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Chapter 1

Vector spaces

In the Linear Algebra I module, we encountered two kinds of vector space, namely
real and complex. The real numbers and the complex numbers are both examples of
an algebraic structure called a field, which we encountered back in the Introduction to
Algebra module. Vector spaces can be defined relative to any field, and we shall do so
here. There are practical reasons to do this beyond the desire for maximum generality.
For example, vector spaces over the two-element field F2 arise in coding theory and in
computer science.

1.1 Axiomatic definition of a vector space

Let’s assume we remember the definition of group from Introduction to Algebra. We
have to start somewhere after all. If not, you should pause to consult your notes from
two years back or Wikipedia.

Fields were defined in Introduction to Algebra, but let’s just refresh our memory.

Definition 1.1. A field is an algebraic system consisting of a non-empty set K equipped
with two binary operations + (addition) and · (multiplication) satisfying the conditions:

(A) (K,+) is an abelian group with identity element 0;

(M) (K \ {0}, · ) is an abelian group with identity element 1;

(D) the distributive law

a · (b+ c) = a · b+ a · c

holds for all a, b, c ∈ K.

The explicit symbol “ · ” for multiplication is needed only for the purpose of making
sense of the definition, and we drop it right away.

In fact, the only fields we’ll encounter in these notes are

• Q, the field of rational numbers;

• R, the field of real numbers;

• C, the field of complex numbers;

• Fp, the field of integers mod p, where p is a prime number,
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2 CHAPTER 1. VECTOR SPACES

so if you are comfortable handling these particular fields you should be just fine. We
will not stop to prove that the above structures really are fields. You may have seen Fp
referred to as Zp.

Specific examples of fields have properties beyond merely satisfying the axioms listed
above. You may like to pause at this point to consider properties that distinguish the
fields Q, R, C and F2 that we mentioned above. (Think of cardinality, order, roots of
polynomials and limits of sequences.) However, many of the theorems in this module
apply to vector spaces over an arbitrary field, so, particularly in the earlier stages of
the module, we should keep a careful eye on our manipulations, to ensure that we don’t
go beyond the field axioms! However there are a lot of axioms, and a good survival
technique is to have in mind a concrete field, say R that we are familiar with.

Having recalled the basics from Introduction to Algebra we are ready to introduce
the our main object of study.

Definition 1.2. A vector space V over a field K is an algebraic system consisting of a
non-empty set V equipped with a binary operation + (vector addition), and an operation
of scalar multiplication

(a, v) ∈ K× V 7→ av ∈ V

such that the following rules hold:

(VA) (V,+) is an abelian group, with identity element 0 (the zero vector).

(VM) Rules for scalar multiplication:

(VM1) For any a ∈ K, u, v ∈ V , we have a(u+ v) = au+ av.

(VM2) For any a, b ∈ K, v ∈ V , we have (a+ b)v = av + bv.

(VM3) For any a, b ∈ K, v ∈ V , we have (ab)v = a(bv).

(VM4) For any v ∈ V , we have 1v = v (where 1 is the identity element of K).

Since we have two kinds of elements, namely elements of K and elements of V , we
distinguish them by calling the elements of K scalars and the elements of V vectors.
Typically we’ll use use letters around u, v, w in the alphabet to stand for vectors,
and letters around a, b and c for scalars. (In Linear Algebra I, boldface was used to
distinguish vectors from scalars. We retain that convention only in the context of the
zero of the field 0 and the zero vector 0.)

A vector space over the field R is often called a real vector space, and one over C
is a complex vector space. In some sections of the course, we’ll be thinking specifically
of real or complex vector spaces; in others, of vector spaces over general fields. As we
noted, vector spaces over other fields are very useful in some applications, for example
in coding theory, combinatorics and computer science.

Example 1.3. The first example of a vector space that we meet is the Euclidean plane
R2. This is a real vector space. This means that we can add two vectors, and multiply
a vector by a scalar (a real number). There are two ways we can make these definitions.

• The geometric definition. Think of a vector as an arrow starting at the origin
and ending at a point of the plane. Then addition of two vectors is done by
the parallelogram law (see Figure 1.1). The scalar multiple av is the vector whose
length is |a| times the length of v, in the same direction if a > 0 and in the opposite
direction if a < 0.
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Figure 1.1: The parallelogram law

• The algebraic definition. We represent the points of the plane by Cartesian coor-
dinates. Thus, a vector v is just a pair (a1, a2) of real numbers. Now we define
addition and scalar multiplication by

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

c(a1, a2) = (ca1, ca2).

Not only is this definition much simpler, but it is much easier to check that the
rules for a vector space are really satisfied! For example, we may check the law
c(v + w) = cv + cw. Let v = (a1, a2) and w = (b1, b2). Then we have

c(v + w) = c((a1, a2) + (b1, b2))

= c(a1 + b1, a2 + b2)

= (ca1 + cb1, ca2 + cb2)

= (ca1, ca2) + (cb1, cb2)

= cv + cw.

In the algebraic definition, we say that the operations of addition and scalar multipli-
cation are coordinatewise: this means that we add two vectors coordinate by coordinate,
and similarly for scalar multiplication.

Using coordinates, this example can be generalised.

Example 1.4. Let n be any positive integer and K any field. Let V = Kn, the set of
all n-tuples of elements of K. Then V is a vector space over K, where the operations are
defined coordinatewise:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

c(a1, a2, . . . , an) = (ca1, ca2, . . . , can).

Example 1.5. The set RS of all real functions on a set S is a vector space over R.
Vector addition is just addition of functions. Scalar multiplication is just scaling of a
function by a real number.

Example 1.6. The set of all polynomials of degree n − 1 with coefficients in a field K
is a vector space over K. Vector addition is just usual addition of polynomials; scalar
multiplication is just scaling of a polynomial by an element of K. Equivalently, one can
say that vector addition is coefficientwise addition, and scalar multiplication is multipli-
cation of all coefficients by a field element. Note that from this perspective, this example
is a disguised version of Example 1.4. This example was a favourite in Linear Algebra I !
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1.2 Bases

Example 1.4 is much more general than it appears: Every finite-dimensional vector space
looks like Example 1.4. (The meaning of “finite-dimensional” will become apparent
shortly.) In Linear Algebra I we already verified that Kn is an example of a vector
space over K; in this section we go on to prove that that there are essentially no further
examples.

Definition 1.7. Let V be a vector space over the field K, and let v1, . . . , vn be vectors
in V .

(a) The vectors v1, v2, . . . , vn are linearly dependent if there are scalars c1, c2, . . . , cn,
not all zero, satisfying

c1v1 + c2v2 + · · ·+ cnvn = 0.

The vectors v1, v2, . . . , vn are linearly independent if they are not linearly depen-
dent. Equivalently, they are linearly independent if, whenever we have scalars
c1, c2, . . . , cn satisfying

c1v1 + c2v2 + · · ·+ cnvn = 0,

then necessarily c1 = c2 = · · · = cn = 0.

(b) The vectors v1, v2, . . . , vn are spanning if, for every vector v ∈ V , we can find
scalars c1, c2, . . . , cn ∈ K such that

v = c1v1 + c2v2 + · · ·+ cnvn.

(c) The list of vectors v1, v2, . . . , vn is a basis for V if it is linearly independent and
spanning.

Remark 1.8. Linear independence is a property of a list of vectors. A list containing
the zero vector is never linearly independent. Also, a list in which the same vector occurs
more than once is never linearly independent.

Definition 1.9. The span 〈v1, . . . , vn〉 of vectors v1, . . . , vn is the set of all vectors that
can be written as linear combinations of vectors from v1, . . . , vn:

〈v1, . . . , vn〉 =
{
c1v1 + c2v2 + · · ·+ cnvn : (c1, . . . , cn) ∈ Kn

}
.

So vectors v1, v2, . . . , vn are spanning if V = 〈v1, v2, . . . , vn〉. We will see later that
the span of vectors is a vector space (or you can verify it now from the definitions).

We will say “Let B = (v1, . . . , vn) be a basis for V ” to mean that the list of vectors
v1, . . . , vn is a basis, and that we refer to this list as B.

Definition 1.10. Let V be a vector space over the field K. We say that V is finite-
dimensional if we can find vectors v1, v2, . . . , vn ∈ V that form a basis for V .

Remark 1.11. In these notes (apart from in this chapter) we are only concerned with
finite-dimensional vector spaces. However, it should be noted that in various contexts, in
mathematics and physics, we encounter vector spaces which are not finite dimensional.
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A linearly dependent list of vectors has redundancy. It is possible to remove at least
one vector from the list while keeping the span of the list the same. Here is a systematic
way to do so.

Lemma 1.12. Suppose v1, . . . , vm is a linearly dependent list of vectors in V . There
exists an index i ∈ {1, . . . ,m} such that

(a) vi ∈ 〈v1, . . . , vi−1〉, and

(b) 〈v1, . . . , vi−1, vi+1, . . . , vm〉 = 〈v1, . . . , vm〉.

Proof. Since v1, . . . , vm are linearly dependent, there exist scalars c1, . . . , cm, not all zero,
such that c1v1 + · · ·+cmvm = 0. Choose i to be the largest index such that ci 6= 0. Then

vi = −
(c1
ci

)
v1 − · · · −

(ci−1
ci

)
vi−1 (1.1)

is an explicit expresion for vi in terms of v1, . . . , vi−1, demonstrating that vi ∈ 〈v1, . . . , vi−1〉.
This deals with item (a).

For item (b), suppose v is any vector in 〈v1, . . . , vm〉; by definition of span, v =
a1v1 + · · · + amvm, for some a1, . . . , am ∈ K. Now substitute for vi, using (1.1), to
obtain an expression for v as a linear combination of vectors in v1, . . . , vi−1, vi+1, . . . , vm.
This expression demonstrates that v ∈ 〈v1, . . . , vi−1, vi+1, . . . , vm〉. Since v was arbitrary,
item (b) follows.

Lemma 1.13. The length of any linearly independent list of vectors in V is less than
or equal to the length of any spanning list of vectors.

Proof. Suppose v1, . . . , vn are linearly independent and w1, . . . , wm are spanning. Start
with the list w1, . . . , wm and repeat the following step, which adds some vector vi to the
list and removes some wj . For the first step, add vector v1 to the front of the list to obtain
v1, w1, . . . , wm. Since the original list was spanning, the new one is linearly dependent
as well as spanning. By Lemma 1.12, we may remove some wj so that the remaining
list is still spanning. By reindexing some of the wj ’s we may write the resulting list as
v1, w2, w3, . . . , wm.

In general, suppose, after some number of steps, the procedure has reached the
spanning list v1, . . . , vk−1, wk, . . . , wm (where some reindexing of vectors in w1, . . . , wm
has taken place). Add the vector vk between vk−1 and wk in the list. As before, the new
list is linearly dependent, and we may apply Lemma 1.12 to remove one of the vectors in
the list while retaining the property that the list is spanning. The important observation
is the following: because v1, . . . , vk are linearly independent, the removed vector cannot
be one of the vi’s and so must be one of the wj ’s. (See part (a) of Lemma 1.12.)

At each step we add one vector and remove one vector keeping the length of the list
unchanged. We end up with a list of the form v1, . . . , vn, wn+1, . . . , wm. It follows that
m ≥ n.

Remark 1.14. The proof establishes a little more than we needed. In fact we have
essentially proved the Steinitz Exchange Lemma. (See, e.g., Wikipedia.)

Theorem 1.15. Let V be a finite-dimensional vector space over a field K. Then

(a) any two bases of V have the same number of elements;
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(b) any spanning list of vectors can be shortened (by removing some vectors) to a basis;

(c) any linearly independent list of vectors can be extended (by adding some vectors)
to a basis.

Proof. (a) Suppose B1 and B2 are any two bases for V , of lengths n1 and n2 respectively.
By Lemma 1.13, since B1 is linearly independent and B2 is spanning, n1 ≤ n2. Also,
since B2 is linearly independent and B1 is spanning, n2 ≤ n1.

(b) Suppose v1, . . . , vm is any spanning list for V . By Lemma 1.12, if this list is
linearly dependent, we can remove some vector vi from it, leaving a smaller spanning
list. By repeating this step we must eventually reach a basis.

(c) Suppose v1, . . . , vm is a linearly independent list of vectors. If this list is not
spanning then there must exist a vector vm+1 ∈ V such that vm+1 /∈ 〈v1, . . . , vm〉.
The extended list v1, . . . , vm, vm+1 remains linearly independent. (To see this, assume
to the contrary that there exist scalars a1, . . . , am+1, not all zero, such that a1v1 +
· · · + am+1vm+1 = 0. Since v1, . . . , vm are linearly independent, am+1 cannot be 0.
Then vm+1 = −(a0/am+1)v1 − · · · − (am/am+1)vn, and vm+1 ∈ 〈v1, . . . vm〉 contrary to
assumption.) By repeating this step we must eventually reach a basis. (Note that the
process must terminate, since the vector space V is finite dimensional.)

Definition 1.16. The number of elements in a basis of a vector space V is called the
dimension of V . Theorem 1.15 assures us that this parameter is well defined.

We will say “an n-dimensional vector space” instead of “a finite-dimensional vector
space whose dimension is n”. We denote the dimension of V by dim(V ).

Remark 1.17. We allow the possibility that a vector space has dimension zero. Such
a vector space contains just one vector, the zero vector 0; a basis for this vector space
consists of the empty set.

Since the notion of basis of a vector space is so fundamental, it is useful in what
follows to note some equivalent characterisations. These alternatives are not too difficult
to verify, given Theorem 1.15.

Proposition 1.18. The following five conditions are equivalent for a list B of vectors
from vector space V of dimension n over K

(a) B is a basis;

(b) B is a maximal linearly independent list (that is, if we add any vector to the list,
then the resulting list is linearly dependent);

(c) B is a minimal spanning list (that is, if we remove any vector from the list, then
the result is no longer spanning);

(d) B is linearly independent and has length n;

(e) B is spanning and has length n.
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1.3 Coordinate representations

Now let V be an n-dimensional vector space over K. This means that there is a basis
v1, v2, . . . , vn for V . Since this list of vectors is spanning, every vector v ∈ V can be
expressed as

v = c1v1 + c2v2 + · · ·+ cnvn

for some scalars c1, c2, . . . , cn ∈ K. These scalars are unique. For suppose that we also
had

v = c′1v1 + c′2v2 + · · ·+ c′nvn

for scalars c′1, c
′
2 . . . , c

′
n. Subtracting these two expressions, we obtain

0 = (c1 − c′1)v1 + (c2 − c′2)v2 + · · ·+ (cn − c′n)vn.

Now the vectors v1, v2 . . . , vn are linearly independent; so this equation implies that
c1 − c′1 = 0, c2 − c′2 = 0, . . . , cn − c′n = 0; that is,

c1 = c′1, c2 = c′2, . . . cn = c′n.

In light of this discussion, we can make the following definition.

Definition 1.19. Let V be a vector space with a basis B = (v1, v2, . . . , vn). If v =
c1v1 + c2v2 + · · ·+ cnvn, then the coordinate representation of v relative to the basis B is

[v]B =


c1
c2
...
cn

 .
In order to save space on the paper, we often write this as

[v]B =
[
c1 c2 . . . cn

]>
,

where the symbol > is read “transpose”.

Remark 1.20. In this course, the notation vi, wi, etc., stands for the ith vector in a
sequence of vectors. It will not be used to denote the ith coordinate of the vector v (which
would be a scalar). We’ll use different letters for the vector and for its coordinates.

Now it is easy to check that, when we add two vectors in V , we add their coordinate
representations in Kn (using coordinatewise addition); and when we multiply a vector v ∈
V by a scalar c, we multiply its coordinate representation by c. In other words, addition
and scalar multiplication in V translate to the same operations on their coordinate
representations. This is why we only need to consider vector spaces of the form Kn,
as in Example 1.4. Here is how the result would be stated in the language of abstract
algebra:

Theorem 1.21. Any n-dimensional vector space over a field K is isomorphic to the
vector space Kn.
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Note that the coordinate representation of a vector is always relative to a basis. The
choice of basis is essentially arbitrary, and the development of the theory of vector spaces
is cleaner if we avoid introducing a specific basis. (In this module, we only go half-way in
this direction.) However, in order to compute with vectors and linear transformations,
it is inevitable that we will be working relative to a basis. Different bases give rise
to different coordinate representations, and it is important to know how to transform
between them.

The elements of the vector space Kn are all the n-tuples of scalars from the field K.
There are two different ways we could decide to represent an n-tuple: as a row, or as a
column. Thus, the vector with components 1, 2 and −3 could be represented as a row
vector [

1 2 −3
]

or as a column vector  1
2
−3

 .
Following Linear Algebra I and most (all?) textbooks on vector spaces, we stick to

column vectors. However, presumably though a historical accident, vectors in coding
theory are generally written as row vectors, and Cartesian coordinates for points 2- or
3-dimensional Euclidean space are also written horizontally. The choice of row or column
vectors makes some technical differences in the statements of the theorems, so care is
needed.

One reason to prefer column vectors in linear algebra is that we can represent a
system of linear equations, say

2x+ 3y = 5,

4x+ 5y = 9,

in matrix form as [
2 3
4 5

] [
x
y

]
=

[
5
9

]
.

This is neater and used less space then the opposite convention. In any case, we will use
column vectors in these notes.

Let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n) be different bases of an n-dimensional

vector space V over the field K. Recall from Linear Algebra I that there is an n × n
transitition matrix PB,B′ that translates coordinate representations relative to B′ to
coordinate representations relative to B. Specifically, [v]B = PB,B′ [v]B′ for all vectors
v ∈ V . In this course, we will see several ways in which matrices arise in linear algebra.
Here is the first occurrence: matrices arise as transition matrices between bases of a
vector space.

Let I denote the identity matrix, the matrix having 1s on the main diagonal and 0s
everywhere else. Given a matrix P , we denote by P−1 the inverse of P , that is to say,
the matrix Q satisfying PQ = QP = I. Not every matrix has an inverse: we say that P
is invertible or non-singular if it has an inverse.

We recall from Linear Algebra I some facts about transition matrices, which come
directly from the definition, using uniqueness of the coordinate representation. Let
B,B′,B′′ be bases of the vector space V . Then
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(a) PB,B = I,

(b) PB′,B = (PB,B′)
−1; in particular, the transition matrix is invertible, and

(c) PB,B′′ = PB,B′PB′,B′′ .

To see that (b) holds, let’s transform the coordinate representation of u relative to
basis B by multiplication by PB′,B:

PB′,B[u]B = PB′,B
(
PB,B′ [u]B′

)
=
(
P−1B,B′PB,B′

)
[u]B′ = [u]B′ .

We obtain the coordinate representation of u relative to basis B′, as desired.
To see that (c) holds, transform the coordinate representation of u relative to basis B′′

by multiplication by PB,B′′ :

PB,B′′ [u]B′′ =
(
PB,B′PB′,B′′

)
[u]B′′ = PB,B′

(
PB′,B′′ [u]B′′

)
= PB,B′ [u]B′ = [u]B.

We obtain the coordinate representation of u relative to basis B, as desired.

Example 1.22. Suppose that B = (v1, v2) and B′ = (v′1, v
′
2) are different bases of a

2-dimensional vector space V over R. Since B is a basis of V we can express the basis
vectors of B′ in terms of B. Suppose, in fact, that

v′1 = v1 + v2 and v′2 = 2v1 + 3v2.

Then the transition matrix from B′ to B is

PB,B′ =

[
1 2
1 3

]
,

Note that the first column of PB,B′ is just [v′1]B, i.e., the coordinate representation of the
vector v′1 relative to the basis B, and the second column is just [v′2]B. This gives an easy
way to write down PB,B′ .

Suppose that the coordinate representation of some vector u relative to the basis B′
is [u]B′ =

[
a b

]ᵀ
. Then, from the definition of transition matrix, we should have

[u]B =

[
1 2
1 3

] [
a
b

]
=

[
a+ 2b
a+ 3b

]
.

We can check the result as follows:

u = av′1 + bv′2 = a(v1 + v2) + b(2v1 + 3v2) = (a+ 2b)v1 + (a+ 3b)v2.

So indeed [u]B =
[
a+ 2b a+ 3b

]ᵀ
as expected.

The transition matrix from B to B′ is the inverse of PB,B′ :

PB′,B = P−1B,B′ =

[
1 2
1 3

]−1
=

[
3 −2
−1 1

]
.

Finally, suppose B′′ = (v′′1 , v
′′
2) is a third basis of V , related to B′ by v′′1 = 3v′1 − 2v′2

and v′′2 = −2v′1 + v′2. Then

PB′,B′′ =

[
3 −2
−2 1

]
,

and

PB,B′′ = PB,B′PB′,B′′ =

[
1 2
1 3

] [
3 −2
−2 1

]
=

[
−1 0
−3 1

]
.

