reads

∇L(w) = Φ(X)⊤ (σ(Φ(X)w)− y)

in column-vector form. Here, σ(Φ(X)w) is short-hand notation for applying the logistic function
point-wise to every component of the vector Φ(X)w. Setting the gradient to zero and solving it
for the corresponding argument ŵ would therefore require the solution of the equation

0 = Φ(X)⊤ (σ(Φ(X)ŵ)− y) . (2.44)

Because of the non-linearity of σ, we cannot simply solve (2.44) for ŵ and a fixed but arbitrary
matrix Φ(X). Having computed the gradient, we can, however, try to approximate a solution of

ŵ = argmin
w∈R1+d

{L(w)} (2.45)

via gradient descent, as defined in Algorithm 1. For this particular choice of cost function L, the
gradient descent iterate becomes

wk+1 = wk − τ Φ(X)⊤
(
σ(Φ(X)wk)− y

)
.

The question that we need to address is whether gradient descent will convergence to a solution
of (2.45). Note that in order to apply Theorem 2.3, we only need to verify convexity of L and
1/τ -smoothness. With Corollary 2.2 we can verify that the logistic regression function is convex.

Lemma 2.6 (Convexity of the binary logistic regression problem). The function L : R1+d → R
as defined in Equation (2.43) is convex.

Proof. We basically only need to show that the function f(z) := log(1 + exp(z)) is convex; then
we could conclude that L is a sum of convex functions (and therefore convex itself), as linear
functions are convex and since compositions of convex functions and linear functions are convex.

CHAPTER 2. SUPERVISED LEARNING 45

We verify that f is convex by showing that f ′′(z) ≥ 0 for all z ∈ R. We had already computed
the first derivative that reads

f ′(z) =
1

1 + exp(−z)
= σ(z) ;

It can be easily verified that the second derivative reads

f ′′(z) = σ(z) (1− σ(z)) .

Since σ(z) ∈ [0, 1] for all z ∈ R, we immediately see that f ′′(z) ≥ 0 for all z. Hence, f is convex
and as a consequence, L is convex.

In order to converge successfully to a minimiser of the logistic regression problem with gradient
descent, we only need to specify a step-size τ > 0 that is sufficiently small so that the objective
values decrease monotonically (if such a step-size exists). Without proof, we use that the logistic
function σ is a 1

4 -Lipschitz continuous function, i.e.

|σ(x)− σ(y)| ≤ 1

4
|x− y| ,

for all x, y ∈ R. Then we can conclude that the gradient ∇L(w) is 1/τ -Lipschitz continuous, i.e.

∥X⊤ (σ(Xw)− y)−X⊤ (σ(Xv)− y) ∥ = ∥X⊤ (σ(Xw)− σ(Xv)) ∥ ,
≤ ∥X∥∥σ(Xw)− σ(Xv)∥ ,

≤ ∥X∥
4

∥Xw −Xv∥ ,

≤ ∥X∥2

4
∥w − y∥ ,

for τ = 4/∥X∥2 and all w, v ∈ R1+d. Hence, gradient descent is guaranteed to converge to a global
minimum of L for τ < 4/∥X∥2 as a consequence of Lemma 2.3 and Theorem 2.3.

2.9.4 Support-vector machines (SVMs)

One limitation of logistic regression is that the hyperplane that spans the decision boundary is
not necessarily optimal in the sense that it maximises the distance between the closest data points
on each side of the decision boundary. This feature can, however, be achieved in the context of
binary classification with Support Vector Machines (SVMs) that utilise a different data model.
For a more detailed motivation we refer to the lecture videos & slides. For a set of data points
{(xi, yi)}si=1, with yi ∈ {−1, 1} for all i ∈ {1, . . . , s}, and a linear model function f(x,w) with
parameters w ∈ R1+d, the key idea is to maximise the distance r of the closest data points to the
hyper-plane, but to ensure that the each data point ends up on the correct side of the decision
boundary at the same time. Mathematically, for a linear model f(x,w) = ⟨ϕ(x), w⟩ this distance
r can be characterised via

r =
f(x,w)

∥w∥
,

while ensuring that each data point is on the correct side of the decision boundary can mathemat-
ically be described as the constraint

yi f(xi, w)− 1 ≥ 0 ,

46 2.9. CLASSIFICATION

for all i ∈ {1, . . . , s}. In order to maximise r, we can minimise ∥w∥ (or ∥w∥2) subject to the
previous constraint, i.e.