Note that this example provides additional insight into why matrix multiplication
is defined the way it is: in this instance, it provides the correct rule for composing
transition matrices.



10 CHAPTER 1. VECTOR SPACES

1.4 Subspaces and direct sums

Definition 1.23. Suppose V is a vector space over K. We say that U is a subspace of
V if U is a subset of V , and U is itself a vector space (with respect the same operations
of vector addition and scalar multiplication).

Lemma 1.24. Suppose U is a non-empty subset of a vector space V . The following
conditions are equivalent:

(a) U is a subspace of V ;

(b) U is closed under vector addition and scalar multiplication. (That is to say, u+u′ ∈
U and cu ∈ U for any vectors u, u′ ∈ U and scalar c ∈ K.)

Proof. Since any vector space is closed under vector addition and scalar multiplication,
it is clear that (a) implies (b).

Suppose now that (b) holds. For any vector u ∈ U , we know that −u = (−1)u is
in U (by closure under scalar multiplication). Also, since U is non-empty, the additive
identity 0 = u − u is in U . So (b) assures us that the operations of vector addition,
taking the inverse of a vector, and scalar multiplication all make sense in U ; moreover,
U contains an additive identity. The vector space axioms (VA) and (VM) for U are
inherited from V : since they hold in the larger set, they certainly hold in the smaller.
(Go through all five axioms and convince yourself of this fact.). Assertion (a) follows.

Subspaces can be constructed in various ways:

(a) Recall that the span of vectors v1, . . . , vk ∈ V is the set

〈v1, v2, . . . , vk〉 = {c1v1 + c2v2 + · · ·+ ckvk : c1, . . . , ck ∈ K}.

This is a subspace of V . Moreover, vectors v1, . . . , vk are spanning in this subspace.

(b) Let U and W be subspaces of V . Then

– the intersection U ∩W is the set of all vectors belonging to both U and W ;

– the sum U +W is the set {u+w : u ∈ U,w ∈W} of all sums of vectors from
the two subspaces.

Both U ∩W and U +W are subspaces of V .

We will just check (a) here, leaving (b) as an exercise. By Lemma 1.24, we just
need to check closure under vector addition and scalar multiplication. So suppose v =
c1v1 + · · · + ckvk and v′ = c′1v1 + · · · + c′kvk are vectors in the span 〈v1, . . . , vk〉 of
v1, . . . , vk ∈ V . Then v + v′ = (c1v1 + · · · + ckvk) + (c′1v1 + · · · + c′kvk) = (c1 + c′1)v1 +
· · · + (ck + c′k)vk, which is clearly also in the span 〈v1, . . . , vk〉. Also for any a ∈ K, we
have av = a(c1v1) + · · · + a(ckvk) = (ac1)v1 + · · · + (ack)vk, which is again clearly in
〈v1, . . . , vk〉.

Theorem 1.25. Let V be a vector space over K. For any two subspaces U and W of
V , we have

dim(U ∩W ) + dim(U +W ) = dim(U) + dim(W ).
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Proof. Let v1, . . . , vi be a basis for U ∩W . By Theorem 1.15(c) we can extend this basis
to a basis v1, . . . , vi, u1, . . . , uj of U and a basis v1, . . . , vi, w1, . . . , wk of W . If we can
show that v1, . . . , vi, u1, . . . , uj , w1, . . . , wk is a basis of U + W then we are done, since
then

dim(U ∩W ) = i, dim(U) = i+ j, dim(W ) = i+ k, and dim(U +W ) = i+ j + k,

and both sides of the identity we are aiming to prove are equal to 2i+ j + k.
Since every vector in U (respectively W ) can be expressed as a linear combination

of v1, . . . , vi, u1, . . . , uj (respectively v1, . . . , v1, w1, . . . , wk), it is clear that the list of
vectors v1, . . . , v1, u1, . . . , uj , w1, . . . , wk spans U +W . So we just need to show that the
list v1, . . . , v1, u1, . . . , uj , w1, . . . , wk is linearly independent.

Consider any linear relationship

a1v1 + · · ·+ aivi + b1u1 + · · ·+ bjuj + c1w1 + · · ·+ ckwk = 0;

we need to show that a1, . . . , ai, b1, . . . , bj , c1, . . . , ck are all zero. Writing

c1w1 + · · ·+ ckwk = −a1v1 − · · · − aivi − b1u1 − · · · − bjuj ,

we see that c1w1 + · · ·+ ckwk ∈ U . But, by construction, c1w1 + · · ·+ ckwk ∈ W , so in
fact c1w1 + · · ·+ ckwk ∈ U ∩W . Since v1, . . . , vi is a basis for U ∩W we have

c1w1 + · · ·+ ckwk = d1v1 + · · · divi,

for some scalars d1, . . . di. But this implies that c1 = · · · = ck = 0 (and, incidentally, d1 =
· · · = di = 0), since v1, . . . , vi, w1, . . . , wk is a basis for W and hence linearly independent.
A similar argument establishes b1 = · · · = bk = 0. But now a1 = · · · = ai = 0, since the
list v1, . . . , vi is linearly independent.

An important special case occurs when U ∩W is the zero subspace {0}. In this case,
the sum U +W has the property that each of its elements has a unique expression in the
form u + w, for u ∈ U and w ∈ W . For suppose that we had two different expressions
for a vector v, say

v = u+ w = u′ + w′, for some u, u′ ∈ U and w,w′ ∈W.

Then

u− u′ = w′ − w.

But u− u′ ∈ U , and w′ − w ∈W , and hence

u− u′ = w′ − w ∈ U ∩W = {0}.

It follows that u = u′ and w = w′; that is, the two expressions for v are not different
after all! In this case we say that U + W is the direct sum of the subspaces U and W ,
and write it as U ⊕W . Note that

dim(U ⊕W ) = dim(U) + dim(W ).

The notion of direct sum extends to more than two summands, but is a little com-
plicated to describe. We state a form which is sufficient for our purposes.
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Definition 1.26. Let U1, . . . , Ur be subspaces of the vector space V . We say that V is
the direct sum of U1, . . . , Ur, and write

V = U1 ⊕ · · · ⊕ Ur,

if every vector v ∈ V can be written uniquely in the form v = u1 + · · ·+ ur with ui ∈ Ui
for i = 1, . . . , r.

There is an equivalent characterisation of direct sum that will be useful later.

Lemma 1.27. Suppose U1, . . . , Ur are subspaces of V , and V = U1 + · · ·+Ur. Then the
following are equivalent:

(a) V is the direct sum of U1, . . . , Ur.

(b) For all vectors u1 ∈ U1, . . . , ur ∈ Ur, it is the case that u1 + · · · + ur = 0 implies
u1 = · · · = ur = 0.

Proof. (a) =⇒ (b). Suppose u1 + · · ·+ ur = 0, where u1 ∈ U1, . . . , ur ∈ Ur. Certainly
u1 = · · · = ur = 0 is one way this situation may occur. But the definition of direct sum
tells us that such an expression is unique. So, indeed, u1 = · · · = ur = 0 as required.

(b) =⇒ (a). Suppose v ∈ V and that v = u1 + · · · + ur and v = u′1 + · · · + u′r are
two ways of expressing v, with u1, u

′
1 ∈ U1, . . . , ur, u

′
r ∈ Ur. Then

(u1 − u′1) + · · ·+ (ur − u′r) = (u1 + · · ·+ ur)− (u′1 + · · ·+ u′r) = v − v = 0.

From condition (b), we deduce that u1−u′1 = · · · = ur−u′r = 0. Thus, u1 = u′1, . . . , ur =
u′r as required.

Note the similarity between the condition described in Lemma 1.27(b) and the def-
inition of linear independence. In fact, v1, . . . , vn is a basis for a vector space V if and
only if V = 〈v1〉 ⊕ · · · ⊕ 〈vn〉. In a sense, a direct sum generalises the concept of basis.

Lemma 1.28. If V = U1 ⊕ · · · ⊕ Ur, then

(a) if Bi is a basis for Ui for i = 1, . . . , r, then B = (B1, · · · ,Br), i.e., the concatenation
of the lists B1, . . . ,Br, is a basis for V ;

(b) dim(V ) = dim(U1) + · · ·+ dim(Ur).

Proof. Since every vector v ∈ V may be expressed as v = u1 + · · ·+ur with ui ∈ Ui, and
every ui ∈ Ui may be expressed as a linear combination of basis vectors in Bi, we see
that V is contained in the span of B. So we just need to verify that the list B is linearly
independent.

Let di = dim(Ui) and Bi = (ui,1, . . . , ui,di), for 1 ≤ i ≤ r, be an explicit enumeration
of the basis vectors Bi. Suppose that some linear combination of the basis vectors B
sums to 0. We can express this linear combination as u1 + · · · + ur = 0, where ui =
ai,1ui,1 + · · ·+ ai,diui,di for some scalars ai,1, . . . , ai,di ∈ K.

By Lemma 1.27, ui = 0 for all 1 ≤ i ≤ r. Then, since Bi is a basis and hence linearly
independent, ai,1 = · · · = ai,di = 0. Since the linear combination of basis vectors B was
arbitrary, we deduce that B is linearly independent.

This deals with part (a). Part (b) follows immediately, since

dim(V ) = |B| = |B1|+ · · ·+ |Br| = dim(U1) + · · ·+ dim(Ur).
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Remark 1.29. The results in this chapter apply to all finite dimensional vector spaces
over K, regardless of the field K. In our proofs, we used nothing beyond the general
axioms of a field. In some later chapters we need restrict our attention to particular
fields, typically R or C.

Summary

• A vector space is a mathematical structure that can be defined axiomatically.

• A basis is a list of vectors that is linearly independent (not redundant) and spanning
(sufficient).

• A vector space is finite dimensional if it has a basis of finite cardinality. Every
basis of a finite-dimensional vector space V has the same cardinality (Exchange
Lemma). The cardinality of any basis of V is the dimension of V .

• There are many possible characterisations of a basis; it is good to know several
(Proposition 1.18).

• Having chosen a basis for a vector space, every vector has a unique coordinate
representation relative to that basis.

• Different bases lead to different coordinate representations, and we can translate
between them using transition matrices.

• A subspace of a vector space V is a subset U of V that is itself a vector space. To
verify that a subset U is a subspace, we just need to check non-emptyness together
with closure under vector addition and scalar multiplication.

• We can combine subspaces through the operations of sum and intersection. The
dimension of a subspace is a measure of the “size” of the subspace, which behaves in
some ways like the cardinality of a finite set (even though the subspaces themselves
are generally infinite). Refer to Theorem 1.25.

• Direct sums are particularly nice sums of vector spaces. A direct sum corresponds
to a decomposition of a vector space with no redundancy.
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Chapter 2

Matrices

In this chapter, we review matrix algebra from Linear Algebra I, consider row and column
operations on matrices, and define the rank of a matrix. Along the way prove that the
“row rank” and “column rank” defined in Linear Algebra I are in fact equal.

2.1 Matrix algebra

Definition 2.1. A matrix of size m × n over a field K, where m and n are positive
integers, is an array with m rows and n columns, where each entry is an element of K.
The matrix will typically be denoted by an upper case letter, and its entries by the
corresponding lower case letter. Thus, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry in row i
and column j of matrix A is denoted by aij , and referred to as the (i, j) entry of A.

Example 2.2. A column vector in Kn can be thought of as a n× 1 matrix, while a row
vector is a 1× n matrix.

Definition 2.3. We define addition and multiplication of matrices as follows.

(a) Let A = (aij) and B = (bij) be matrices of the same size m × n over K. Then
the sum C = A + B is defined by adding corresponding entries of A and B; thus
C = (cij) is given by

cij = aij + bij .

(b) Let A be an m × n matrix and B an n × p matrix over K. Then the product
C = AB is the m × p matrix whose (i, j) entry is obtained by multiplying each
element in the ith row of A by the corresponding element in the jth column of B
and summing:

cij =
n∑
k=1

aikbkj .

Remark Note that we can only add or multiply matrices if their sizes satisfy appro-
priate conditions. In particular, for a fixed value of n, we can add and multiply n × n
matrices. Technically, the set Mn(K) of n × n matrices over K together with matrix
addition and multiplication is a ring (with identity). The zero matrix, which we denote
by O, is the matrix with every entry zero, while the identity matrix, which we denote
by I, is the matrix with entries 1 on the main diagonal and 0 everywhere else. Note that
matrix multiplication is not commutative: BA is usually not equal to AB.

15
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We already met matrix multiplication in Section 1 of the notes: recall that if PB,B′

denotes the transition matrix between two bases of a vector space, then

PB,B′PB′,B′′ = PB,B′′ .

2.2 Row and column operations

Given an m × n matrix A over a field K, we define certain operations on A called row
and column operations.

Definition 2.4. Elementary row operations. There are three types:

Type 1. Add a multiple of the jth row to the ith, where j 6= i.

Type 2. Multiply the ith row by a non-zero scalar.

Type 3. Interchange the ith and jth rows, where j 6= i.

Elementary column operations. There are three types:

Type 1. Add a multiple of the jth column to the ith, where j 6= i.

Type 2. Multiply the ith column by a non-zero scalar.

Type 3. Interchange the ith and jth columns, where j 6= i.

We can describe the elementary row and column operations in a different way. For
each elementary row operation on an m×n matrix A, we define a corresponding elemen-
tary matrix by applying the same operation to the m×m identity matrix I. Similarly
for each elementary column operation we define a corresponding elementary matrix by
applying the same operation to the n× n identity matrix.

We don’t have to distinguish between rows and columns for our elementary matrices:
each matrix can be considered either as a row or a column operation. This observation
will be important later. For example, the matrix1 2 0

0 1 0
0 0 1


corresponds to the elementary column operation of adding twice the first column to the
second, or to the elementary row operation of adding twice the second row to the first.
For the other types, the matrices for row operations and column operations are identical.

Lemma 2.5. The effect of an elementary row operation on a matrix is the same as that
of multiplying on the left by the corresponding elementary matrix. Similarly, the effect
of an elementary column operation is the same as that of multiplying on the right by the
corresponding elementary matrix.

The proof of this lemma is somewhat tedious calculation.

Example 2.6. Let A be a 2×3 real matrix. The matrices corresponding to the elemen-
tary row operation of subtracting 4 times row 1 from row 2, and the elementary column
operation of subtracting twice column 1 from column 2 are[

1 0
−4 1

]
and

1 −2 0
0 1 0
0 0 1

 ,
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respectively. If A is the matrix

A =

[
1 2 3
4 5 6

]
,

then the matrix that results from applying the above two elementary operations ought
to be [

1 0
−4 1

] [
1 2 3
4 5 6

]1 −2 0
0 1 0
0 0 1

 =

[
1 0 3
0 −3 −6

]
.

You should check that this is indeed the case.

An important observation about the elementary operations is that each of them can
have its effect undone by another elementary operation of the same kind, and hence
every elementary matrix is invertible, with its inverse being another elementary matrix
of the same kind. For example, the effect of adding twice the first column to the second
is undone by adding −2 times the first column to the second, so that[

1 2
0 1

]−1
=

[
1 −2
0 1

]
.

2.3 Rank

Recall from Linear Algebra I the definitions of row space, column space, row rank and
column rank of a matrix.

Definition 2.7. Let A be an m × n matrix over a field K. The row space of A is the
vector space spanned by rows of A and the column space the vector space spanned by
columns. The row rank of A is the dimension of the row space, and the column rank of
A the dimension of the column space of A. (We regard columns or rows as vectors in
Km and Kn respectively.)

Remark 2.8. Since a maximal linearly independent set of vectors is a basis, we could
alternatively define row rank as the maximum number of linearly independent rows, and
the column rank analogously.

Recall also that elementary row operations preserve row rank, and elementary column
operations preserve column rank. In Linear Algebra I, the rank of a matrix was defined
as its row rank. Why? The definition privileges rows over columns, and hence seems
somewhat arbitrary. In any case, why should the dimension of the row space be a
significant parameter?

The next lemma goes beyond Linear Algebra I by showing that elementary row
operations preserve column rank, not just row rank.

Lemma 2.9. (a) Elementary column operations preserve the column space of a matrix
(and hence don’t change the column rank).

(b) Elementary row operations preserve the row space of a matrix (and hence don’t
change the row rank).

(c) Elementary row operations don’t change the column rank of a matrix.

(d) Elementary column operations don’t change the row rank of a matrix.
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Proof. First note that if A is an m×n matrix and u = [c1, c2, . . . , cn]> an n-vector, then
Au can be thought of as expressing a linear combination of the columns of A. Specifically,
Au = c1v1 + c2v2 + · · · + cnvn, where m-vectors v1, v2, . . . , vn are the n columns of A,
taken in order.

(a) Suppose A′ is obtained from matrix A by some elementary column operation.
Equivalently, A′ = AC for some elementary matrix C. Consider any vector v in
the column space of A′; as we observed, the condition for v to be in the column
space of A′ is that there exists a vector u such that v = A′u. Then v = A′u =
(AC)u = A(Cu) = Au′, where u′ = Cu. Thus v also is in the column space
of A. It follows that the column space of A′ is contained in the column space of A.
Finally, elementary column operations are invertible, so the inclusion holds also in
the other direction. We deduce that the column spaces of A and A′ are equal.

(b) Follows by symmetry from (a).

(c) Suppose A′ is obtained from matrix A by some elementary row operation. Equiv-
alently, A′ = RA for some elementary matrix R. Consider any linear dependancy
among the columns of A, say Au = 0. Then A′u = (RA)u = R(Au) = R 0 = 0 and
so the same linear dependency exists among the columns of A′. Let S ⊆ {1, . . . , n}
be a subset of columns. If the columns of A indexed by S are linearly dependent
then the same columns in A′ are linearly dependent. Equivalently, if the S-indexed
columns of A′ are linearly independent, then so are the S-indexed columns of A.
Let k be the column rank of A′. Choose a basis for the column space among the
columns of A′. These columns are linearly independent in A′ and hence also in A.
It follows that the rank of the column space of A is at least k. Thus the column
rank of A is at least as large as that of A′. As before, column operations are
invertible, so the inequality holds also in the other direction.

(d) Follows from (c) by symmetry.

It is important to note that elementary row operations do not in general preserve the
column space of a matrix, only the column rank. Provide a counterexample to illustrate
this fact. (An elementary row operation on a 2× 2 matrix is enough for this purpose.)

By applying elementary row and column operations, we can reduce any matrix to a
particularly simple form:

Theorem 2.10. Let A be an m × n matrix over the field K. Then it is possible to
transform A by elementary row and column operations into a matrix D = (dij) of the
same size as A, with the following special form: there is an r ≤ min{m,n}, such that
dii = 1 for 1 ≤ i ≤ r, and dij = 0 otherwise.

The matrix D (and hence the number r), is uniquely defined: if A can be reduced
to two matrices D and D′, both of the above form, by different sequences of elementary
operations then D = D′.

Definition 2.11. The number r in the above theorem is called the rank of A; while a
matrix of the form described for D is said to be in the canonical form for equivalence.
We can write the canonical form matrix in “block form” as

D =

[
Ir O
O O

]
,
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where Ir is an r× r identity matrix and O denotes a zero matrix of the appropriate size
(that is, r × (n− r), (m− r)× r, and (m− r)× (n− r) respectively for the three Os).
Note that some or all of these Os may be missing: for example, if r = m, we just have[
Im O

]
.

Proof of Theorem 2.10. We first outline the proof that the reduction is possible. The
proof is by induction on the size of the matrix A = (aij). Specifically, we assume as
inductive hypothesis that any smaller matrix can be reduced as in the theorem. Let the
matrix A be given. We proceed in steps as follows:

• If A = O (the all-zero matrix), then the conclusion of the theorem holds, with
r = 0; no reduction is required. So assume that A 6= O.

• If a11 6= 0, then skip this step. If a11 = 0, then there is a non-zero element aij
somewhere in A; by swapping the first and ith rows, and the first and jth columns,
if necessary (Type 3 operations), we can bring this entry into the (1, 1) position.

• Now we can assume that a11 6= 0. Multiplying the first row by a−111 , (row operation
Type 2), we obtain a matrix with a11 = 1.

• Now by row and column operations of Type 1, we can assume that all the other
elements in the first row and column are zero. For if a1j 6= 0, then subtracting a1j
times the first column from the jth gives a matrix with a1j = 0. Repeat this until
all non-zero elements have been removed.

• Now let A′ be the matrix obtained by deleting the first row and column of A.
Then A′ is smaller than A and so, by the inductive hypothesis, we can reduce A′

to canonical form by elementary row and column operations. The same sequence
of operations applied to A now finishes the job.

Suppose that we reduce A to canonical form D by elementary operations, where D
has r 1s on the diagonal. These elementary operations don’t change the row or column
rank, by Lemma 2.9. Therefore, the row ranks of A and D are equal, and their column
ranks are equal. But it is not difficult to see that, if

D =

[
Ir O
O O

]
,

then the row and column ranks of D are both equal to r. It doesn’t matter which
elementary operations we use to reduce to canonical form, we will always obtain the
same matrix D. So the theorem is proved.

Corollary 2.12. For any matrix A, the row rank, the column rank, and the rank are
all equal. In particular, the rank is independent of the row and column operations used
to compute it.

Example 2.13. Here is a small example. Let

A =

[
1 2 3
4 5 6

]
.

We have a11 = 1, so we can skip the first three steps. So first we subtract 4 times the
first row from the second, then subtract twice the first column from the second, and
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then 3 times the first column from the third. These steps yield the following sequence
of matrices

A =

[
1 2 3
4 5 6

]
R2−4R1−−−−−→

[
1 2 3
0 −3 −6

]
C2−2C1−−−−−→

[
1 0 3
0 −3 −6

]
C3−3C1−−−−−→

[
1 0 0
0 −3 −6

]
.

At this point we have successfully set to zero the first row and column of the matrix,
except for the top left entry. From now on, we have to operate on the smaller matrix[
−3 −6

]
, but we continue to apply the operations to the large matrix.

Multiply the second row of the matrix by −1
3 and finally subtract twice the second

column from the thord. Picking up from where we left off, this yields the sequence[
1 0 0
0 −3 −6

]
− 1

3
R2−−−−→

[
1 0 0
0 1 2

]
C3−2C2−−−−−→

[
1 0 0
0 1 0

]
= D.

For compactness, se are using (as in Linear Algebra I ) shorthand such as R2 − 4R1 for
R2 := R2−4R1 and −1

3R2 for R2 := −1
3R2. We have finished the reduction to canonical

form, and we conclude that the rank of the original matrix A is equal to 2.

Theorem 2.14. For any m × n matrix A there are invertible matrices P and Q of
sizes m ×m and n × n respectively, such that D = PAQ is in the canonical form for
equivalence. The rank of A is equal to the rank of D. Moreover, P and Q are products
of elementary matrices.

Proof. We know from Theorem 2.10 that there is a sequence of elementary row and
column operations that reduces A to D. These operations correspond to certain elemen-
tary matrices. Take the matrices R1, R2, . . . , Rs corresponding to the row operations
and multiply them together (right to left). This is the matrix P = RsRs−1 · · ·R1. Take
the matrices C1, C2, . . . , Ct corresponding to the column operations and multiply them
together (left to right). This is the matrix Q = C1C2 . . . Ct.

Example 2.15. We illustrate the construction of P and Q in the above proof, in a
continuation of our previous example. In order, here is the list of elementary matrices
corresponding to the operations we applied to A. (Here, 2×2 matrices are row operations
while 3× 3 matrices are column operations).

R1 =

[
1 0
−4 1

]
, C1 =

1 −2 0
0 1 0
0 0 1

 , C2 =

1 0 −3
0 1 0
0 0 1

 ,
R2 =

[
1 0
0 −1/3

]
, C3

1 0 0
0 1 −2
0 0 1

 .
So the whole process can be written as a matrix equation:

D = R2R1AC1C2C3 =

[
1 0
0 −1/3

] [
1 0
−4 1

]
A

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1


or more simply

D =

[
1 0

4/3 −1/3

]
A

1 −2 1
0 1 −2
0 0 1

 ,
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where, as before,

A =

[
1 2 3
4 5 6

]
, D =

[
1 0 0
0 1 0

]
.

There is a slightly easier (for humans) method for constructing the matrices P and
Q, which we examined in the lectures. Let’s recall how it works in the context of
computing the matrix Q. The idea is to use the same column operations we applied
to A, but starting instead with the 3× 3 identity matrix I3 :

I3 =

1 0 0
0 1 0
0 0 1

 C2−2C1−−−−−→

1 −2 0
0 1 0
0 0 1

 C3−3C1−−−−−→

1 −2 −3
0 1 0
0 0 1

 C3−2C2−−−−−→

1 −2 1
0 1 −2
0 0 1

 = Q.

Think about why this method works. It is doing essentially the same calculation, but
arranging it in a more human-friendly way.

Definition 2.16. The m× n matrices A and B are said to be equivalent if B = PAQ,
where P and Q are invertible matrices of sizes m×m and n× n respectively.

Remark 2.17. The relation “equivalence” defined above is an equivalence relation on
the set of all m× n matrices; that is, it is reflexive, symmetric and transitive.

Corollary 2.18. An n× n matrix is invertible if and only if it has rank n.

Proof. Suppose that n × n matrices A and B are equivalent. Then A is invertible if
and only if B is invertible. (If A is invertible and B = PAQ, then Q−1A−1P−1 is the
inverse of B, and similarly in the other direction.) We know from Theorem 2.14 that
every matrix A is equivalent to some matrix D in the canonical form for equivalence.
Moreover the rank of A is equal to the rank of D. Thus, we have the the following chain
of implications:

A is invertible ⇐⇒ D is invertible ⇐⇒ D = In ⇐⇒ A has rank n.

Corollary 2.19. Every invertible square matrix is a product of elementary matrices.

Proof. If A is an invertible n × n matrix, then it has rank n and its canonical form is
the identity matrix In. Thus there are invertible matrices P and Q, each a product of
elementary matrices, such that

PAQ = In.

From this we deduce that

A = P−1InQ
−1 = P−1Q−1.

Since the elementary matrices are closed under taking inverses, the above is an expression
for A as a product of elementary matrices.

Corollary 2.20. If A is an invertible n×n matrix, then A can be transformed into the
identity matrix by elementary column operations alone (or by elementary row operations
alone).
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Proof. We observed, when we defined elementary matrices, that they can represent either
elementary column operations or elementary row operations. In the previous corollary,
we saw that A can be written as a product of elementary matrices, say A = C1C2 . . . Ct.
We can transform A to the identity by multiplying on the right by C−1t , . . . , C−12 , C−11

in turn. This is equivalent to applying a sequence of column operations. Equally, we
can transform A to the identity by multiplying on the left by C−11 , C−12 , . . . , C−1t in turn.
This is equivalent to applying a sequence of row operations.

Theorem 2.21. Two m × n matrices are equivalent if and only if they have the same
rank.

Proof. Suppose A and B are (not necessarily square) equivalent matrices, i.e., B = PAQ
for some invertible matrices P and Q. By Corollary 2.19 we can write P and Q as the
product of elementary matrices. It follows that we can transform A to B by elementary
row and column operations, and hence the ranks of A and B are the same. (Elementary
operations preserve the rank.)

Conversely, if the ranks of A and B are the same then we can transform one to the
other (e.g., via the common canonical form D) by elementary row and column operations,
and hence A and B are equivalent.

When mathematicians talk about a “canonical form” for an equivalence relation,
they mean a set of objects which are representatives of the equivalence classes: that is,
every object is equivalent to a unique object in the canonical form. Theorem 2.21 says
that in this case there are min{m,n}+ 1 equivalence classes, and the canonical form for
equivalence is a canonical form in this sense.

Remark 2.22. As with Chapter 1, the results in this chapter apply to all fields K.

Summary

• Matrices (not necessarily square) can be acted upon by elementary row and column
operations. The elementary row operations are of three types, as are the elementary
column operations.

• To each elementary row operation on an m × n matrix A there corresponds an
elementary m × m matrix R. Multiplying A on the left by R is equivalent to
applying the row operation. Similarly, to each elementary column operation there
is an n × n matrix C such that multiplication on the right by C is equivalent to
applying the column operation.

• The row (column) space of a matrix is the vector space spanned by the rows
(columns) of the matrix. The row (column) rank is the dimension of the row
(column) space.

• Row operations preserve the row space and leave the column rank unchanged.
Ditto with rows and columns interchanged.

• Any matrix can be reduced to the canonical form for equivalence by elementary
row and column operations. As a corollary, row rank and column rank are equal,
so we can just talk about “rank”.
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• An n × n matrix is invertible iff it has rank n. We also say in this case that the
matrix is non-singular. A non-singular matrix can be reduced to canonical form
[for equivalence] using just elementary row operations (or just column operations).

• A non-singular matrix can be written as the product of elementary matrices.
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Chapter 3

Determinants

We recall the Leibniz formula for the determinant of a square matrix, and show that
the function it defines is the unique function on square matrices satisfying certain nice
properties. This provides an axiomatic definition of the determinant, and demystifies, to
a certain extent, why the determinant is defined the way it is. We examine methods of
calculating the determinant and some of its properties. We study two polynomials asso-
ciated with a matrix, the minimal and characteristic polynomials. Finally we prove the
Cayley-Hamilton Theorem, that states that every matrix satisfies its own characteristic
equation.

The determinant is a function defined on square matrices; its value is a scalar. It
has some very important properties: perhaps most important is the fact that a matrix
is invertible if and only if its determinant is not equal to zero.

We denote the determinant function by det, so that det(A) is the determinant of A.
For a matrix written out as an array, the determinant is denoted by replacing the square
brackets by vertical bars:

det

[
1 2
3 4

]
=

∣∣∣∣1 2
3 4

∣∣∣∣ .
3.1 Definitions: explicit and axiomatic

The formula for the determinant involves some background notation.

Definition 3.1. A permutation of {1, . . . , n} is a bijection from the set {1, . . . , n} to
itself. The symmetric group Sn consists of all permutations of the set {1, . . . , n}. (There
are n! such permutations.) For any permutation π ∈ Sn, there is a number sign(π) = ±1,
computed as follows: write π as a product of disjoint cycles; if there are k cycles (includ-
ing cycles of length 1), then sign(π) = (−1)n−k. A transposition is a permutation which
interchanges two symbols and leaves all the others fixed. Thus, if τ is a transposition,
then sign(τ) = −1.

The last fact holds because a transposition has one cycle of size 2 and n− 2 cycles of
size 1, so n−1 altogether; so sign(τ) = (−1)n−(n−1) = −1. We need one more fact about
signs: if π is any permutation and τ is a transposition, then sign(πτ) = sign(τπ) =
− sign(π), where πτ denotes the composition of π and τ (apply first τ , then π).

Definition 3.2. Let A = (aij) be an n × n matrix over K. The determinant of A is

25
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defined by the Leibniz formula

det(A) =
∑
π∈Sn

sign(π)a1,π(1)a2,π(2) · · · an,π(n).

This gives us a nice mathematical formula for the determinant of a matrix. Unfortu-
nately, it is a terrible formula for practical computation, since it involves working out n!
terms, each a product of matrix entries, and adding them up with + and − signs. For
n of moderate size, this will take a very long time! (For example, 10! = 3628800.)

Let’s come at this from another direction. Consider the following three properties of
a function D defined on n× n matrices.

(D1) For every 1 ≤ i ≤ n, D(A) is linear in the ith row of the matrix A. (We’ll spell
out below what this means.)

(D2) If A has two equal rows, then D(A) = 0.

(D3) D(In) = 1, where In is the n× n identity matrix.

Some clarification of property (D1). Suppose we have any matrices A and B such
that B agrees with A, except that row i is multiplied by some scalar c. Thus,

A =



v1
...

vi−1
vi
vi+1

...
vn


B =



v1
...

vi−1
cvi
vi+1

...
vn


, (3.1)

where v1, . . . , vn are row vectors. Then (D1) legislates that D(B) = cD(A). Further-
more, suppose we have three matrices A, A′ and B, such that A and A′ agree except at
the ith row, and such that the ith row of B is the sum of the corresponding rows of A
and A′:

A =



v1
...

vi−1
vi
vi+1

...
vn


A′ =



v1
...

vi−1
v′i
vi+1

...
vn


B =



v1
...

vi−1
vi + v′i
vi+1

...
vn


. (3.2)

Then (D1) legislates that D(B) = D(A) +D(A′).
Why are these natural? Well, condition (D1) says that if we fix all the entries of A

apart from those in the ith row, then D is some linear function of the remaining entries
a1i, . . . , ani. This is a linear algebra course, so this property seems reasonable enough.
A matrix A with two equal rows has rank less than n. Property (D2) says that the
function D(A) is zero on at least some (in fact all) matrices of rank less than n. If
we are looking for a function that is non-zero exactly for invertible matrices, this is a
reasonable condition to impose. The conditions (D1) and (D2) cannot define a unique
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function, since if D satisfies (D1) and (D2) then so does any multiple of D. So if we
want to pin down the function D precisely, we need some condition like (D3) to fix the
function at a particular point.

If we believe (D1)–(D3) are nice conditions, then the determinant is a nice function.

Lemma 3.3. The function det() satisfies (D1)–(D3).

Proof. (D1) Suppose A = (ak`) is an n× n matrix, and A′ and B are matrices agreeing
with A apart from in the ith row. Furthermore, suppose matrices A, A′ and B
are related as in (3.2): thus the ith row of B is the sum of the ith rows of A and
A′. Then, denoting the ith row of A′ by a′i1, a

′
i2, . . . , a

′
in, we obtain, by the Leibniz

formula,

det(B) =
∑
π∈Sn

sign(π) a1,π(1) · · · ai−1,π(i−1) (ai,π(i) + a′i,π(i))︸ ︷︷ ︸
bi,π(i)

ai+1,π(i+1) · · · an,π(n)

=
∑
π∈Sn

sign(π) a1,π(1) · · · ai−1,π(i−1)ai,π(i)ai+1,π(i+1) · · · an,π(n)

+
∑
π∈Sn

sign(π) a1,π(1) · · · ai−1,π(i−1)a′i,π(i)ai+1,π(i+1) · · · an,π(n)

= det(A) + det(A′).

The case (3.1), where B is obtained from A by multiplying the ith row of A by c, is
similar, but easier, and is left as an exercise. Thus (D1) holds for the determinant.

(D2) Suppose that the ith and jth rows of A are equal. Let τ be the transposition that
interchanges i and j and leaves the other numbers fixed. Then,

ai,πτ(i) = ai,π(j) = aj,π(j) and aj,πτ(j) = aj,π(i) = ai,π(i),

where the second equality in each case uses the fact that the ith and jth rows of
A are identical. For any k /∈ {i, j} we naturally have ak,πτ(k) = ak,π(k). Thus, we
see that the products

a1,π(1)a2,π(2) · · · an,π(n) and a1,πτ(1)a2,πτ(2) · · · an,πτ(n)

are equal. But sign(πτ) = − sign(π). So the corresponding terms in the formula
for the determinant cancel one another. The elements of Sn can be divided up into
n!/2 pairs of the form π, πτ (the natural way to do this is to let π range over the
subgroup of sign +1). As we have seen, each pair of terms in the formula cancel
out. We conclude that det(A) = 0. Thus (D2) holds.

(D3) If A = In, then the only permutation π which contributes to the sum is the
identity permutation ι; any other permutation π satisfies π(i) 6= i for some i, so
that aiπ(i) = 0. The sign of ι is +1, and all the factors aii are equal to 1, so
det(A) = 1, as required.

So there exists at least one function that satisfies (D1)–(D3). We now show, perhaps
surprisingly, that there is only one.
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Theorem 3.4. There is a unique function D on n × n matrices satisfying (D1)–(D3).
That function is det().

Proof. Suppose that D is any function on square matrices satisfying (D1)–(D3). First,
we show that applying elementary row operations to matrix A has a well-defined effect
on D(A).

(a) If B is obtained from A by adding c times the jth row to the ith, then D(B) =
D(A).

(b) If B is obtained from A by multiplying the ith row by a non-zero scalar c, then
D(B) = cD(A).

(c) If B is obtained from A by interchanging two rows i and j, then D(B) = −D(A).

For (a), let A′ be the matrix which agrees with A in all rows except the ith, which
is equal to the jth row of A. By rule (D2), D(A′) = 0. By rule (D1),

D(B) = D(A) + cD(A′) = D(A).

Part (b) follows immediately from condition (D1).
To prove part (c), we observe that we can interchange the ith and jth rows by the

following sequence of operations:

• add the ith row to the jth;

• multiply the ith row by −1;

• add the jth row to the ith;

• subtract the ith row from the jth.

Symbolically,

...
vi
...
vj
...


Rj+Ri−−−−→



...
vi
...

vi + vj
...


−1×Ri−−−−→



...
−vi

...
vi + vj

...


Ri+Rj−−−−→



...
vj
...

vi + vj
...


Rj−Ri−−−−→



...
vj
...
vi
...


The first, third and fourth steps don’t change the value of D, while the second multiplies
it by −1.

We now understand how elementary row operations on the matrix A affect the value
of D(A). The proof now proceeds in two cases, depending on whether A is invertible.

• If A is not invertible, then its row rank is less than n (Corollary 2.18). So the rows
of A are linearly dependent, and one row can be written as a linear combination of
the others. Suppose, without loss of generality that the first row v1 can be written
v1 = c2v2 + c3v3 + · · ·+ cnvn. Applying property (D1), we see that

D


c2v2 + c3v3 + · · ·+ cnvn

v2
...
vn

 = c2D


v2
v2
...
vn

+ c3D


v3
v2
...
vn

+ · · ·+ cnD


vn
v2
...
vn

 = 0.
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Note that each of the terms in the above sum is zero by (D2), as each matrix has
a repeated row. So, assuming (D1)–(D3) we have shown D(A) = 0. Since det
satisfies (D1)–(D3) (Lemma 3.3), we know in particular that det(A) = 0. So D(A)
and det(A) agree on non-invertible matrices A: they are both zero.

• If A is invertible, then we can reduce it to the identity by applying elementary
row operations (Corollary 2.20). Suppose that these row operations correspond to
elementary matrices R1, R2, . . . , Rt, so that Rt . . . R2R1A = I. Each row operation
Ri multiplies D() by a certain factor ci, determined by (a)–(c). Thus, on the one
hand, D(Rt . . . R2R1A) = c1c2 . . . ctD(A) = cD(A), where c = c1c2 . . . ct. On the
other hand Rt . . . R2R1A = I, and so D(Rt . . . R2R1A) = D(I) = 1, by (D3). It
follows that D(A) = c−1. Again, we deduce in particular that det(A) = c−1. Thus,
D(A) and det(A) agree on invertible matrices.

Putting together the two cases, we see that if D is any function satisfying (D1)–(D3),
then D(A) = det(A) for all A.

3.2 Properties of determinants

Corollary 3.5. A square matrix is invertible if and only if det(A) 6= 0.

Proof. See the case division at the end of the proof of Theorem 3.4.

Note that Theorem 3.4 immediately yields a result from Linear Algebra I.

Lemma 3.6. (a) If B is obtained from A by adding c times the jth row to the ith,
then det(B) = det(A).

(b) If B is obtained from A by multiplying the ith row by a scalar c, then det(B) =
cdet(A).

(c) If B is obtained from A by interchanging two rows, then det(B) = −det(A).

One of the most important properties of the determinant is the following.

Theorem 3.7. If A and B are n× n matrices over K, then det(AB) = det(A) det(B).

Proof. Suppose first that A is not invertible. Then det(A) = 0. Also, AB is not invert-
ible. (For, suppose that (AB)−1 = X, so that (AB)X = I = A(BX). Then BX is the
inverse of A.) So det(AB) = 0, and the theorem holds in this case.

In the other case, A is invertible, so by Corollary 2.19 we can write it as a product
of elementary matrices A = E1E2 · · ·Ek. Now observe that the theorem holds for the
product of an elementary matrix E and a general matrix B. Multiplying a matrix on the
left by E has the effect of multiplying the determinant by a certain factor c, depending
only on E; thus det(EB) = c det(B). For example, when E is Type 3, c = −1 and
det(EB) = −det(B). It can be checked — do this now for all three types of elementary
matrices! — that c = det(E). It follows that det(EB) = det(E) det(B).
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More generally

det(AB) = det(E1E2 . . . EkB)

= det(E1) det(E2 . . . EkB) = · · ·
= det(E1) det(E2) . . . det(Ek) det(B)

= det(E1) . . . det(Ek−1Ek) det(B) = · · ·
= det(E1E2 . . . Ek) det(B)

= det(A) det(B).

as required.

Finally, we have defined determinants using rows, but we could have used columns
instead:

Corollary 3.8. The determinant is the unique function D of n × n matrices which
satisfies the conditions

(D1′) for 1 ≤ i ≤ n, D is a linear function of the ith column;

(D2′) if two columns of A are equal, then D(A) = 0;

(D3′) D(In) = 1.