min
w0,w2,...,wd

∥w∥2 subject to yi f(xi, w)− 1 ≥ 0 , ∀i ∈ {1, . . . , s} . (2.46)

If the data points cannot be separated linearly, Problem (2.46) doesn’t have a solution. To over-
come this limitation, we can relax Problem (2.46) to

min
w∈R1+d

s∑
i=1

max (0, 1− yi ⟨xi, w⟩) +
α

2
∥w∥2 , (2.47)

for w =
(
w0 w2 . . . wd

)⊤ and a balancing (or regularisation) parameter α > 0. The solution to
Problem (2.47) is known as the soft-margin SVM ; the solution to Problem (2.46) as hard-margin
SVM. In the following we want to discuss how to simplify (2.47) to make it computationally more
tractable.

We follow a similar trick as in Section 2.7.2 where we have reformulated the absolute value
function in terms of a dual variable. We can do the same trick for the ramp function max(0, z),
i.e. we can write max(0, z) as

max(0, z) = max
λ∈[0,1]

λz .

Replacing the ramp function in (2.47) with this dual characterisation yields the min-max problem

min
w∈R1+d

{
max

λ∈[0,1]s

s∑
i=1

λi (1− yi⟨xi, w⟩) +
α

2
∥w∥2

}
. (2.48)

Note that the underlying function L(w, λ) defined as

L(w, λ) :=
s∑

i=1

λi (1− yi⟨xi, w⟩) +
α

2
∥w∥2 − χ[0,1]s(λ)

with

χ[0,1]s(λ) =

{
0 ∀i ∈ {1, . . . , s} : λi ∈ [0, 1]

∞ ∃i ∈ {1, . . . , s} : λi ̸∈ [0, 1]
,

is convex in the first argument (for fixed second argument) and concave in the second argument (for
fixed first argument), where convexity and concavety are defined as in Definition 2.2, respectively
Definition 2.3. This statement is left as an exercise to the curious reader. The following theorem
states that it makes no difference for such functions whether one first maximises and then minimises
the function, or if one first minimises and then maximises the function.

Theorem 2.5 (Minimax Theorem, von Neumann 1928). Let X ⊂ Rm and Y ⊂ Rn be compact,
convex sets. If f : X × Y → R is a continuous function that is convex-concave, i.e.

f(·, y) : X → R is convex for fixed y ,

f(x, ·) : Y → R is concave for fixed x .

Then the max-min inequality is an equality, i.e.

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y) .

CHAPTER 2. SUPERVISED LEARNING 47

Thanks to Theorem 2.5, we can replace (2.48) with the equivalent problem

max
λ∈[0,1]s

{
min

w∈R1+d

s∑
i=1

λi (1− yi⟨xi, w⟩) +
α

2
∥w∥2

}
. (2.49)

What is the advantage of (2.49) over (2.48), you may ask? The advantage is that (2.48) can be
solved more easily, as the inner problem becomes differentiable. The gradient of L with respect to
w reads

∇wL(w, λ) = −
s∑

i=1

λiyixi + αw .

Computing ŵ with ∇wL(ŵ, λ) = 0 yields

ŵ =
1

α

s∑
i=1

λiyixi . (2.50)

Inserting ŵ into L(w, λ) then turns (2.49) into

max
λ∈[0,1]s

{
⟨λ,1⟩ − 1

2α
∥X⊤Y λ∥2

}
. (2.51)

Here Y is short-hand notation for the s × s diagonal matrix that contains the elements of the
vector y on its diagonal, i.e.

Y = diag(y) :=


y1 0 0 · · · 0
0 y2 0 · · · 0
...

. . .
...

0 · · · 0 · · · ys

 ,

and 1 is short-hand-notation for the s-dimensional vector of ones, i.e. 1 =
(
1 1 1 . . . 1

)⊤ ∈
Rs. We can reformulate (2.51) equivalently as minimisation problem; hence, computing the argu-
ment λ̂ that minimises this expression is

λ̂ = argmin
λ∈[0,1]

{
1

2α
∥X⊤Y λ∥2 − ⟨λ,1⟩

}
. (2.52)

This convex problem can be solved computationally with various algorithms; examples include
the proximal gradient method as described in Algorithm 2 or the coordinate descent method
summarised in Algorithm 3. Both methods utilise proximal maps, which in this case reduce to the
orthogonal projection onto the convex set [0, 1], i.e.(

proxχ[0,1]s
(z)
)
i
= min(1,max(0, zi)) ,

for all i ∈ {1, . . . , s}. Note that by solving (2.52) we automatically find the argument that
minimises the original soft-margin SVM problem (2.47) via (2.50).