Proof. Swapping the roles of rows and columns in the Proof of Theorem 3.4 shows that
there is a unique function satisfying (D1′)–(D3′) given by the formula

det(A) =
∑
π∈Sn

sign(π)aπ(1),1aπ(2),2 · · · aπ(n),n,

which is the usual formula, but with the role of rows and columns reversed. But this
formula contains the same terms as the usual one, but in a different order. (Check this.
The term corresponding to π in the usual formula is equal, after rearrangement, to the
term corresponding to π−1 in the above formula. Furthermore, sign(π−1) = sign(π).)

Since det() is the unique function on matrices satisfying (D1′)–(D3′) and (D1)–(D3),
and since these properties are invariant under interchange of rows and columns, the same
must be true of det() itself.

Corollary 3.9. If A> denotes the transpose of A, then det(A>) = det(A).

Example 3.10. Right at the end of Geometry I it was shown that the area of a parallel-
ogram can be expressed as a 2× 2 determinant. This fact extends to higher dimensions.
The area of a parallelogram (see Figure 3.1) defined by vectors u and v1 is given by the
length |u| of the base u times the height h1, and similarly for the parallelograms defined
by u and v2, and by u and v. The height of the third parallelogram is the sum h1 + h2
of the heights of the other two. So its area is also the sum of the areas of the other two.
(This can also be seen by dissecting the figure.)

Suppose we represent the parallelogram defined by u and v as a 2× 2 matrix whose
rows are u and v thus: [

u
v

]
.
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Figure 3.1: Area of a parallelogram

Note that all vectors will be row vectors in this example. Then we have seen that

Area

[
u

v1 + v2

]
= Area

[
u
v

]
= Area

[
u
v1

]
+ Area

[
u
v2

]
.

Likewise,

= Area

[
u
av

]
= a×Area

[
u
v

]
.

But these two observations together are telling us that “Area” satisfies property (D1)!

Since the area of the degenerate parallelogram

[
u
u

]
is 0, we have that Area satisfies

property (D2). Finally, the identity matrix represents the unit square, which has area 1,
and property (D3) is satisfied also. But the determinant is the only function that satisfies
(D1)–(D3), so the area of a parallelogram is given by the determinant of a 2× 2 matrix.

Warning: this notion of area is signed, since the height of the parallelogram may
be negative. If we negate one of the vectors, the sign of the area will be flip and if
we transpose (in the sense of interchange!) the vectors then again the sign will flip, in
accordance for the rules for elementary row operations.

All the above extends to n dimensions. The parallelotope in Rn specified by vectors
v1, v2, . . . , vn is defined by

P = {a1v1 + a2v2 + · · ·+ anvn : 0 ≤ a1, a2, . . . , an ≤ 1}.

Suppose we represent P as an n× n matrix A whose rows are the vectors v1, v2, . . . , vn.
Then the n-dimensional volume of P satisfies (D1)–(D3), and so voln(P ) = |det(A)|.

3.3 Cofactor (Laplace) expansion

Here is a second formula, which is also theoretically important but very inefficient in
practice.

Definition 3.11. Let A be an n × n matrix. For 1 ≤ i, j ≤ n, denote by Ai,j the
(n − 1) × (n − 1) matrix obtained by deleting the ith row and jth column of A. The
(i, j) cofactor of A is defined to be (−1)i+j det(Ai,j). (These signs have a chessboard
pattern, starting with sign + in the top left corner.) We denote the (i, j) cofactor of A
by Kij(A). Note that the cofactor is a scalar, even though we’ve denoted it by an upper
case latter! Finally, the adjugate of A is the n × n matrix Adj(A) whose (i, j) entry is
the (j, i) cofactor Kji(A) of A. (Note the transposition!)
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Theorem 3.12. (a) For 1 ≤ i ≤ n, we have

det(A) =

n∑
j=1

aijKij(A).

(b) For 1 ≤ j ≤ n, we have

det(A) =
n∑
i=1

aijKij(A).

This theorem says that, if we take any column or row of A, multiply each element
by the corresponding cofactor, and add the results, we get the determinant of A. The
expressions (a) and (b) appearing in Theorem 3.12 are the cofactor or Laplace expansion
along row i and column j respectively.

Example 3.13. Using a cofactor expansion along the first column, we see that∣∣∣∣∣∣
1 2 3
4 5 6
7 8 10

∣∣∣∣∣∣ =

∣∣∣∣5 6
8 10

∣∣∣∣− 4

∣∣∣∣2 3
8 10

∣∣∣∣+ 7

∣∣∣∣2 3
5 6

∣∣∣∣
= (5 · 10− 6 · 8)− 4(2 · 10− 3 · 8) + 7(2 · 6− 3 · 5)

= 2 + 16− 21

= −3

using the standard formula for a 2× 2 determinant.

Theorem 3.12 looks plausible. Note that Kij(A) is an (n− 1)× (n− 1) determinant.
Expanding aijKij(A) by the Leibniz formula yields (n − 1)! terms that ought to corre-
spond to those (n − 1)! terms in the Leibniz formula for A that satisfy π(i) = j. But
keeping track of the subscripts and the signs is fiddly and not very edifying, so we won’t
go into that here. The details can be found on the Wikipedia page on the “Laplace
expansion”.

Another way of going about proving Theorem 3.12 is to show that the expression∑n
j=1 aijKij(A) satisfies (D1)–(D3). The issue here is how to show (D2) when one of

the two equal rows is row i. Again, there is no essential problem but we won’t go into
the details here.

At first sight, the Laplace expansion looks like a simple formula for the determinant,
since it is just the sum of n terms, rather than n! as in the Leibniz formula. But each
term is an (n − 1) × (n − 1) determinant. Working down the chain we find that this
method is just as labour-intensive as the other one. But the cofactor expansion has
further nice properties:

Theorem 3.14. For any n× n matrix A, we have

A ·Adj(A) = Adj(A) ·A = det(A) I.

Remark 3.15. In the above identity, the A ·Adj(A) and Adj(A) ·A are matrix products,
while det(A) I is the product of a scalar with a matrix. We can get into big trouble by
ignoring this distinction and using matrices where scalars should go. Just in this section,
we’ll use dots to emphasise matrix multiplication.
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Proof of Theorem 3.14. We calculate the matrix product. Recall that the (i, j) entry of
Adj(A) is Kji(A).

Now the (i, i) entry of the product A ·Adj(A) is

n∑
k=1

aik(Adj(A))ki =
n∑
k=1

aikKik(A) = det(A),

by the cofactor expansion. On the other hand, if i 6= j, then the (i, j) entry of the
product is

n∑
k=1

aik(Adj(A))kj =
n∑
k=1

aikKjk(A).

This last expression is the cofactor expansion of the matrix A′ which is the same as that
of A except for the jth row, which has been replaced by the ith row of A. (Note that
changing the jth row of a matrix has no effect on the cofactors of elements in this row.)
So the sum is det(A′). But A′ has two equal rows, so its determinant is zero.

Thus A · Adj(A) has entries det(A) on the diagonal and 0 everywhere else; so it is
equal to det(A) I.

The proof for the product the other way around is the same, using columns instead
of rows.

Corollary 3.16. If the n× n matrix A is invertible, then its inverse is equal to

(det(A))−1 Adj(A).

So how can you work out a determinant efficiently? The best method in practice is
to use elementary operations.

Apply elementary operations to the matrix, keeping track of the factor by which the
determinant is multiplied by each operation. If you want, you can reduce all the way
to the identity, and then use the fact that det(I) = 1. Often it is simpler to stop at an
earlier stage when you can recognise what the determinant is. For example, if the matrix
A has diagonal entries a11, . . . , ann, and all off-diagonal entries are zero, then det(A) is
just the product a11 · · · ann.

Example 3.17. Let

A =

1 2 3
4 5 6
7 8 10

 .
Subtracting twice the first column from the second, and three times the second column
from the third (these operations don’t change the determinant) gives1 0 0

4 −3 −6
7 −6 −11

 .
Now the cofactor expansion along the first row gives

det(A) =

∣∣∣∣−3 −6
−6 −11

∣∣∣∣ = 33− 36 = −3.

(At the last step, it is easiest to use the formula for the determinant of a 2 × 2 matrix
rather than do any further reduction.)
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3.4 The Cayley-Hamilton Theorem

Since we can add and multiply matrices, we can substitute them into a polynomial. For
example, if

A =

[
0 1
−2 3

]
,

then the result of substituting A into the polynomial x2 − 3x+ 2 is

A2 − 3A+ 2I =

[
−2 3
−6 7

]
+

[
0 −3
6 −9

]
+

[
2 0
0 2

]
=

[
0 0
0 0

]
.

We say that the matrix A satisfies the equation x2 − 3x + 2 = 0. (Notice that for the
constant term 2 we substituted 2I.)

It turns out that, for every n× n matrix A, we can calculate a polynomial equation
of degree n satisfied by A.

Definition 3.18. Let A be a n × n matrix. The characteristic polynomial of A is the
polynomial

pA(x) = det(xI −A).

This is a polynomial in x of degree n.

For example, if

A =

[
0 1
−2 3

]
,

then

pA(x) =

∣∣∣∣x −1
2 x− 3

∣∣∣∣ = x(x− 3) + 2 = x2 − 3x+ 2.

Indeed, it turns out that this is the polynomial we want in general:

Theorem 3.19 (Cayley–Hamilton Theorem). Let A be an n×n matrix with character-
istic polynomial pA(x). Then pA(A) = O.

Example 3.20. Let us just check the theorem for 2× 2 matrices. If

A =

[
a b
c d

]
,

then

pA(x) =

∣∣∣∣x− a −b
−c x− d

∣∣∣∣ = x2 − (a+ d)x+ (ad− bc),

and so

pA(A) =

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
− (a+ d)

[
a b
c d

]
+ (ad− bc)

[
1 0
0 1

]
= O,

after a small amount of calculation.
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Proof. We use the theorem
A ·Adj(A) = det(A) I.

In place of A, we put the matrix xI −A into this formula:

(xI −A) ·Adj(xI −A) = det(xI −A) I = pA(x) I.

Now it is very tempting (for lesser beings than the MTH6140 class) just to substitute
x = A into this formula: on the right we have pA(A) I = pA(A), while on the left there
is a factor AI − A = O. Unfortunately this is not valid, and the reason is connected to
the remark following the statement of Theorem 3.14. The expression pA(A) is a matrix,
and not valid in this context, where a scalar is expected. (A similar problem exists on
the left side of the incorrect identity.)

Instead, we argue as follows. Adj(xI −A) is a matrix whose entries are polynomials,
so we can write it as a sum of powers of x times matrices, that is, as a polynomial whose
coefficients are matrices. For example,[

x2 + 1 2x
3x− 4 x+ 2

]
= x2

[
1 0
0 0

]
+ x

[
0 2
3 1

]
+

[
1 0
−4 2

]
.

The entries in Adj(xI −A) are (n− 1)× (n− 1) determinants, so the highest power
of x that can arise is xn−1. So we can write

Adj(xI −A) = xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0,

for suitable n× n matrices B0, . . . , Bn−1. Hence

pA(x)I = (xI −A) ·Adj(xI −A)

= (xI −A) · (xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0)

= xnBn−1 + xn−1(−ABn−1 +Bn−2) + · · ·+ x(−AB1 +B0)−AB0.

So, if we let
pA(x) = xn + cn−1x

n−1 + · · ·+ c1x+ c0,

then we read off that
Bn−1 = I,

−ABn−1 + Bn−2 = cn−1I,
...

−AB1 + B0 = c1I,
−AB0 = c0I.

We take this system of equations, and multiply the first by An, the second by An−1,
. . . , and the last by A0 = I. What happens? On the left, all the terms cancel in pairs:
we have

AnBn−1 +An−1(−ABn−1 +Bn−2) + · · ·+A(−AB1 +B0) + I(−AB0) = O.

On the right, we have

An + cn−1A
n−1 + · · ·+ c1A+ c0I = pA(A).

So pA(A) = O, as claimed.
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Summary

• The determinant of an n×n matrix can be defined by an explicit formula (Leibniz)
with n! terms.

• It can also be defined axiomatically, as the unique function on square matrices
satisfying certain simple properties.

• The determinant of a matrix transforms in predictable ways under the action of
elementary row and column operations (equivalently, left or right multiplication
by elementary matrices).

• The determinant of the product of matrices is the product of their determinants.

• The determinant of a matrix can also be defined recursively by the cofactor (Laplace)
expansion.

• The inverse of a non-singular matrix can be expressed explicitly in terms of its
cofactors (adjugate matrix).

• The determinant can be used to define the characteristic polynomial of a matrix.

• The Cayley-Hamilton Theorem states that every square matrix satisfies its own
characteristic polynomial. (It is important to know precisely what this informal
statement means.)



Chapter 4

Linear maps between vector
spaces

We return to the setting of vector spaces in order to define linear maps between them.
We will see that these maps can be represented by matrices, decide when two matri-
ces represent the same linear map, and give another proof of the canonical form for
equivalence.

4.1 Definition and basic properties

Definition 4.1. Let V and W be vector spaces over a field K. A function α from V to
W is a linear map if it preserves addition and scalar multiplication, that is, if

• α(v1 + v2) = α(v1) + α(v2) for all v1, v2 ∈ V ;

• α(cv) = cα(v) for all v ∈ V and c ∈ K.

Remark 4.2. (a) We can combine the two conditions into one as follows:

α(c1v1 + c2v2) = c1α(v1) + c2α(v2).

(b) In other literature the term “linear transformation” is often used instead of “linear
map”.

Definition 4.3. Let α : V →W be a linear map. The image of α is the set

Im(α) = {w ∈W : w = α(v) for some v ∈ V },

and the kernel of α is

Ker(α) = {v ∈ V : α(v) = 0}.

Proposition 4.4. Let α : V → W be a linear map. Then the image of α is a subspace
of W and the kernel is a subspace of V .

Proof. We have to show that each subset is closed under addition and scalar multiplica-
tion, and is non-empty. Non-emptiness is immediate: the zero vector 0 is in both Im(α)
and Ker(α) since α(0) = 0.

37
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Suppose that w1, w2 are vectors in the image of α. By definition of Im(α), there exist
v1, v2 ∈ V such that w1 = α(v1) and w2 = α(v2). Then

w1 + w2 = α(v1) + α(v2) = α(v1 + v2),

by linearity of α. It follows that w1 + w2 ∈ Im(α). Now suppose w ∈ Im(α) and c ∈ K.
By definition of Im(α), there exists v ∈ V such that w = α(v). Then

cw = cα(v) = α(cv),

demonstrating that cw ∈ Im(α).

Next suppose v1, v2 are vectors in the kernel of α. By definition of Ker(α), we know
that α(v1) = α(v2) = 0. Thus

α(v1 + v2) = α(v1) + α(v2) = 0 + 0 = 0,

from which it follows that v1 + v2 ∈ Ker(α). Finally, suppose v ∈ Ker(α) and c ∈ K.
Then α(v) = 0 and

α(cv) = cα(v) = c0 = 0,

demonstrating that cv ∈ Ker(α).

Definition 4.5. We define the rank of α to be %(α) = dim(Im(α)) and the nullity of
α to be ν(α) = dim(Ker(α)). (We use the Greek letters ‘rho’ and ‘nu’ here to avoid
confusing the rank of a linear map with the rank of a matrix, though they will turn out
to be closely related!)

Theorem 4.6 (Rank–Nullity Theorem). Let α : V →W be a linear map. Then %(α) +
ν(α) = dim(V ).

Proof. Choose a basis u1, u2, . . . , uq for Ker(α), where q = dim(Ker(α)) = ν(α). The
vectors u1, . . . , uq are linearly independent vectors of V , so we can add further vectors
to get a basis for V , say u1, . . . , uq, v1, . . . , vs, where q + s = dim(V ).

We claim that the vectors α(v1), . . . , α(vs) form a basis for Im(α). We have to show
that they are linearly independent and spanning.

Linearly independent: Suppose that c1α(v1) + · · ·+ csα(vs) = 0. We need to show that
c1 = · · · = cs = 0. Applying the linear map α we have

α(c1v1 + · · ·+ csvs) = c1α(v1) + · · ·+ csα(vs) = 0,

so that c1v1 + · · · + csvs ∈ Ker(α). The vector c1v1 + · · · + csvs can be expressed
in terms of the basis for Ker(α):

c1v1 + · · ·+ csvs = a1u1 + · · ·+ aquq,

whence

−a1u1 − · · · − aquq + c1v1 + · · ·+ csvs = 0.

But the list (u1, . . . , uq, v1, . . . , vs) is a basis for V , and hence is linearly indepen-
dent. It follows that c1 = · · · = cs = 0 (and incidentally a1 = · · · = aq = 0), as
required.
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Spanning: Take any vector in Im(α), say w. We need to show that w ∈ 〈α(v1), . . . , α(vs)〉.
Since w ∈ Im(α) we know that w = α(v) for some v ∈ V . Write v in terms of the
basis for V :

v = a1u1 + · · ·+ aquq + c1v1 + · · ·+ csvs

for some a1, . . . , aq, c1, . . . , cs. Applying α, we get

w = α(v)

= a1α(u1) + · · ·+ aqα(uq) + c1α(v1) + · · ·+ csα(vs)

= c1α(v1) + · · ·+ csα(vs),

where we used the fact that ui ∈ Ker(α) and hence α(ui) = 0. So the vectors
α(v1), . . . , α(vs) span Im(α).

Thus, %(α) = dim(Im(α)) = s. Since ν(α) = q and q + s = dim(V ), the theorem is
proved.

4.2 Representation by matrices

We come now to the second role of matrices in linear algebra: they represent linear
maps between vector spaces.

Let α : V →W be a linear map, where dim(V ) = n and dim(W ) = m. Let v1, . . . , vn
be a basis for V and w1, . . . , wm a basis for W . Then for j = 1, . . . , n, the vector α(vj)
belongs to W , so we can write it as a linear combination of w1, . . . , wm.

Definition 4.7. The matrix representing the linear map α : V → W relative to the
bases (v1, . . . , vn) for V and (w1, . . . , wm) for W is the m× n matrix whose (i, j) entry
is aij , where

α(vj) =

m∑
i=1

aijwi

for j = 1, . . . , n. (The indices on the right hand side are reversed from what you might
expect by analogy with matrix multiplication, but it will all turn out right in the end!)

In practice this means the following. Take α(vj) and write it as a as a linear com-
bination α(vj) = a1jw1 + · · · + amjwm of basis vectors of W . Then the column vector[
a1j a2j · · · amj

]>
is the jth column of the matrix representing α. So, for example,

if n = 3, m = 2, and

α(v1) = w1 + w2, α(v2) = 2w1 + 5w2, α(v3) = 3w1 − w2,

then the matrix representing α is [
1 2 3
1 5 −1

]
.

Now the most important thing about this representation is that the action of α is
now easily described:

Proposition 4.8. Let α : V →W be a linear map. Choose bases B for V and B′ for W
and let A be the matrix representing α relative to these bases. Then

[α(v)]B′ = A[v]B.



40 CHAPTER 4. LINEAR MAPS BETWEEN VECTOR SPACES

Proof. Let B = (v1, . . . , vn) be the basis for V , and B′ = (w1, . . . , wm) the basis for W .
Suppose v =

∑n
j=1 cjvj ∈ V , so that in coordinates

[v]B =

c1...
cn

 .
Then

α(v) =
n∑
j=1

cjα(vj) =
n∑
j=1

cj

m∑
i=1

aijwi =
m∑
i=1

wi

n∑
j=1

aijcj ,

so the ith coordinate of [α(v)]B′ is
∑n

j=1 aijcj , which is precisely the ith coordinate in
the matrix product A[v]B.

In our example, if v = 2v1 + 3v2 + 4v3, so that the coordinate representation of v

relative to the basis (v1, v2, v3) is
[
2 3 4

]>
, then

[α(v)]B′ = A[v]B =

[
1 2 3
1 5 −1

]2
3
4

 =

[
20
13

]
.

The column vector on the right gives the coordinate representation of α(v) relative to
the basis (w1, w2), that is, α(v) = 20w1 + 13w2.

Addition and multiplication of linear maps correspond to addition and multiplication
of the matrices representing them.

Definition 4.9. Let α and β be linear maps from V to W . Define their sum α+ β by
the rule

(α+ β)(v) = α(v) + β(v)

for all v ∈ V . It is routine to check that α+ β is a linear map.

Proposition 4.10. If α and β are linear maps represented relative to some basis by
matrices A and B, respectively, then α+ β is represented by the matrix A+B, relative
to the same basis.

The proof of this is not too difficult: just apply the definitions as in the Proof of
Proposition 4.12 below.

Definition 4.11. Let U , V and W be vector spaces over K, and let α : U → V and
β : V →W be linear maps. The product βα is the function U →W defined by the rule

(βα)(u) = β(α(u))

for all u ∈ U . Again it is routine to check that βα is a linear map. Note that the order
is important: we take a vector u ∈ U , apply α to it to get a vector in V , and then apply
β to get a vector in W . So βα means “apply α, then β”.

Proposition 4.12. If α : U → V and β : V → W are linear maps represented by
matrices A and B respectively, then βα is represented by the matrix BA.

Proof. Suppose linear maps α and β are represented by matrices A and B relative to
bases B of U , B′ of V , and B′′ of W . Then

[(βα)u]B′′ = [β(α(u))]B′′ = B [α(u)]B′ = B(A[u]B) = (BA)[u]B,

where we have used, in turn, the definition of product of maps, Proposition 4.8 (twice)
and associatively of matrix multiplication.
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Remark Let l = dim(U), m = dim(V ) and n = dim(W ), then A is m × l, and B is
n ×m; so the product BA is defined, and is n × l, which is the right size for a matrix
representing a map from an l-dimensional to an n-dimensional space.

The significance of all this is that the strange rule for multiplying matrices is chosen
so as to make Proposition 4.12 hold. The definition of multiplication of linear maps
is the natural one (composition), and we could then say: what definition of matrix
multiplication should we choose to make the Proposition valid? We would find that the
usual definition was forced upon us.

4.3 Change of basis

The matrix representing a linear map depends on the choice of bases we used to represent
it. We briefly discuss what happens if we change the basis.

Recall the notion of transition matrix from Chapter 1. If B = (v1, . . . , vn) and
B′ = (v′1, . . . , v

′
n) are two bases for a vector space V of dimension n, then the transition

matrix PB,B′ is the matrix whose jth column is the coordinate representation of v′j
relative to the basis B. We saw that

[v]B = PB,B′ [v]B′ ,

where [v]B is the coordinate representation of an arbitrary vector v relative to the basis
B, and similarly for B′. The transition matrix PB′,B that transforms [v]B back to [v]B′ is
just the inverse of the matrix PB,B′ .

Proposition 4.13. Let α : V →W be a linear map represented by matrix A relative to
the bases B for V and C for W , and by the matrix A′ relative to the bases B′ for V and
C′ for W . If P = PC′,C and Q = PB,B′ are transition matrices relating the unprimed to
the primed bases, then

A′ = PAQ.

Proof. At a high level the claim seems reasonable. Suppose we apply the matrix A′ to
a coordinate representation of some vector relative to the primed basis for V . Multi-
plication by Q will transform from the primed to unprimed basis, multiplication by A
will apply the linear transformation relative to the unprimed bases, and finally P will
transform back to the primed basis.

We just need to write that scheme down in symbols, which is not too difficult:

(PAQ)[v]B′ = PA(Q [v]B′) = P (A [v]B) = P [α(v)]C = [α(v)]C′ .

So A′ = PAQ is the representation of the linear map α relative to the primed bases.

In practical terms, the above result is needed for explicit calculations. For theoretical
purposes its importance lies the following corollary. Recall that two matrices A and B
are equivalent if B is obtained from A by multiplying on the left and right by invertible
matrices.

Corollary 4.14. Any two matrices that represent the same linear map relative to dif-
ferent bases are equivalent.

Although we shall not need the fact, the converse is also true: any two equivalent
matrices can be viewed representations of a single linear map relative to two different
bases. This is so because any invertible matrix can be viewed as a transition matrix.
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4.4 Canonical form revisited

We return Theorem 2.3 about canonical forms for equivalence with a view to showing
that rank of a linear map and rank of a matrix are essentially the same thing.

Theorem 4.15. Let α : V →W be a linear map of rank r = %(α). Then there are bases
for V and W such that the matrix representing α is, in block form,[

Ir O
O O

]
.

Proof. As in the proof of Theorem 4.6, choose a basis v1, . . . , vr, vr+1, . . . , vn for V such
that vr+1, . . . , vn is a basis for Ker(α). (We can do this by choosing the basis vr+1, . . . , vn
of Ker(α) first, and then extending it to a basis for the whole space V .)

As we saw earlier, w1 = α(v1), . . . , wr = α(vr) is a basis for Im(α), and can be
extended to a basis w1, . . . , wr, wr+1, . . . , wm of W . We have

α(vi) =

{
wi, if 1 ≤ i ≤ r;
0, otherwise,

so the matrix of α relative to these bases is[
Ir O
O O

]
as claimed.

We recognise the matrix in the theorem as the canonical form for equivalence. It is
now not difficult to see that rank of a linear map and rank of a matrix are consistent.

Corollary 4.16. Suppose α : V → W is a linear map of rank r. For any choice of
bases B for V and B′ for W , the rank of the matrix representing α relative to B and B′
is also r.

Proof. We know from Theorem 4.15 that there is some choice of bases for which the ma-
trix A representing α takes the canonical form. In this case the rank of the linear map α
and the matrix A certainly agree. Any other matrix A′ representing α will be equivalent
to A by Proposition 4.13. Equivalent matrices have the same rank (Theorem 2.21), so
the rank of A′ is also r.

So how many equivalence classes of m × n matrices are there, for given m and n?
The rank of such a matrix can take any value from 0 up to the minimum of m and n; so
the number of equivalence classes is min{m,n}+ 1. Thus the number of distinct linear
maps from a vector space of dimension n to one of dimension m is also min{m,n}+ 1.

Summary

• A map α : V → W is linear if it interacts nicely with vector addition and scalar
multiplication.
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• The kernel and image are important subspaces associated with a linear map α.
The kernel is a subspace of the domain of α and the image is a subspace of the of
the codomain.

• The dimensions of the kernel and the image are related by the rank-nullity theorem.

• Relative to a given basis, a linear map α is represented by a matrix A.

• Addition of linear maps corresponds to addition of matrices; the product of linear
maps corresponds to multiplication of matrices.

• The matrix A depends on the basis. The transition matrices from Chapter 2 can
be used to transform the matrix from one basis to another.

• Matrices representing the same linear map relative to different bases are equivalent.

• If A represents α relative to a certain basis, then the rank or A is equal to the rank
of α.
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Chapter 5

Linear maps on a vector space

In this chapter we consider a linear map α from a vector space V to itself. If dim(V ) = n
then, as in the last chapter, we can represent α by an n× n matrix relative to any basis
for V . However, this time we have less freedom: instead of having two bases to choose,
there is only one. This makes the theory much more interesting!

5.1 Projections and direct sums

We begin by looking at a particular type of linear map whose importance will be clear
later on.

Definition 5.1. The linear map π : V → V is a projection if π2 = π (where, as usual,
π2 is defined by π2(v) = π(π(v))).

Proposition 5.2. If π : V → V is a projection, then V = Im(π)⊕Ker(π).

Before starting the proof, it is worth making a tiny observation that will simplify our
task here and later in the chapter. Suppose π is a projection on V and v ∈ V . Then
we claim that v ∈ Im(π) if and only if π(v) = v. The “if” direction is immediate: there
is a vector u ∈ V , namely u = v, such that v = π(u). The “only if” direction is hardly
more difficult: v ∈ Im(π) implies that there exists u ∈ V such that v = π(u). Then
π(v) = π(π(u)) = π2(u) = π(u) = v.

Proof of Proposition 5.2. We have two things to show:

Im(π) + Ker(π) = V : Take any vector v ∈ V , and let w = π(v) ∈ Im(π). We claim
that v − w ∈ Ker(π). This holds because

π(v − w) = π(v)− π(w) = π(v)− π(π(v)) = π(v)− π2(v) = 0,

since π2 = π. Now v = w + (v − w) is the sum of a vector in Im(π) and one in
Ker(π).

Im(π) ∩ Ker(π) = {0}: Take v ∈ Im(π) ∩ Ker(π). Since v is in Im(π) we know that
π(v) = v (see above). Also, since v is in Ker(π), we have π(v) = 0. Putting these
facts together yields v = 0.

45
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There is a converse to this result.

Proposition 5.3. If V = U ⊕W , then there is a projection π : V → V with Im(π) = U
and Ker(π) = W .

Proof. (Sketch.) Every vector v ∈ V can be uniquely written as v = u+w, where u ∈ U
and w ∈ W ; we define π by the rule that π(v) = u. You should check that with this
definition for π it is indeed the case that Im(π) = U and Ker(π) = W , and that π is
indeed a projection.

The diagram in Figure 5.1 shows geometrically what a projection is. It moves any
vector v in a direction parallel to Ker(π) to a vector lying in Im(π).
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v

π(v)

Figure 5.1: A projection

We can extend this to direct sums with more than two terms. Suppose that π is
a projection and π′ = I − π (where I is the identity map, satisfying I(v) = v for all
vectors v). Note that π′ is also a projection, since

(π′)2 = (I − π)2 = I − 2π + π2 = I − 2π + π = I − π = π′.

Note also that π + π′ = I and ππ′ = π(I − π) = π − π2 = 0. It follows (as we shall see
below) that Ker(π) = Im(π′), and hence V = Im(π)⊕ Im(π′). These observations show
the way to generalise Proposition 5.2.

Proposition 5.4. Suppose that π1, π2, . . . , πr are projections on V satisfying

(a) π1 + π2 + · · ·+ πr = I, where I is the identity map;

(b) πiπj = 0 for i 6= j.

Then V = U1 ⊕ U2 ⊕ · · · ⊕ Ur, where Ui = Im(πi).

Proof. (Sketch.) Let v be any vector in V . Using the fact that π1 + π2 + · · · + πr = I
we have

v = I(v) = (π1 + π2 + · · ·+ πr)(v) = π1(v) + π2(v) + · · ·+ πr(v)

= u1 + u2 + · · ·+ ur, (5.1)

where ui = πi(v) ∈ Im(πi) = Ui for i = 1, . . . , r. To complete the proof, we need to
check that the decomposition v = u1 + · · ·+ ur is unique.



5.2. LINEAR MAPS AND MATRICES 47

There is a converse to the above result.

Proposition 5.5. Suppose V is a vector space which is the direct sum of r subspaces:
V = U1 ⊕ U2 ⊕ · · · ⊕ Ur. Then there exists projections π1, π2, . . . , πr on V satisfying

(a) π1 + π2 + · · ·+ πr = I, where I is the identity map;

(b) πiπj = 0 for i 6= j; and

(c) Ui = Im(πi) for all i.

Proof. (Sketch.) Since V = U1⊕U2⊕· · ·⊕Ur, any vector v ∈ V has a unique expression
as

v = u1 + u2 + · · ·+ ur

with ui ∈ Ui for i = 1, . . . , r. Then we may define πi(v) = ui, for i = 1, . . . , r. To
complete the proof, we need to verify that {πi} are projections with the required prop-
erties.

The point of this is that projections give us another way to recognise and describe
direct sums.

5.2 Linear maps and matrices

Let α : V → V be a linear map. If we choose a basis v1, . . . , vn for V , then V can be
written in coordinates as Kn, and α is represented by a matrix A, say, where

α(vj) =
n∑
i=1

aijvi.

Then just as in the last section, the action of α on V is represented by the action of A
on Kn: α(v) is represented by the product Av. Also, as in the last chapter, sums and
products (and hence arbitrary polynomials) of linear maps are represented by sums and
products of the matrices representing them: that is, for any polynomial f(x), the map
f(α) is represented by the matrix f(A).

What happens if we change the basis? This also follows from the formula we worked
out in the last chapter. However, there is only one basis to change.

Proposition 5.6. Let α be a linear map on V which is represented by the matrix A
relative to a basis B, and by the matrix A′ relative to a basis B′. Let P = PB,B′ be the
transition matrix between the two bases. Then

A′ = P−1AP.

Proof. This is just Proposition 4.6, since P and Q are the same here.

Definition 5.7. Two n× n matrices A and B are said to be similar if B = P−1AP for
some invertible matrix P .

Thus similarity is an equivalence relation, and

two matrices are similar if and only if they represent the same linear map
with respect to different bases.
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There is no simple canonical form for similarity like the one for equivalence that
we met earlier. For the rest of this section we look at a special class of matrices or
linear maps, the “diagonalisable” ones, where we do have a nice simple representative
of the similarity class. In the final section we give without proof a general result for the
complex numbers.

5.3 Eigenvalues and eigenvectors

Definition 5.8. Let α be a linear map on V . A vector v ∈ V is said to be an eigenvector
of α, with eigenvalue λ ∈ K, if v 6= 0 and α(v) = λv. The set {v : α(v) = λv} consisting
of the zero vector and the eigenvectors with eigenvalue λ is called the λ-eigenspace of α,
and we’ll denote it by E(λ, α).

It is not difficult to check that an eigenspace E(λ, α) as defined above is a linear
subspace of V . (Do this!) Note that we require that v 6= 0 for any eigenvector of α,
otherwise the zero vector would be an eigenvector of α for any value of λ. With this
requirement, each eigenvector has a unique eigenvalue: for if α(v) = λv = µv, then
(λ− µ)v = 0, and so (since v 6= 0) we have λ = µ.

The name eigenvalue is a mixture of German and English; it means “characteristic
value” or “proper value” (here “proper” is used in the sense of “property”). Another
term used in older books is “latent root”. Here “latent” means “hidden”: the idea is that
the eigenvalue is somehow hidden in a matrix representing α, and we have to extract it
by some procedure. We’ll see how to do this soon.

Example 5.9. Let

A =

[
−6 6
−12 11

]
.

The vector v =

[
3
4

]
satisfies

[
−6 6
−12 11

] [
3
4

]
= 2

[
3
4

]
,

so is an eigenvector with eigenvalue 2. Similarly, the vector w =

[
2
3

]
is an eigenvector

with eigenvalue 3.
If we knew that, for example, 2 is an eigenvalue of A, then we could find a corre-

sponding eigenvector

[
x
y

]
by solving the linear equations

[
−6 6
−12 11

] [
x
y

]
= 2

[
x
y

]
.

In the next-but-one section, we will see how to find the eigenvalues, and the fact that
there cannot be more than n of them for an n× n matrix.

5.4 Diagonalisability

Some linear maps have a particularly simple representation by matrices.
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Definition 5.10. The linear map α on V is diagonalisable if and only if there is a basis
of V consisting of eigenvectors of α.

Suppose that v1, . . . , vn is such a basis showing that α is diagonalisable, and that
A = (aij) is the matrix representing α in this basis. Since aij = 0 whenever i 6= j, we
have that A is diagonal. (Note that the diagonal entries of A are the eigenvalues of α.)
Conversely, if the matrix A is diagonal then all the basis vectors are eigenvectors. So we
have:

Proposition 5.11. The linear map α on V is diagonalisable if there is a basis of V
relative to which the matrix representing α is a diagonal matrix.

Example 5.12. The matrix from Example 5.9 is diagonalisable, as the two eigenvectors
we computed there do form a basis of R2.

The matrix

[
1 2
0 1

]
is not diagonalisable. It is easy to see that its only eigenvalue

is 1, and the only eigenvectors are scalar multiples of
[
1 0

]>
. So we cannot find a basis

of eigenvectors.

Before looking at some equivalent characterisations of diagonalisability, we require a
preparatory lemma.

Lemma 5.13. Let v1, . . . , vr be eigenvectors of α with distinct eigenvalues λ1, . . . , λr.
Then v1, . . . , vr are linearly independent.

Proof. Suppose to the contrary that v1, . . . , vr are linearly dependent, so that there exists
a linear relation

c1v1 + · · ·+ crvr = 0, (5.2)

with coefficients ci not all zero. Some of these coefficients may be zero; choose a relation
with the smallest number of non-zero coefficients. It is clear that there must be at least
two non-zero coefficients. Suppose that c1 6= 0. (If c1 = 0 just re-number the eivenvectors
and their coefficients.) Now, applying α to both sides of (5.2) and using the fact that
α(vi) = λivi, we get

α(c1v1 + · · ·+ crvr) = c1α(v1) + · · ·+ crα(vr) = c1λ1v1 + · · ·+ crλrvr = 0.

Subtracting λ1 times equation (5.2) from the last equation we get

c2(λ2 − λ1)v2 + · · ·+ cr(λr − λ1)vr = 0.

Now this equation has one fewer non-zero coefficient than the one we started with, which
was assumed to have the smallest possible number. And since we started with at least
two non-zero coefficients, not all the coefficients in this new identity are zero. So the
linear dependency (5.2) is not minimal, contrary to our assumption. So the eigenvectors
must have been linearly independent.

Note that Lemma 5.13 implies, in particular, that a linear map α : V → V has at
most n distinct eigenvalues, where n = dim(V ).

Theorem 5.14. Suppose α : V → V is a linear map, and let λ1, . . . , λr be the distinct
eigenvalues of α. Then the following are equivalent:
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(a) α is diagonalisable;

(b) V = E(λ1, α)⊕ · · · ⊕ E(λr, α) is the direct sum of eigenspaces of α;

(c) α = λ1π1 + · · ·+λrπr, where π1, . . . , πr are projections satisfying π1 + · · ·+πr = I
and πiπj = 0 for i 6= j.

Proof. We just prove the equivalence of (a) and (b) in this module.
(a)⇒ (b). If α is diagonalisable, then there is a basis of V composed of eigenvectors

of α. Each of these basis vectors lies in one of the eigenspaces; thus, V = E(λ1, α) +
· · ·+ E(λr, α). We need to show that this sum is actually a direct sum. If some vector
v ∈ V may be expressed in two different ways u1 + · · · + ur = u′1 + · · · + u′r, with
ui, u

′
i ∈ E(λi, α), for i = 1, . . . , r, then (u1 − u′1) + · · · + (ur − u′r) = 0. Each of these

terms must be zero, otherwise we would have a non-trivial linear dependency between
eigenvectors with distinct eigenvectors, which is disallowed by Lemma 5.13.

(b)⇒ (a). Let Bi be a basis for E(λi, α) for i = 1, . . . , r. Then, by Proposition 1.28,
B = B1 ∪ · · · ∪ Br is a basis for V ; it is clearly composed of eigenvectors of α.

Example 5.15. Continuing our previous exercise, our matrix A =

[
−6 6
−12 11

]
is diag-

onalisable, since the eigenvectors

[
3
4

]
and

[
2
3

]
are linearly independent, and so form a

basis for R. Indeed, we see that[
−6 6
−12 11

] [
3 2
4 3

]
=

[
3 2
4 3

] [
2 0
0 3

]
,

so that AP = PD where

P =

[
3 2
4 3

]
and D =

[
2 0
0 3

]
.

Note that the columns of P are the eigenvectors of A, and D is a diagonal matrix formed
from the eigenvalues of A. (Of course, we must list the eigenvectors and the eigenvalues
in a consistent order!) Also note that P−1AP = D, so A is similar to a diagonal matrix.
Since A = PDP−1, we may write A as

A =

[
−6 6
−12 11

]
=

[
3 2
4 3

] [
2 0
0 3

] [
3 −2
−4 3

]
.

Furthermore, we can find two projection matrices as follows:

Π1 =

[
3 2
4 3

] [
1 0
0 0

] [
3 −2
−4 3

]
=

[
9 −6
12 −8

]
Π2 =

[
3 2
4 3

] [
0 0
0 1

] [
3 −2
−4 3

]
=

[
−8 6
−12 9

]
.

(Note that we have replacedD in the previous expression for A by a matrices with a single
1 on the diagonal.) You can check directly that Π2

1 = Π1, Π2
2 = Π2, Π1Π2 = Π2Π1 = O,

Π1 + Π2 = I, and 2Π1 + 3Π2 = A. You should stop for a moment to think about why
this calculational method works.
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5.5 Characteristic and minimal polynomials

We defined the determinant of a square matrix A. Now we want to define the determinant
of a linear map α. The obvious way to do this is to take the determinant of any matrix
representing α. For this to be a good definition, we need to show that it doesn’t matter
which matrix we take; in other words, that det(A′) = det(A) if A and A′ are similar.
But, if A′ = P−1AP , then

det(P−1AP ) = det(P−1) det(A) det(P ) = det(A),

since det(P−1) det(P ) = 1. So our plan will succeed:

Definition 5.16. (a) The determinant det(α) of a linear map α : V → V is the
determinant of any matrix representing α.

(b) The characteristic polynomial pα(x) of a linear map α : V → V is the characteristic
polynomial of any matrix representing α.

(c) The minimal polynomial mα(x) of a linear map α : V → V is the monic polynomial
of smallest degree that is satisfied by α.

The second part of the definition is OK, by the same reasoning as the first, since
pA(x) is just a determinant. Specifically, the characteristic polynomial of a matrix
A′ = P−1AP similar to A is

pA′(x) = det(xI − P−1AP )

= det(P−1(xI −A)P )

= det(P−1) det(xI −A) det(P )

= det(xI −A)

= pA(x).