48 2.9. CLASSIFICATION

2.9.5 Semi-supervised binary classification with graphs

In this section we discuss how to model semi-supervised classification problems with the help of
undirected, weighted graphs. An undirected, weighted graph is defined as follows.

Definition 2.8. An undirected graph G is a pair G = (V,E), where V is a set of elements called
vertices, and E =

{
x, y | (x, y) ∈ V 2 ∧ x ̸= y

}
is a set of edges. A weighted graph (or network)

is a graph in which a number, known as weight, is assigned to each edge.

An example of an undirected, weighted graph can be seen in Figure 2.2.

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

Dunwich

46

3

15

40

17

40

29

811

31

53

Figure 2.2: An example of a weighted graph of several connected towns in the south east of England.
This graph has seven vertices (or nodes), representing different towns, connected by eleven edges. The
weights represent the distances between the connected towns. ©Wikimedia commons.

For a (weighted) graph (with weights w) we define a so-called incidence matrix Mw ∈ R|E|×|V |,
where |E| denotes the number of edges and |V | the number of vertices, as

(Mw)ev :=


−√

wev if v = i
√
wev if v = j

0 otherwise
,

where every edge e = (i, j) connects vertices i and j, with i < j. The corresponding graph-

https://upload.wikimedia.org/wikipedia/commons/5/5f/CPT-Graphs-undirected-weighted.svg

CHAPTER 2. SUPERVISED LEARNING 49

Laplacian Lw ∈ R|V |×|V | is then defined as

Lw := M⊤
wMw .

It is always best to give a concrete example for such an incidence matrix as well as the graph-
Laplacian.

Example 2.6. The incidence matrix for the graph in Figure 2.2 reads

Mw =



−
√
15

√
15 0 0 0 0 0

−
√
53 0

√
53 0 0 0 0

0 −
√
40

√
40 0 0 0 0

0 −
√
46 0 0

√
46 0 0

0 0 0 −
√
3

√
3 0 0

0 0 −
√
31

√
31 0 0 0

0 0 0 −
√
29 0

√
29 0

0 0 −
√
17 0 0

√
17 0

0 0 0 0 −
√
11 0

√
11

0 0 0 −
√
8 0 0

√
8

0 0 0 0 0 −
√
40

√
40



,

while the corresponding graph Laplacian is then given as

Lw = M⊤
wMw =



68 −15 −53 0 0 0 0
−15 101 −40 0 −46 0 0
−53 −40 141 −31 0 −17 0
0 0 −31 71 −3 −29 −8
0 −46 0 −3 60 0 −11
0 0 −17 −29 0 86 −40
0 0 0 −8 −11 −40 59


.

The graph Laplacian can also be decomposed into a so-called degree matrix Dw and an adjacency
matrix Aw via Lw = Mw − Aw, which we in the interest of time will not explore any further
throughout this lecture.

We can use weighted graphs to model and exploit similarities in datasets. Suppose we are
given a set S := {xi}si=1 of s samples, for which only r ≪ s samples in the set R := {xi(j)}rj=1 have
corresponding (binary) output labels {yj}rj=1 with values in {0, 1}. Here i : {1, . . . , r} → {1, . . . , s}
denotes an index function that picks the indices for which labels are known. If r is very small,
supervised learning on just r samples may not lead to mappings that have satisfactory predictive
powers when applied to the classification of new samples x. However, we can assume that all data
points {xi}si=1 are nodes in a connected graph. The weights between each nodes are determined
by a similarity measure, for example of the form

wij =

{
exp

(
−γ∥xi − xj∥2

)
∥xi − xj∥ ≤ threshold

0 ∥xi − xj∥ > threshold
,

for a constant γ > 0 and a threshold value that guarantees that not all weights are non-zero.
This way we create an undirected weighted graph with connections between nodes where there is
similarity in terms of the Euclidean norm. Based on this graph with weights w, we can construct a

50 2.9. CLASSIFICATION

corresponding incidence matrix Mw. This type of supervised machine learning is usually referred
to as semi-supervised, as we only require a smaller subset R of a set of (training) samples S instead
of the entire set of training samples in order to perform the binary classification task.

One could now try to pursue a supervised classification task by solving the following optimi-
sation problem:

v̂ = argmin
v∈[0,1]s

{
∥Mwv∥2 subject to (PRv)j = yj , for all j ∈ {1, . . . , r}

}
. (2.53)

Here PR : Rs → Rr denotes the projection of a vector on the indices specified by the index function
i, i.e.