The third part of the definition also requires care. We know from that Cayley-Hamilton
Theorem that there is some polynomial (namely the characteristic polynomial) that
is satisfied by α. But is the minimal polynomial, as defined, unique? Well, suppose
that there were two different monic polynomials mα(x) and m′α(x) of minimum degree
satisfying mα(α) = m′α(α) = 0. Then the polynomial (mα − m′α)(x) satisfies (mα −
m′α)(α) = mα(α) −m′α(α) = 0, and is of lower degree than mα(x) or m′α(x). Since we
can make this polynomial monic by multiplication by an appropriate scalar, this is a
contradiction to minimality of mα(x). The next result gives more information.

Proposition 5.17. For any linear map α on V , its minimal polynomial mα(x) divides
its characteristic polynomial pα(x) (as polynomials).

Proof. Suppose not; then we can divide pα(x) by mα(x), getting a quotient q(x) and
non-zero remainder r(x); that is,

pα(x) = mα(x)q(x) + r(x).

Substituting α for x, using the fact that pα(α) = mα(α) = 0, we find that r(α) = 0. But
the degree of r is less than the degree of mα, so this contradicts the definition of mα as
the polynomial of least degree satisfied by α.



52 CHAPTER 5. LINEAR MAPS ON A VECTOR SPACE

Theorem 5.18. Let α be a linear map on V . Then the following conditions are equiv-
alent for an element λ of K:

(a) λ is an eigenvalue of α;

(b) λ is a root of the characteristic polynomial of α;

(c) λ is a root of the minimal polynomial of α.

Example 5.19. This gives us a recipe to find the eigenvalues of α: take a matrix A
representing α; write down its characteristic polynomial pA(x) = det(xI − A); and find
the roots of this polynomial. In our earlier example,∣∣∣∣x+ 6 −6

12 x− 11

∣∣∣∣ = (x+ 6)(x− 11) + 72 = x2 − 5x+ 6 = (x− 2)(x− 3),

so the eigenvalues are 2 and 3, as we found.

Proof of Theorem 5.18. (a) ⇒ (c). Let λ be an eigenvalue of α with eigenvector v. We
have α(v) = λv. By induction, αk(v) = λkv for any k, and so f(α)(v) = f(λ) v for any
polynomial f . Choosing f = mα, we have mα(α)(v) = mα(λ) v. But mα(α) = 0 by
definition, so mα(λ) v = 0. Since v 6= 0, we have mα(λ) = 0, as required.

(c) ⇒ (b). Suppose that λ is a root of mα(x). Then (x − λ) divides mα(x). But
mα(x) divides pα(x), by Proposition 5.17, so (x − λ) divides pα(x), whence λ is a root
of pα(x).

(b) ⇒ (a). Suppose that pα(λ) = 0, that is, det(λI − α) = 0. Then λI − α is not
of full rank (i.e., the dimension of Im(λI − α) is strictly less than dim(V )), so kernel of
λI −α has dimension greater than zero. Pick a non-zero vector v in Ker(λI −α). Then
(λI − α)v = 0, so that α(v) = λv; that is, λ is an eigenvalue of α.

Using this result, we can give a necessary and sufficient condition for α to be diago-
nalisable.

Theorem 5.20. The linear map α on V is diagonalisable if and only if its minimal
polynomial is the product of distinct linear factors.

Proof. Suppose first that α is diagonalisable. By definition, there is a basis v1, . . . , vn
for V consisting of eigenvectors of α. Suppose the distinct eigenvalues of α are λ1, . . . , λr.
(As the eigenspaces of α may have dimension greater than one, r may be strictly smaller
than n.) Consider the polynomial p(x) = (x − λ1)(x − λ2) · · · (x − λr), which is cer-
tainly the product of distinct linear factors. We claim that p(x) is in fact the minimal
polynomial of α.

Let vi be any of the basis vectors, and suppose its corresponding eigenvalue is λj .
Then

(α− λ1I)(α− λ2I) · · · (α− λrI)vi = (λj − λ1)(λj − λ2) · · · (λj − λr)vi = 0,

since one of the factors in the product is 0. Since p(α) takes all of the basis vectors to
to the zero vector, we must have p(α) = 0. All the eigenvalues of α are roots of the
minimal polynomial, so the minimal polynomial must have degree at least r. Since p(x)
has degree r, it is the minimal polynomial. This completes the “only if” part.
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Now suppose that the minimal polynomial is a product of distinct linear factors, i.e.,

mα(x) = (x− λ1)(x− λ2) · · · (x− λr),

where λ1, . . . , λr are the distinct eigenvalues of α. (Recall that the roots of the minimal
polynomial are precisely the eigenvalues of α.) Since mα(x) is the minimal polynomial,
we have mα(α) = 0, in other words

(α− λ1I)(α− λ2I) · · · (α− λrI) = 0. (5.3)

Recall that the nullity ν(β) of a linear map β is the dimension of its kernal. Then

ν(α−λ1I)+ν(α−λ2I)+· · ·+ν(α−λrI) ≥ ν
(
(α−λ1I)(α−λ2I) · · · (α−λrI)

)
= n, (5.4)

where we use the inequality ν(β)+ν(γ) ≥ ν(βγ) for the product of linear maps β, γ (see
question 5(a) of Assignment 6 from a previous year). The equality is from (5.3).

Observe that Ker(α − λjI) is equal to E(λj , α), the eigenspace corresponding to
eigenvalue λj . Let W = E(λ1, α)+E(λ2, α)+· · ·+E(λr, α). Suppose u1 ∈ E(λ1, α), u2 ∈
E(λ2, α), . . ., ur ∈ E(λr, α) are vectors satisfying u1+u2+ · · ·+ur = 0. By Lemma 5.13,
we must have u1 = u2 = · · · = ur = 0. Then we deduce from Lemma 1.27 that W is
actually a direct sum of the subspaces, i.e., W = E(λ1, α) ⊕ E(λ2, α) ⊕ · · · ⊕ E(λr, α).
Finally,

n ≤ dim(E(λ1, α)) + dim(E(λ2, α)) + · · ·+ dim(E(λr, α)) = dim(W ) ≤ dim(V ) = n.

where the first inequality is from (5.4) and the equality is from Lemma 1.28(b). Thus
W = V and V is the direct sum of the eigenspaces of α. It follows from Theorem 5.14
that α is diagonalisable. This completes the “if” part, and the proof.

So how, in practice, do we “diagonalise” a matrix A, that is, find an invertible
matrix P such that P−1AP = D is diagonal? We saw an example of this earlier. The
matrix equation can be rewritten as AP = PD, from which we see that the columns of P
are the eigenvectors of A. So the procedure is: Find the eigenvalues of A, and find a basis
of eigenvectors; then let P be the matrix which has the eigenvectors as columns, and D
the diagonal matrix whose diagonal entries are the eigenvalues. Then P−1AP = D.

How do we find the minimal polynomial of a matrix? We know that it divides the
characteristic polynomial, and that every root of the characteristic polynomial is a root
of the minimal polynomial; then it’s trial and error. For example, if the characteristic
polynomial is (x−1)2(x−2)3, then the minimal polynomial must be one of (x−1)(x−2)
(this would correspond to the matrix being diagonalisable), (x−1)2(x−2), (x−1)(x−2)2,
(x − 1)2(x − 2)2, (x − 1)(x − 2)3 or (x − 1)2(x − 2)3. If we try them in this order, the
first one to be satisfied by the matrix is the minimal polynomial.

Example 5.21. Consider first the matrix

A =

0 1 0
0 0 1
1 0 0

 .
The characteristic polynomial is

pA(x) = det(xI −A) =

∣∣∣∣∣∣
x −1 0
0 x −1
−1 0 x

∣∣∣∣∣∣ = x3 − 1 = (x− 1)(x2 + x+ 1).



54 CHAPTER 5. LINEAR MAPS ON A VECTOR SPACE

The polynomial pA(x) does not factor further over R, as two of the roots are complex.
So it seems that, as a linear map on R3, the matrix A does not diagonalise. Indeed the
minimal polynomial is this case is either (x− 1)(x2 + x+ 1) or (x− 1). (It must contain
x− 1 as a factor, as 1 is a root of the characteristic polynomial.) Since A− I 6= O, the
minimal polynomial is in fact (x − 1)(x2 + x + 1), which is not the product of distinct
linear factors.

[An aside. In fact, any irreducible factor of the characteristic polynomial must al-
ways be a factor of the minimal polynomial, so we didn’t really need the case analysis.
However, this fact does not follow easily from anything we have covered in the module.]

This problem can be fixed by extending the field to the complex numbers C. Then
the characteristic polynomial is a product of linear factors, namely, pA(x) = (x− 1)(x−
ω)(x− ω2), where ω = −1

2 +
√
3
2 i. (Note that 1, ω and ω2 are the cube roots of unity.)

By Theorem 5.18, the minimal polynomial mA(x) divides pA(x) and hence mA(x) also
is a product of distinct linear factors. Thus, viewed as a linear map on C3, the matrix
A is diagonalisable, and its diagonal form is

D =

1 0 0
0 ω 0
0 0 ω2

 .
You can check that the eigenvectors are

[
1 1 1

]>
,
[
1 ω ω2

]>
, and

[
1 ω2 ω

]>
. So

the matrix P that diagonalises A, in the sense that D = P−1AP , is

P =

1 1 1
1 ω ω2

1 ω2 ω

 ;

its columns are just the eigenvectors of A taken in order.

In the example just considered, the obstacle to diagonalisation is that the character-
istic polynomial did not have a full set of roots over R; this problem can be dealt with
by extending the field to C. The next example illustrates a deeper problem that can
arise. Consider the matrix

B =

2 1 0
0 2 0
0 0 1

 .
Its characteristic polynomial is pB(x) = (x−2)2(x−1). The minimal polynomial divides
pB(x) and has the same roots, so the possibilities are either mB(x) = (x− 2)(x− 1) or
mB(x) = (x − 2)2(x − 1). Can it be the former? Evaluating (B − 2I)(B − I) we find
that

(B − 2I)(B − I) =

0 1 0
0 0 0
0 0 −1

1 1 0
0 1 0
0 0 0

 =

0 1 0
0 0 0
0 0 0

 6= O.

By a (short!) process of elimination we have found that mA(x) = pA(x) = (x−2)2(x−1).
The minimal polynomial is not a product of distinct linear factors, so the matrix B is
not diagonalisable. This is a more fundamental problem, which cannot be solved by
extending the field.
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5.6 Jordan form

We briefly consider, without proof, a canonical form for matrices over the complex
numbers that deals to some extent with the problem identified iin the previous exercise.

Definition 5.22. (a) A Jordan block J(n, λ) is a matrix of the form

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0

0 0 λ
. . . 0 0

...
. . .

. . .

0 0 0 · · · λ 1
0 0 0 · · · 0 λ


,

that is, it is an n×n matrix with λ on the main diagonal, 1 in positions immediately
above the main diagonal, and 0 elsewhere. (We take J(1, λ) to be the 1× 1 matrix
[λ].)

(b) A matrix is in Jordan form if it can be written in block form with Jordan blocks
on the diagonal and zeros elsewhere.

Theorem 5.23. Over C, any matrix is similar to a matrix in Jordan form; that is, any
linear map can be represented by a matrix in Jordan form relative to a suitable basis.
Moreover, the Jordan form of a matrix or linear map is unique apart from putting the
Jordan blocks in a different order on the diagonal.

Remark 5.24. A matrix over C is diagonalisable if and only if all the Jordan blocks in
its Jordan form have size 1.

Example 5.25. Any 3× 3 matrix over C is similar to one ofλ 0 0
0 µ 0
0 0 ν

 ,
λ 1 0

0 λ 0
0 0 µ

 ,
λ 1 0

0 λ 1
0 0 λ

 ,
for some λ, µ, ν ∈ C (not necessarily distinct).

Notice that the matrix B from the previous example (the one that is not diagonal-
isable) is already in Jordan form.

Though it is beyond the scope of this course, it can be shown that if all the roots
of the characteristic polynomial lie in the field K, then the matrix is similar to one in
Jordan form.

5.7 Trace

Here we meet another function of a linear map, and consider its relation to the eigenvalues
and the characteristic polynomial.

Definition 5.26. The trace Tr(A) of a square matrix A is the sum of its diagonal entries.

Proposition 5.27. (a) For any two n × n matrices A and B, we have Tr(AB) =
Tr(BA).
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(b) Similar matrices have the same trace.

Proof. Let A = (aij) and B = (bij). For part (a), note that

Tr(AB) =
n∑
i=1

(AB)ii =
n∑
i=1

n∑
j=1

aijbji =
n∑
j=1

n∑
i=1

bjiaij =
n∑
j=1

(BA)jj = Tr(BA),

by the rules for matrix multiplication.
For part (b), we just observe that for any invertible matrix P ,

Tr(P−1AP ) = Tr(P−1(AP )) = Tr((AP )P−1) = Tr(A(PP−1)) = Tr(AI) = Tr(A).

The second part of this proposition shows that, if α : V → V is a linear map, then
any two matrices representing α have the same trace; so, as we did for the determinant,
we can define the trace Tr(α) of α to be the trace of any matrix representing α.

The trace and determinant of α are coefficients in the characteristic polynomial of
α.

Proposition 5.28. Let α : V → V be a linear map, where dim(V ) = n, and let pα be
the characteristic polynomial of α, a polynomial of degree n with leading term xn.

(a) The coefficient of xn−1 is −Tr(α), and the constant term is (−1)n det(α).

(b) If α is diagonalisable, then the sum of its eigenvalues (taking account of multiplic-
ities) is Tr(α) and their product is det(α).

Proof. Let A = (aij) be a matrix representing α. We have

pα(x) = det(xI −A) =

∣∣∣∣∣∣∣∣
x− a1,1 −a1,2 . . . −a1,n
−a2,1 x− a2,2 . . . −a2,n

. . .
−an,1 −an,2 . . . x− an,n

∣∣∣∣∣∣∣∣ .
The only way to obtain a term in xn−1 in the determinant is from the product (x −
a1,1)(x − a2,2) · · · (x − an,n) of diagonal entries, taking −ai,i from the ith factor and x
from each of the others. (If we take one off-diagonal term, we would have to have at
least two, so that the highest possible power of x would be xn−2.) So the coefficient of
xn−1 is minus the sum of the diagonal terms.

Putting x = 0, we find that the constant term is pα(0) = det(−A) = (−1)n det(A).
If α is diagonalisable, choose a basis relative to which the matrix A representing α is

diagonal. The diagonal entries λ1, . . . , λn are the eigenvalues of α counted according to
multiplicity. Then Tr(α) = Tr(A) = λ1+· · ·+λn and det(α) = det(A) = λ1λ2 . . . λn.

In part (b) of Proposition 5.28 we don’t actually need that α is diagonslisable; it
enough that the characteristic polynomial is a product of linear factors. Write

pα(x) = (x− λ1)(x− λ2) · · · (x− λn).

Note that the coefficient of xn−1 is minus the sum of the roots, and the constant term
is (−1)n times the product of the roots. Now use part (a) of the proposition.

We conclude with the missing parts of the proof of Theorem 5.14. This does not
form part of the module, and is included for interest only.
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Proof of the missing equivalences in Theorem 5.14. (b)⇒ (c). Proposition 5.5 shows that there
are projections π1, . . . , πr satisfying the conditions of (c), with Im(πi) = E(λi, α). We just need
to check that α and λ1π1 + · · ·+ λrπr are equal. Let v ∈ V be arbitrary. Then,

α(v) = α((π1 + · · ·+ πr)(v))

= α(π1(v) + · · ·+ πr(v))

= α(π1(v)) + · · ·+ α(πr(v))

= λ1π1(v) + · · ·+ λrπr(v)

= (λ1π1 + · · ·+ λrπr)(v),

where the penultimate equality comes from the fact that πi(v) ∈ Im(πi) = E(λi, α), for i =
1, . . . , r. So α = λ1π1 + · · ·+ λrπr, as required.

(c)⇒ (a). Since the projections πi satisfy the conditions of Proposition 5.4, V is the direct
sum of the subspaces Im(πi). We now observe that Im(πi) ⊆ E(λi, α). To see this, take any
u ∈ Im(πi) and consider α(u):

α(u) = (λ1π1 + · · ·+ λrπr)(u) = λ1π1(u) + · · ·+ λrπr(u) = λiu,

where we have used the facts that πi(u) = u and πj(u) = 0, for j 6= i. Thus Im(πi) ⊆ E(λi, α)
and

V = Im(π1) + · · ·+ Im(πr) ⊆ E(λ1, α) + · · ·+ E(λr, α) ⊆ V.

(The containments must of course be equality.) Thus we can choose a basis of V consisting
entirely of eigenvectors of α.

Summary

• When we consider a linear map from a vector space V to itself, there is only
one basis involved, and this makes the situation more interesting than the one
considered in the previous chapter.

• A projection is a linear map whose square is equal to itself (applying a projection
twice gives the same result as applying it once).

• If π is a projection on V then V is the direct sum of Ker(π) and Im(π).

• Suppose V is the direct sum of subspaces U1, U2, . . . , Ur. We can view the subspaces
as images of projections on V with nice properties. The converse is also true.

• Eigenvectors of a linear map α are special vectors: the effect of applying α to an
eigenvector v is to scale v (by the associated eigenvalue). Eigenvectors sharing a
common eigenvalue λ live in a subspace of V : the eigenspace corresponding to λ.

• A linear map α on V is diagonalisable if there is a basis for V consisting entirely
of eigenvectors of α.

• Equivalently, there is a basis of V relative to which the matrix representing α is
diagonal.

• Equivalently, V is the direct sum of eigenspaces of α.

• The characteristic polynomial pα of a linear map α is well defined (it is independent
of the choice of basis). The minimal polynomial mα divides pα and is the smallest
degree monic polynomial satisfying mα(α) = 0.
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• λ is an eigenvalue of α iff it is a root of the characteristic polynomial of α iff it is
a root of the minimal polynomial of α.

• A linear map is diagonalisable iff its minimal polynomial factors into distinct linear
factors.

• Matrices that are not diagonalisable can at least be transformed into Jordan (near-
diagonal) form.

• The trace of a matrix is another scalar associated with a matrix that is invariant
under similarity (and hence makes sense for linear maps).



Chapter 6

Linear and quadratic forms

Cut out the dual space.
In this chapter we examine “forms”, that is, functions from a vector space V to its

field, which are either linear or quadratic. The linear forms comprise the dual space of
V ; we look at this and define dual bases and the adjoint of a linear map (corresponding
to the transpose of a matrix).

Quadratic forms make up the bulk of the chapter. We show that we can change
the basis to put any quadratic form into “diagonal form” (with squared terms only), by
a process generalising “completing the square” in elementary algebra, and that further
reductions are possible over the real and complex numbers.

Before looking at quadratic forms, what is a linear form?

Definition 6.1. Let V be a vector space over K. A linear form on V is a linear map
from V to K, where K is regarded as a 1-dimensional vector space over K: that is, it is
a function from V to K satisfying

f(v1 + v2) = f(v1) + f(v2), f(cv) = cf(v)

for all v1, v2, v ∈ V and c ∈ K.

If dim(V ) = n, then a linear form is represented by a 1× n matrix over K, that is, a

row vector of length n over K. If f =
[
a1 a2 . . . an

]
, then for v =

[
x1 x2 . . . xn

]>
we have

f(v) =
[
a1 a2 . . . an

]

x1
x2
...
xn

 = a1x1 + a2x2 + · · ·+ anxn.

Conversely, any row vector of length n represents a linear form on Kn.

Definition 6.2. Linear forms can be added and multiplied by scalars in the obvious
way:

(f1 + f2)(v) = f1(v) + f2(v), (cf)(v) = cf(v).

So they form a vector space, which is called the dual space of V and is denoted by V ∗.

Cut out the material on the dual space, basis of dual space, adjoints. Note
that this means we have to take more care when introducing adjoint operator
later on.

59
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A lot of applications of mathematics involve dealing with quadratic forms: you meet
them in statistics (analysis of variance) and mechanics (energy of rotating bodies), among
other places. In this section we begin the study of quadratic forms.

6.1 Quadratic forms

For almost everything in the remainder of this chapter, we assume that

the characteristic of the field K is not equal to 2.

This means that 2 6= 0 in K, so that the element 1/2 exists in K. Of our list of “standard”
fields, this only excludes F2, the integers mod 2. (For example, in F5, we have 1/2 = 3.)

A quadratic form as a function which, when written out in coordinates, is a polyno-
mial in which every term has total degree 2 in the variables. For example,

q(x, y, z) = x2 + 4xy + 2xz − 3y2 − 2yz − z2

is a quadratic form in three variables.
We will meet a formal definition of a quadratic form later in the chapter, but for the

moment we take the following.

Definition 6.3. A quadratic form in n variables x1, . . . , xn over a field K is a polynomial

n∑
i=1

n∑
j=1

aijxixj

in the variables in which every term has degree two (that is, is a multiple of xixj for
some i, j).

In the above representation of a quadratic form, we see that if i 6= j, then the term
in xixj comes twice, so that the coefficient of xixj is aij +aji. We are free to choose any
two values for aij and aji as long as they have the right sum; but we will always make
the choice so that the two values are equal. That is, to obtain a term cxixj , we take
aij = aji = c/2. (This is why we require that the characteristic of the field is not 2.)

Any quadratic form is thus represented by a symmetric matrix A with (i, j) entry aij
(that is, a matrix satisfying A = A>). This is the third job of matrices in linear algebra:
Symmetric matrices represent quadratic forms.

We think of a quadratic form as defined above as being a function from the vector
space Kn to the field K. It is clear from the definition that

q(x1, . . . , xn) = v>Av, where v =

x1...
xn

 .
Now if we change the basis for V , we obtain a different representation for the same

function q. The effect of a change of basis is a linear substitution v = Pv′ on the
variables, where P is the transition matrix between the bases. Thus we have

v>Av = (Pv′)>A(Pv′) = (v′)>(P>AP )v′,

so we have the following:
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Proposition 6.4. A basis change with transition matrix P replaces the symmetric ma-
trix A representing a quadratic form by the matrix P>AP .

As for other situations where matrices represented objects on vector spaces, we make
a definition:

Definition 6.5. Two symmetric matrices A,A′ over a field K are congruent if A′ =
P>AP for some invertible matrix P .

Proposition 6.6. Two symmetric matrices are congruent if and only if they represent
the same quadratic form with respect to different bases.

Our next job, as you may expect, is to find a canonical form for symmetric matrices
under congruence; that is, a choice of basis so that a quadratic form has a particularly
simple shape. We will see that the answer to this question depends on the field over
which we work. We will solve this problem for the fields of real and complex numbers.

6.2 Reduction of quadratic forms

Even if we cannot find a canonical form for quadratic forms, we can simplify them very
greatly.

Theorem 6.7. Let q be a quadratic form in n variables x1, . . . , xn, over a field K whose
characteristic is not 2. Then by a suitable linear substitution to new variables y1, . . . , yn,
we can obtain

q = c1y
2
1 + c2y

2
2 + · · ·+ cny

2
n

for some c1, . . . , cn ∈ K.

Proof. Our proof is by induction on n. We call a quadratic form which is written as in
the conclusion of the theorem diagonal. A form in one variable is certainly diagonal, so
the induction starts. Now assume that the theorem is true for forms in n− 1 variables.
Take

q(x1, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj ,

where aij = aji for i 6= j.

Case 1: Assume that aii 6= 0 for some i. By a permutation of the variables (which is
certainly a linear substitution), we can assume that a11 6= 0. Let

y1 = x1 +
n∑
i=2

(a1i/a11)xi.

Then we have

a11y
2
1 = a11x

2
1 + 2

n∑
i=2

a1ix1xi + q′(x2, . . . , xn),

where q′ is a quadratic form in x2, . . . , xn. That is, all the terms involving x1 in q have
been incorporated into a11y

2
1. So we have

q(x1, . . . , xn) = a11y
2
1 + q′′(x2, . . . , xn),
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where q′′ is the part of q not containing x1, minus q′.
By induction, there is a change of variable so that

q′′(x2, . . . , xn) =

n∑
i=2

ciy
2
i ,

and so we are done (taking c1 = a11).

Case 2: All aii are zero, but aij 6= 0 for some i 6= j. Now

xixj = 1
4

(
(xi + xj)

2 − (xi − xj)2
)
,

so taking x′i = 1
2(xi + xj) and x′j = 1

2(xi − xj), we obtain a new form for q which does
contain a non-zero diagonal term. Now we apply the method of Case 1.

Case 3: All aij are zero. Now q is the zero form, and there is nothing to prove: take
c1 = · · · = cn = 0.

Example 6.8. Consider the quadratic form q(x, y, z) = x2 + 2xy + 4xz + y2 + 4z2. We
have

(x+ y + 2z)2 = x2 + 2xy + 4xz + y2 + 4z2 + 4yz,

and so

q = (x+ y + 2z)2 − 4yz

= (x+ y + 2z)2 − (y + z)2 + (y − z)2

= u2 + v2 − w2,

where u = x+ y+ 2z, v = y− z, w = y+ z. Otherwise said, the matrix representing the
quadratic form, namely

A =

1 1 2
1 1 0
2 0 4


is congruent to the matrix

A′ =

1 0 0
0 1 0
0 0 −1

 .
Can you find an invertible matrix P such that P>AP = A′?

Thus any quadratic form can be reduced to the diagonal shape

α1x
2
1 + · · ·+ αnx

2
n

by a linear substitution. But this is still not a “canonical form for congruence”. For
example, if y1 = x1/c, then α1x

2
1 = (α1c

2)y21. In other words, we can multiply any αi by
any factor which is a perfect square in K.

Over the complex numbers C, every element has a square root. Suppose that
α1, . . . , αr 6= 0, and αr+1 = · · · = αn = 0. Putting

yi =

{
(
√
αi)xi for 1 ≤ i ≤ r,

xi for r + 1 ≤ i ≤ n,
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we have
q = y21 + · · ·+ y2r .

We will see later that r is an “invariant” of q: however we do the reduction, we arrive
at the same value of r.

Over the real numbers R, things are not much worse. Since any positive real num-
ber has a square root, we may suppose that α1, . . . , αs > 0, αs+1, . . . , αs+t < 0, and
αs+t+1, . . . , αn = 0. Now putting

yi =


(
√
αi)xi for 1 ≤ i ≤ s,

(
√
−αi)xi for s+ 1 ≤ i ≤ s+ t,

xi for s+ t+ 1 ≤ i ≤ n,

we get
q = y21 + · · ·+ y2s − y2s+1 − · · · − y2s+t.

Again, we will see later that s and t don’t depend on how we do the reduction. [This is
the theorem known as Sylvester’s Law of Inertia.]

6.3 Quadratic and bilinear forms

The formal definition of a quadratic form looks a bit different from the version we gave
earlier, though it amounts to the same thing. First we define a bilinear form.

Definition 6.9. (a) Let b : V × V → K be a function of two variables from V with
values in K. We say that b is a bilinear form if it is a linear function of each
variable when the other is kept constant: that is,

b(v, w1 + w2) = b(v, w1) + b(v, w2), b(v, cw) = cb(v, w),

with two similar equations involving the first variable. A bilinear form b is sym-
metric if b(v, w) = b(w, v) for all v, w ∈ V .

(b) Let q : V → K be a function. We say that q is a quadratic form if

– q(cv) = c2q(v) for all c ∈ K, v ∈ V ;

– the function b defined by

b(v, w) = 1
2(q(v + w)− q(v)− q(w))

is a bilinear form on V .

Remark 6.10. The bilinear form in the second part is symmetric; and the division by 2
in the definition is permissible because of our assumption that the characteristic of K is
not 2.

If we think of the prototype of a quadratic form as being the function x2, then the
first equation says (cx)2 = c2x2, while the second has the form

1
2((x+ y)2 − x2 − y2) = xy,

and xy is the prototype of a bilinear form: it is a linear function of x when y is constant,
and vice versa.
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Note that the formula b(x, y) = 1
2(q(x + y) − q(x) − q(y)) (which is known as the

polarisation formula) says that the bilinear form is determined by the quadratic term.
Conversely, if we know the symmetric bilinear form b, then we have

2q(v) = 4q(v)− 2q(v) = q(v + v)− q(v)− q(v) = 2b(v, v),

so that q(v) = b(v, v), and we see that the quadratic form is determined by the symmetric
bilinear form. So these are equivalent objects.

If b is a symmetric bilinear form on V and B = (v1, . . . , vn) is a basis for V , then we
can represent b by the n× n matrix A whose (i, j) entry is aij = b(vi, vj). Note that A
is a symmetric matrix. It is easy to see that this is the same as the matrix representing
the quadratic form.

Here is a third way of thinking about a quadratic form. Let V ∗ be the dual space of
V , and let α : V → V ∗ be a linear map. Then for v ∈ V , we have α(v) ∈ V ∗, and so
α(v)(w) is an element of K. The function

b(v, w) = α(v)(w)

is a bilinear form on V . If α(v)(w) = α(w)(v) for all v, w ∈ V , then this bilinear form is
symmetric. Conversely, a symmetric bilinear form b gives rise to a linear map α : V → V ∗

satisfying α(v)(w) = α(w)(v), by the rule that α(v) is the linear map w 7→ b(v, w).
Now given α : V → V ∗, choose a basis B for V , and let B∗ be the dual basis for V ∗.

Then α is represented by a matrix A relative to the bases B and B∗.
Summarising:

Proposition 6.11. The following objects are equivalent on a vector space over a field
whose characteristic is not 2:

(a) a quadratic form on V ;

(b) a symmetric bilinear form on V ;

(c) a linear map α : V → V ∗ satisfying α(v)(w) = α(w)(v) for all v, w ∈ V .

Moreover, if corresponding objects of these three types are represented by matrices as
described above, then we get the same matrix A in each case. Also, a change of basis in
V with transition matrix P replaces A by P>AP .

Proof. Only the last part needs proof. We have seen it for a quadratic form, and the
argument for a bilinear form is the same. So suppose that α : V → V ∗, and we change
from B to B′ in V with transition matrix P . We saw that the transition matrix between
the dual bases in V ∗ is (P>)−1. Now go back to the discussion of linear maps between
different vector spaces in Chapter 4. If α : V → W and we change bases in V and
W with transition matrices P and Q, then the matrix A representing α is changed to
Q−1AP . Apply this with Q = P>)−1, so that Q−1 = P>, and we see that the new
matrix is P>AP , as required.

6.4 Canonical forms for complex and real forms

Finally, in this section, we return to quadratic forms (or symmetric matrices) over the
real and complex numbers, and find canonical forms under congruence. Recall that two
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symmetric matrices A and A′ are congruent if A′ = P>AP for some invertible matrix P ;
as we have seen, this is the same as saying that the represent the same quadratic form
relative to different bases.

Theorem 6.12. Any n × n complex symmetric matrix A is congruent to a matrix of
the form [

Ir O
O O

]
for some r. Moreover, r = rank(A), and so A is congruent to two matrices of this form
then they both have the same value of r.

Proof. We already saw that A is congruent to a matrix of this form. Moreover, if P is
invertible, then so is P>, and so

r = rank(P>AP ) = rank(A)

as claimed.

The next result is Sylvester’s Law of Inertia.

Theorem 6.13. Any n × n real symmetric matrix A is congruent to a matrix of the
form Is O O

O −It O
O O O


for some s, t. Moreover, if A is congruent to two matrices of this form, then they have
the same values of s and of t.

Proof. Again we have seen that A is congruent to a matrix of this form. Arguing as in
the complex case, we see that s + t = rank(A), and so any two matrices of this form
congruent to A have the same values of s+ t.

Suppose that two different reductions give the values s, t and s′, t′ respectively, with
s + t = s′ + t′. Suppose for a contradiction that s < s′. Now let q be the quadratic
form represented by A. Then we are told that there are linear functions y1, . . . , yn and
z1, . . . , zn of the original variables x1, . . . , xn of q such that

q = y21 + · · ·+ y2s − y2s+1 − · · · − y2s+t = z21 + · · ·+ z2s′ − z2s′+1 − · · · − z2s+t.

Now consider the equations

y1 = 0, . . . , ys = 0, zs′+1 = 0, . . . zn = 0

regarded as linear equations in the original variables x1, . . . , xn. The number of equations
is s+(n−s′) = n−(s′−s) < n. According to a lemma from much earlier in the course (we
used it in the proof of the Exchange Lemma!), the equations have a non-zero solution.
That is, there are values of x1, . . . , xn, not all zero, such that the variables y1, . . . , ys and
zs′+1, . . . , zn are all zero.

Since y1 = · · · = ys = 0, we have for these values

q = −y2s+1 − · · · − y2n ≤ 0.
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But since zs′+1 = · · · = zn = 0, we also have

q = z21 + · · ·+ z2s′ > 0.

But this is a contradiction. So we cannot have s < s′. Similarly we cannot have s′ < s
either. So we must have s = s′, as required to be proved.

We saw that s+ t is the rank of A. The number s− t is known as the signature of A.
Of course, both the rank and the signature are independent of how we reduce the matrix
(or quadratic form); and if we know the rank and signature, we can easily recover s and
t.

You will meet some further terminology in association with Sylvester’s Law of Inertia.
Let q be a quadratic form in n variables represented by the real symmetric matrix A.
Let q (or A) have rank s+ t and signature s− t, that is, have s positive and t negative
terms in its diagonal form. We say that q (or A) is

• positive definite if s = n (and t = 0), that is, if q(v) ≥ 0 for all v, with equality
only if v = 0;

• positive semidefinite if t = 0, that is, if q(v) ≥ 0 for all v;

• negative definite if t = n (and s = 0), that is, if q(v) ≤ 0 for all v, with equality
only if v = 0;

• negative semi-definite if s = 0, that is, if q(v) ≤ 0 for all v;

• indefinite if s > 0 and t > 0, that is, if q(v) takes both positive and negative values.



Chapter 7

Inner product spaces

Ordinary Euclidean space is a 3-dimensional vector space over R, but it is more than
that: the extra geometric structure (lengths, angles, etc.) can all be derived from a
special kind of bilinear form on the space known as an inner product. We examine inner
product spaces and their linear maps in this chapter.

One can also define inner products for complex vector spaces, but some adjustments
need to be made. To avoid overloading the module, we will concentrate on real inner
product spaces, and mention the adjustments required for complex spaces only briefly.

7.1 Inner products and orthonormal bases

Definition 7.1. An inner product on a real vector space V is a function that takes each
pair of vectors v, w ∈ V to a real number v · w satisfying the following conditions:

• The inner product is symmetric, that is, v · w = w · v for all v, w ∈ V .

• The inner product is bilinear, that is, linear in the first variable when the second
is kept constant and vice versa. (Symbolically, (v + v′) · w = v · w + v′ · w and
(av) · w = a(v · w) for all v, v′, w ∈ V and a ∈ R.)

• The inner product is positive definite, that is, v · v ≥ 0 for all v ∈ V , and v · v = 0
if and only if v = 0.

An inner product is sometimes called a dot product because of this notation.

Note that we don’t need to insist that v ·(w+w′) = v ·w+v ·w′ and v ·(aw) = a(v ·w),
for all v, w,w′ ∈ V and a ∈ R, since these facts follow by symmetry from linearity in the
first variable.

Geometrically, in a real vector space, we might define v · w = |v| |w| cos θ, where |v|
and |w| are the lengths of v and w, and θ is the angle between v and w. But we can
easily reverse the order of doing things and define lengths and angles in terms of the
inner product. Given an inner product on V , we define the length of any vector v ∈ V
to be

|v| =
√
v · v,

and, for any vectors v, w ∈ V \ {0}, we define the angle between v and w to be θ, where

cos θ =
v · w
|v| |w|

.
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For this definition to make sense, we need to know that

−|v| |w| ≤ v · w ≤ |v| |w|

for any vectors v, w (since cos θ lies between −1 and 1). This is the content of the
Cauchy-Schwarz inequality :

Theorem 7.2. If v, w are vectors in an inner product space then

(v · w)2 ≤ (v · v)(w · w).

Proof. By definition, we have (v+aw) · (v+aw) ≥ 0 for any real number a. Expanding,
we obtain

(w · w)a2 + 2(v · w)a+ (v · v) ≥ 0.

This is a quadratic function in a. Since it is non-negative for all real a, either it has no
real roots, or it has two equal real roots; thus its discriminant is non-positive, that is,

(v · w)2 − (v · v)(w · w) ≤ 0,

as required.

Two non-zero vectors u, v are said to be orthogonal if u · v = 0. Certain bases in an
inner product space are particularly convenient to use.

Definition 7.3. A basis (v1, . . . , vn) for an inner product space is called orthonormal if
vi · vj = δi,j (the Kronecker delta) for 1 ≤ i, j ≤ n. Thus, the basis vectors have unit
length and are pairwise orthogonal.

Lemma 7.4. If vectors v1, . . . , vn satisfy vi · vj = δi,j, then they are necessarily linearly
independent.

Proof. Suppose that c1v1 + · · · + cnvn = 0 for some scalars c1, . . . , cn ∈ K. Taking the
inner product of this equation with vi, we have on the left hand side

vi · (c1v1 + · · ·+ cnvn) = c1vi · v1 + · · ·+ civi · vi + · · · cnvi · vn = ci,

and on the left hand side vi · 0 = 0. Thus ci = 0, and this holds for all i.

Theorem 7.5. Let · be an inner product on a real vector space V . Then there is an
orthonormal basis B = (v1, . . . , vn) for V .

The proof involves a constructive method for finding an orthonormal basis, known as
the Gram-Schmidt process. The Gram-Schmidt process was covered in Linear Algebra I,
so we won’t repeat it here. But we should remind ourselves exactly what this algorithm
accomplishes, as it will be important for us later. The input to the algorithm is an
arbitrary basis w1, . . . , wn for a vector space V . The output is an orthonormal basis
v1, . . . , vn for V that satisfies 〈w1, . . . , wi〉 = 〈v1, . . . , vi〉 for all 1 ≤ i ≤ n.

There is essentially only one kind of inner product on a real vector space.

Proposition 7.6. Suppose B is an orthonormal basis for the inner product space V
of dimension n. If we represent vectors in coordinates with respect to B, say [v]B =[
a1 a2 . . . an

]>
and [w]B =

[
b1 b2 . . . bn

]>
, then

v · w = a1b1 + a2b2 + · · ·+ anbn.
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Proof. Let B = (v1, . . . , vn). If v = a1v1 + · · ·+ anvn and w = b1v1 + · · ·+ bnvn, then

v · w = (a1v1 + · · ·+ anvn) · (b1v1 + · · ·+ bnvn) = a1b1 + · · ·+ anbn,

since all the cross terms are zero.

Definition 7.7. The inner product on Rn for which the standard basis is orthonormal
(that is, the one given in the above proposition) is called the standard inner product
on Rn.

Remark 7.8. If we reflect for a moment, we see that some changes must be made to deal
with inner product spaces over C. If V is a vector space over C and v ∈ V any non-zero
vector, then bilinearity of the inner product would imply (iv) · (iv) = i2(v · v) = −(v · v).
But then it cannot be the case that both (iv) · (iv) and v · v are positive real numbers,
violating the requirement that the inner product should be positive definite. The fix is
demand that the inner product satisfies conjugate symmetry, i.e., v · w = w · v rather
than symmetry. (Overline here denotes complex conjugation.) A knock-on effect is that
if we demand (av) ·w = a(v ·w) then, necessarily, we must have v · (aw) = ā(v ·w). This
follows from the chain of equalities

v · (aw) = (aw) · v = a(w · v) = ā(w · v) = ā(v · w).

We describe this situation by saying that the inner product is “sesquilinear”. Note that
these changes solve the problem we identified earlier, since now (iv) · (iv) = i(−i)v · v =
v ·v. Note that the inner product of a vector with itself is certainly real, since v ·v = v · v.

7.2 Adjoints and orthogonal linear maps

Definition 7.9. Let V be an inner product space, and α : V → V a linear map. Then
the adjoint of α is the linear map α∗ : V → V defined by

v · α∗(w) = α(v) · w, for all v ∈ V . (7.1)

Given w, why should there exist a vector α∗(w) satisfying (7.1), and why should it be
unique? If we fix w then the right hand side of (7.1) is a linear functional of v, that is, a
function V → R that is linear in its argument. There is a result, the Riesz Representation
Theorem, that states that every linear functional in v has a unique representation as v ·u
for some u ∈ V . Thus α∗(w) exists and is unique. The Riesz Representation Theorem
is beyond the scope of the course (though it is not so hard to prove).

Having seen that α∗ is well defined, we need to show that α∗ is linear. This is a short
exercise (on the final previous year assignment), where you are also invited to show also
that α∗∗ = (α∗)∗ satisfies α∗∗ = α.

Proposition 7.10. If α is represented by the matrix A relative to an orthonormal basis
of V , then α∗ is represented by the transposed matrix A>.