(PRv)j = vi(j) , ∀j ∈ {1, . . . , r} .

The label vector v̂ is constrained to have values in [0, 1]s and to take on the correct values for
the indices with corresponding output labels. The remaining values are determined by ensuring
minimal ∥Mwv̂∥2 for v̂ amongst all possible label vectors v ∈ Rs.

Note that given the sets S and R, we can easily define the complement R⊥ := S \ R of R. If
we denote the projection onto this set with PR⊥ : Rs → Rs−r, we can rewrite v as

v = P⊤
R⊥PR⊥v + P⊤

R PRv = P⊤
R⊥PR⊥v + P⊤

R y .

Note that we only need to compute PR⊥ v̂ instead of v̂ as PRv̂ = y is already known. As a direct
consequence, we can reformulate (2.53) to

PR⊥ v̂ = argmin
ṽ∈[0,1]s−r

{∥∥∥Mw

(
P⊤
R⊥ ṽ + P⊤

R y
)∥∥∥2}

= argmin
ṽ∈Rs−r

{∥∥∥Mw

(
P⊤
R⊥ ṽ + P⊤

R y
)∥∥∥2} , (2.54)

where the last equality holds when y ∈ [0, 1]r. In the following, we want to give a small example
to illustrate this approach of binary classification.

Example 2.7. We consider the following graph where its weights mimic a similarity measure
between the individuals in the nodes:

CHAPTER 2. SUPERVISED LEARNING 51

Jessica Chastain

Will Ferrell

Bryce D. Howard

Tilda Swinton

Conan O’Brian

Chad Smith

E4: 64E2: 25
E3: 81

E5: 36

E1: 25

E7: 49

E6: 36

Wherever there is no edge between two nodes, the corresponding weight, respectively the similarity
measure, is zero. Computing the incidence matrix Mw of this weighted graph yields

E1 −5 0 0 0 5 0
E2 0 0 0 −5 5 0
E3 0 −9 0 0 0 9
E4 −8 0 0 8 0 0
E5 0 0 −6 0 0 6
E6 0 −6 6 0 0 0
E7 0 0 −7 0 7 0

B. D. Howard C. Smith C. O’ Brian J. Chastain T. Swinton W. Ferrell


.

The corresponding graph Laplacian reads

Lw = M⊤
wMw =



89 0 0 −64 −25 0
0 117 −36 0 0 −81
0 −36 121 0 −49 −36

−64 0 0 89 −25 0
−25 0 −49 −25 99 0
0 −81 −36 0 0 117

 .

52 2.9. CLASSIFICATION

Suppose we want to classify each node according to biological sex, and already know that Jessica
Chastain is female (class label v̂4 = 1) and Will Ferrell is male (class label v̂6 = 0). We can
therefore formulate (2.54) with the projections

PR⊥ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 and PR =

(
0 0 0 1 0 0
0 0 0 0 0 1

)
,

and the data y =
(
1 0

)⊤. This leaves us with the solution of the linear system

PR⊥LwP
⊤
R⊥ ṽ︸︷︷︸

=P
R⊥ v̂

= −PR⊥LwP
⊤
R y ,

which for this example reads
89 0 0 −25
0 117 −36 0
0 −36 121 −49

−25 0 −49 99

 ṽ =


64
0
0
25

 .

The solution to this linear system is (approximately) ṽ ≈
(
0.8912 0.0840 0.2732 0.6128

)⊤,
respectively

v̂ =
(
0.8912 0.0840 0.2732 1 0.6128 0

)⊤
.

We can use this result to classify the remaining nodes by setting all values below 1/2 to zero
and above 1/2 to one. In this example, we would (correctly) determine the biological sex of Bryce
Dallas Howard as female, of Chad Smith as male, of Conan O’ Brian as male, and of Tilda Swinton
as female.

	Mathematical preliminaries
	Linear algebra
	Calculus
	Probability & statistics

	Supervised learning
	Statistical motivation
	Linear & polynomial regression
	Polynomial regression
	Regression with general basis functions

	Convex analysis
	A comment on existence and uniqueness

	Ill-conditioned regression problems & regularisation
	Ridge regression

	Model selection
	Bias-variance decomposition
	The LASSO
	Gradient descent
	Gradient descent and the LASSO
	Proximal gradient descent
	Coordinate descent

	Deep learning
	Training deep learning models

	Classification
	Nearest neighbour classification
	Logistic regression
	Multinomial logistic regression
	Support-vector machines (SVMs)
	Semi-supervised binary classification with graphs