Proof. Denote the orthonormal basis by B, and let the coordinate representations of

vectors v and w in the basis B be [v]B =
[
b1, . . . , bn

]>
and [w]B =

[
c1, . . . , cn

]>
; also let

A = (ai,j) and A∗ = (a∗i,j) be the representations of α and α∗ in the basis B. Then (7.1)
expressed in the basis B becomes [v]B · (A∗ [w]B) = (A [v]B) · [w]B, i.e.,

n∑
i=1

bi

n∑
j=1

a∗i,jcj =
n∑
j=1

(
n∑
i=1

aj,ibi

)
cj ,
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i.e.,
n∑
i=1

n∑
j=1

bicja
∗
i,j =

n∑
i=1

n∑
j=1

bicjaj,i, (7.2)

Since (7.1) holds for all v and w, and hence (7.2) holds for all [v]B and [w]B, we can set
bi = 1 and bk = 0 for all k 6= i, and also cj = 1 and ck = 0 for all k 6= j, to deduce from
the above equation that a∗i,j = aj,i. Thus A∗ is the transpose of A.

Example 7.11. The matrix

A =

 1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0
0 0 1


represents a clockwise (looking down on the x, y-plane) rotation by π/4 about the z-axis
in R3. Its adjoint is

A∗ = A> =

1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1

 ,
and represents a rotation by π/4 anticlockwise.

Now we define two important classes of linear maps on V .

Definition 7.12. Let α be a linear map on an inner product space V .

(a) α is self-adjoint if α∗ = α.

(b) α is orthogonal if it is invertible and α∗ = α−1.

There are several ways to look at orthogonal maps.

Theorem 7.13. The following are equivalent for a linear map α on an inner product
space V :

(a) α is orthogonal;

(b) α preserves the inner product, that is, α(v) · α(w) = v · w;

(c) α maps any orthonormal basis of V to an orthonormal basis.

Proof. (a) ⇒ (b). Suppose α is orthogonal, so that α∗α is the identity map. By the
definition of adjoint,

α(v) · α(w) = v · α∗(α(w)) = v · w.

(b) ⇒ (c). Suppose that (v1, . . . , vn) is an orthonormal basis, that is, vi · vj = δi,j
for all i, j. If (b) holds, then α(vi) ·α(vj) = vi · vj = δi,j , so that (α(v1), . . . , α(vn)) is an
orthonormal basis, and (c) holds.

(c) ⇒ (a). Suppose that α maps orthonormal basis (v1, . . . , vn) to some other or-
thonormal basis (α(v1), . . . , α(vn)). We want to show that α∗α is the identity map.
Apply α∗α to basis vector vi and write the result in terms of the basis vectors:

α∗α(vi) = c1v1 + c2v2 + · · ·+ cnvn.
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Now take the inner product of both sides with a basis vector vj :

vj · α∗α(vi) = vj · (c1v1 + c2v2 + · · ·+ cnvn) = cj .

On the other hand,

vj · α∗α(vi) = α(vj) · α(vi) = δij ,

since α(v1), . . . , α(vn) is an orthonormal basis. Thus, ci = 1, and cj = 0 if j 6= i. In
other words, α∗α(vi) = vi. Since α∗α maps every basis vector to itself, it must be the
identity.

What do self-adjoint and orthogonal linear maps look like from the matrix perspec-
tive? The following is immediate from Proposition 7.10.

Corollary 7.14. If α is represented by a matrix A (relative to an orthonormal basis),
then

(a) α is self-adjoint if and only if A is symmetric;

(b) α is orthogonal if and only if A>A = I.

Example 7.15. Returning to Example 7.11, the matrix A> there is the inverse of the
matrix A: the former is an anticlockwise rotation that undoes the clockwise rotation
of the latter. Thus the matrix A represents an orthogonal linear map. Note that A
preserves lengths and angles (see Theorem 7.13(b)) and maps orthonormal bases to
orthonormal bases (see Theorem 7.13(c)).

A convenient characterisation of matrices representing orthogonal maps is the fol-
lowing.

Corollary 7.16. Suppose the linear map α : V → V is represented by the matrix A with
respect to some orthonormal basis B. Then α is orthogonal if and only if the columns of A
(viewed as coordinate representations of vectors relative to basis B) form an orthonormal
basis for V .

Proof. Let A be the representation of linear map α with respect to some orthonormal
basis. Let the columns of A be v̄1, . . . , v̄n, so that

A =
[
v̄1 v̄2 . . . v̄n

]
and A> =


v̄>1
v̄>2
...
v̄>n

 .
We view the column vector v̄j as the coordinate representation of vector vj in V ; in
symbols, v̄j = [vj ]B. Then

A>A =

v̄
>
1 v̄1 . . . v̄>1 v̄n
...

...
v̄>n v̄1 . . . v̄>n v̄n

 =

v1 · v1 . . . v1 · vn
...

...
vn · v1 . . . vn · vn

 ,
where the second equality uses Proposition 7.6. It is clear that A>A = I if and only if
vi ·vj = δi,j , for 1 ≤ i, j ≤ n, i.e., if and only if the vectors v1, . . . , vn are orthonormal.
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Example 7.17. Returning again to Example 7.11, it can be checked that the columns
of A (and hence the rows of A) are an orthonormal basis (viewed as coordinate repre-
sentations relative to the standard basis). Specifically, denoting the columns of A by
v̄1, v̄2, v̄3, we have v̄>1 v̄1 = v̄>2 v̄2 = v̄>3 v̄3 = 1 and v̄>1 v̄2 = v̄>1 v̄3 = v̄>2 v̄3 = 0.

The above definitions suggest an equivalence relation on real matrices:

Definition 7.18. Two real n × n matrices A and A′ are called orthogonally similar if
and only if there is an orthogonal matrix P such that A′ = P−1AP = P>AP .

Here P−1 = P> because P is orthogonal. Note that orthogonal similarity is a refine-
ment of similarity. From Theorem 7.13 we know that orthogonal maps take orthonormal
bases to orthonormal bases; in other words, orthogonal matrices are transition matrices
between orthonormal bases. Thus, two real matrices A and A′ are orthogonally similar
if they represent the same linear map with respect to different orthonormal bases.

It is natural to ask when it is the case that a matrix is orthogonally similar to a
diagonal matrix, and this is the question we turn to in the final chapter.

Summary

• An inner product space is a vector space V equipped with an inner product ·
assigning a scalar from K to every pair of vectors. The inner product for real
vector spaces is symmetric, bilinear and positive definite.

• From the inner product, we can define lengths and angles.

• Two vectors are orthogonal if their inner product is 0. An orthonormal basis of a
vector space V is one in which the basis vectors have unit length and are pairwise
orthogonal.

• An orthonormal basis for V always exists and can be found using Gram-Schmidt
process.

• Relative to a orthonormal basis, an inner product looks like the scalar product
from Linear Algebra I.

• To each linear map α : V → V there corresponds an adjoint map α∗ : V → V .

• The linear map α is self-adjoint if α∗ = α, and orthogonal if α∗ = α−1.

• If α is represented by matrix A relative to an orthonormal basis, the adjoint α∗ is
represented by A>, the transpose of A. Thus, the linear map α is self adjoint if A
is symmetric and orthogonal if AA> = A>A = I.

• An orthogonal linear map preserves the inner product and maps any orthonormal
basis to an orthonormal basis.

• Suppose α is represented by matrix A relative to an orthonormal basis. Then α is
orthogonal iff the columns of A for an orthonormal basis.

• Two square matrices A and A′ are defined to be orthogonally similar iff there exists
an orthogonal matrix P such that A′ = P>AP .



Chapter 8

The Spectral Theorem

We come to one of the most important topics of the course. In simple terms, any real
symmetric matrix is diagonalisable. But there is more to be said!

8.1 Orthogonal projections and orthogonal decompositions

Definition 8.1. We say that two vectors u,w in an inner product space V are orthogonal
if u ·w = 0. We say that two subspaces U and W of V are orthogonal if u ·w = 0 for all
u ∈ U and w ∈W .

Definition 8.2. Let V be a real inner product space, and U a subspace of V . The
orthogonal complement of U is the set of all vectors that are orthogonal to everything
in U :

U⊥ = {w ∈ V : w · u = 0 for all u ∈ U}.

Thus, the orthogonal complement of U is the largest subspace of V that is orthogonal
to U .

Proposition 8.3. If V is a real inner product space and U a subspace of V , with
dim(V ) = n and dim(U) = r, then U⊥ is a subspace of V , and dim(U⊥) = n − r.
Moreover, V = U ⊕ U⊥.

Proof. Proving that U⊥ is a subspace is straightforward from the properties of the inner
product. If w1, w2 ∈ U⊥, then w1 · u = w2 · u = 0 for all u ∈ U , so (w1 + w2) · u = 0 for
all u ∈ U , whence w1 + w2 ∈ U⊥. The argument for scalar multiples is similar.

Now choose a basis (u1, u2, . . . , ur) for U and extend it to a basis (u1, u2, . . . , un)
for V . Then apply the Gram-Schmidt process to this basis (processing the vectors in
the order u1, u2, . . . , un), to obtain an orthonormal basis (v1, . . . , vn) of V . As we noted
in the previous section, the Gram-Schmidt process has the property that 〈v1, . . . , vi〉 =
〈u1, . . . , ui〉 for all 1 ≤ i ≤ n. In particular, the the first r vectors v1, . . . , vr in the
resulting basis form an orthonormal basis for U . The last n − r vectors are orthogonal
to U , and so lie in U⊥. Summarising, we have v1, . . . , vr ∈ U and vr+1, . . . , vn ∈ U⊥.
Since v1, . . . , vn is a basis for V , it follows that every vector in V can be written as the
sum of a vector in U and a vector in U⊥ or, equivalently, V = U + U⊥.

To show that V is actually a direct sum of U and U⊥ we just need to show that
U ∩ U⊥ = {0}. But if u ∈ U and u ∈ U⊥ then u · u = 0 which implies u = 0.

The claim about the dimension of subspaces follows from Lemma 1.28.
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Recall the connection between direct sum decompositions and projections. If we have
projections π1, . . . , πr whose sum is the identity and which satisfy πiπj = 0 for i 6= j,
then the space V is the direct sum of their images. This can be refined in an inner
product space as follows.

Definition 8.4. Let V be an inner product space, A linear map π : V → V is an
orthogonal projection if

(a) π is a projection, that is, π2 = π, and

(b) π is self-adjoint, that is, π∗ = π.

Definition 8.5. Suppose V is an inner product space, and U1, . . . , Ur are subspaces
of V . A direct sum V = U1 ⊕ · · · ⊕ Ur is an orthogonal decomposition of V if Ui is
orthogonal to Uj for all i 6= j.

Proposition 8.6. Suppose π1, π2, . . . , πr are orthogonal projections on an inner product
space V , satisfying

(a) π1 + π2 + · · ·+ πr = I, where I is the identity map, and

(b) πiπj = 0, for i 6= j.

Let Ui = Im(πi), for i = 1, . . . , r. Then V = U1 ⊕ U2 ⊕ · · · ⊕ Ur is an orthogonal
decomposition of V .

Proof. The fact that V is the direct sum of the images of the πi follows from Proposi-
tion 5.4. We only have to prove that Ui and Uj are orthogonal for all i 6= j. Recall that
if π is a projection, then v ∈ Im(π) if and only if π(v) = v. So take ui ∈ Ui and uj ∈ Uj
with i 6= j. Then πi(ui) = ui and πj(uj) = uj and hence

ui · uj = πi(ui) · πj(uj) = ui · π∗i (πj(uj)) = ui · πi(πj(uj)) = 0,

where the second equality is the definition of the adjoint, and the third holds because πi
is self-adjoint.

As with Proposition 5.4, there is a converse.

Proposition 8.7. Suppose V = U1⊕· · ·⊕Ur is an orthogonal decomposition of an inner
product space V . Then there exist orthogonal projections π1, π2, . . . , πr on V satisfying

(a) π1 + π2 + · · ·+ πr = I,

(b) πiπj = 0, for i 6= j, and

(c) Im(πi) = Ui, for all i.

Proof (sketch). From Proposition 5.5 we know that there are projections πi, for 1 ≤ i ≤
r, satisfying conditions (a)–(c). Only one extra thing needs to be checked, namely that
these projections are orthogonal, i.e., that the πi are self adjoint.
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8.2 The Spectral Theorem

The main theorem can be stated in different ways. We list three alternatives here.

Theorem 8.8. If α is a self-adjoint linear map on a real inner product space V , then
there is an orthonormal basis of V consisting of eigenvectors of α. Thus, the eigenspaces
of α form an orthogonal decomposition of V .

Equivalently, we can state the result as follows.

Corollary 8.9. Suppose α and V are as in the previous theorem, and λ1, . . . , λr are the
distinct eigenvalues of α. Then there exist orthogonal projections π1, . . . , πr satisfying

(a) π1 + · · ·+ πr = I,

(b) πiπj = 0, whenever i 6= j, and

(c) α = λ1π1 + · · ·+ λrπr.

Proof of Corollary 8.9. By Theorem 8.8 we known that V has an orthogonal decomposi-
tion V = E(λ1, α)⊕· · ·⊕E(λr, α), where E(λi, α) is the eigenspace correponding to the
eigenvector λi. Then, by Proposition 8.7, there exist orthogonal projections, satisfying
(a) and (b), such that Im(πi) = E(λi, α) for 1 ≤ i ≤ r. Condition (c) then follows from
the following chain of equalities:

α(v) = α(π1(v) + · · ·+ πr(v)) = λ1π1(v) + · · ·+ λrπr(v) = (λ1π1 + · · ·+ λrπr)(v).

Yet another statement of the spectral theorem is in terms of matrices. Since a
symmetric matrix represents a self-adjoint linear map with respect to some orthonormal
basis, e.g., the standard basis of Rn:

Corollary 8.10. Let A be a real symmetric matrix. Then there exists an orthogonal
matrix P such that P−1AP is diagonal. In other words, any real symmetric matrix is
orthogonally similar to a diagonal matrix.

In tackling the proof of Theorem 8.8, we need (briefly) to dip into complex inner
product spaces. Suppose V is a vector space of dimension n over R. We can extend V
to a vector space V C over C as follows. We set V C = {v′ + iv′′ : v′, v′′ ∈ V } and define
vector addition and scalar multiplication in the natural way. Thus, if v = v′ + iv′′ and
w = w′ + iw′′ then

v + w = (v′ + iv′′) + (w′ + iw′′) = (v′ + w′) + i(v′′ + w′′);

and if a = a′ + ia′′ ∈ C then

av = (a′ + ia′′)(v′ + iv′′) = (a′v′ − a′′v′′) + i(a′v′′ + a′′v′).

Similarly, there is a natural (indeed unique) way to extend the inner product from V
to V C:

(v′ + iv′′) · (w′ + iw′′) = v′ · w′ + v′ · (iw′′) + (iv′′) · w′ + (iv′′) · (iw′′)
= v′ · w′ − i(v′ · w′′) + i(v′′ · w′) + v′′ · w′′.



76 CHAPTER 8. THE SPECTRAL THEOREM

(The minus sign in front of one of the terms arises from the fact that an inner product on a
complex inner product space must be sesquilinear: (av)·w = a(v·w) but v·(aw) = ā(v·w),
where ā is the complex conjugate of a!)

Suppose α : V → V is a linear map. The map α extends naturally (indeed uniquely)
to a linear map α : V C → V C defined by α(v) = α(v′)+ iα(v′′). (We are slightly abusing
notation here, by using α to denote both the linear map on V and its extension to V C.)
If α is self-adjoint as a linear map on V then it is self-adjoint as a linear map on V C.
This follows from the identity (v′ + iv′′) · α(w′ + iw′′) = α(v′ + iv′′) · (w′ + iw′′) which
may be verified by expanding both sides. Take care when doing this, to ensure that the
signs are all correct!

Proof of Theorem 8.8. The proof will be by induction on n = dim(V ). There is nothing
to do if n = 1. So we assume that the theorem holds for (n − 1)-dimensional spaces.
The first job is to show that α has an eigenvector.

As mentioned earlier, we may extend α to a linear map α : V C → V C on a complex
vector space. The characteristic polynomial of α viewed as a linear map on V C has
a root λ over the complex numbers. (The so-called “Fundamental Theorem of Alge-
bra” asserts that any polynomial over C has a root.) Let v ∈ Cn be an eigenvector
corresponding to the eigenvalue λ. Since α is self-adjoint,

λ(v · v) = (λv) · v = α(v) · v = v · α(v) = v · (λv) = λ̄(v · v).

(The complex conjugation of λ arises because · is sesquilinear.) Since v · v 6= 0 we see
that λ = λ̄ and hence that λ is real.

Now since α has a real eigenvalue λ, we may choose a real eigenvector v corresponding
to λ, for example, by taking the real part of any complex eigenvector. By multiplying by
a scalar if necessary we can assume that |v| = 1. We are now back in the real world, and
will remain there for the rest of the proof. Let U be the subspace U = {u ∈ V : v ·u = 0}.
This is a subspace of V of dimension n−1, by Proposition 8.3. We claim that α : U → U .
To see this, take any u ∈ U . Then

α(u) · v = u · α∗(v) = u · α(v) = λ(u · v) = 0,

where we use the fact that α is self-adjoint. Hence α(u) ∈ U .
So α restricted to U is a self-adjoint linear map on an (n − 1)-dimensional inner

product space. By the inductive hypothesis, U has an orthonormal basis consisting of
eigenvectors of α. They are all orthogonal to the unit vector v; so, adding v to the basis,
we get an orthonormal basis for V , as required.

The fact that V is a direct sum of eigenspaces comes from Theorem 5.14, so for the
final part of the theorem we just need to show that these eigenspaces are orthogonal.
We could use the orthonormal basis just constructed to prove this but it is easier to go
directly. Suppose v ∈ E(λ, α) and w ∈ E(µ, α) are vectors in distinct eigenspaces. Then
α(v) = λv and α(w) = µw, and

λ(v · w) = λv · w = α(v) · w = v · α∗(w) = v · α(w) = v · µw = µ(v · w),

so, since λ 6= µ, we see that v · w = 0.

Remark 8.11. The theorem is almost a canonical form for real symmetric relations
under the relation of orthogonal congruence. If we require that the eigenvalues occur
in decreasing order down the diagonal, then the result is a true canonical form: each
matrix is orthogonally similar to a unique diagonal matrix with this property.
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Example 8.12. Let

A =

10 2 2
2 13 4
2 4 13

 .
The characteristic polynomial of A is

pA(x) =

∣∣∣∣∣∣
x− 10 −2 −2
−2 x− 13 −4
−2 −4 x− 13

∣∣∣∣∣∣ = (x− 9)2(x− 18),

so the eigenvalues are 9 and 18.
For eigenvalue 18 the eigenvectors satisfy10 2 2

2 13 4
2 4 13

xy
z

 =

18x
18y
18z

 ,
so the eigenvectors are multiples of

[
1 2 2

]>
. Normalising, we can choose a unit

eigenvector
[
1
3

2
3

2
3

]>
.

For the eigenvalue 9, the eigenvectors satisfy10 2 2
2 13 4
2 4 13

xy
z

 =

9x
9y
9z

 ,
that is, x+2y+2z = 0. (This condition says precisely that the eigenvectors are orthogonal
to the eigenvector for λ = 18, as we know.) Thus the eigenspace is 2-dimensional. We
need to choose an orthonormal basis for it. This can be done in many different ways:

for example, we could choose
[
0 1/

√
2 −1/

√
2
]>

and
[
−4/3

√
2 1/3

√
2 1/3

√
2
]>

.
Then we have an orthonormal basis of eigenvectors. We conclude that, if

P =

1/3 0 −4/3
√

2

2/3 1/
√

2 1/3
√

2

2/3 −1/
√

2 1/3
√

2

 ,
then P is orthogonal, and

P>AP =

18 0 0
0 9 0
0 0 9

 .
You might like to check that the orthogonal matrix in the example in the last chapter

of the notes also diagonalises A.

Summary

• Two subspaces U and W are said to be orthogonal if every vector in U is orthogonal
to every vector in W .

• The orthogonal complement U⊥ of a subspace U of a vector space V is the set of
vectors in V that are orthogonal to all vectors in U . It is a subspace of V .
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• If U is a subspace of V then V is the direct sum of U and U⊥.

• A projection is said to be orthogonal if it is self-adjoint.

• A direct sum of subspaces forms an orthogonal decomposition if the subspaces are
orthogonal to each other.

• There is a correspondence between orthogonal decompositions and collections of
orthogonal projections satisfying certain conditions.

• If α is a self-adjoint linear map on a real vector space V then there there is an
orthonormal basis of V composed of eigenvectors of α. (The Spectral Theorem.)

• Equivalently, a real symmetric matrix A is orthogonally similar to a diagonal ma-
trix: P−1AP = D, where P is an orthogonal matrix and D is diagonal.


