MTHG6140 Linear Algebra I1

Coursework 10 Solutions

1. (a) Suppose w,w’ € V and ¢ € K. We need to show that o*(w + w') =
a*(w) + o (w') and a*(cw) = ca*(w). For all v € V' we have

veot(w+w') =

where the first and third equalities are from the definition of adjoint,
the second and fourth use linearity of inner product. Also

v-a(cw) = a(v) - (cw) = c(a(v) -w) =c(v-a(w)) =v - (ca™(w)).

Again, the first and third equalities are from the definition of adjoint,
the second and fourth use linearity of inner product.

Note that if v-w = v-w' for all v € V then w = w'. This is because the
representation of a linear functional ¢ : V' — R in the form p(v) = v-w,
for some fixed w € V, is unique.

(b) For all v € V' we have
v-a™(w)=v- (") (w) =a"(v) - w=wv-a(w),
and the claim follows, as before.

2. A matrix representing a self-adjoint linear map is symmetric, so that the
missing entries in rows 1, 2 and 3 of matrix A are respectively —1, —3 and 2.

The columns of a matrix representing an orthogonal linear map form an
orthonormal basis. Letting B = (b;;) and considering the first column we
find that bf; + b3, + b3, + b3, = 1, ie, b3 =1 - (2> = (3)* - (3)* = 1.
It follows that b;; = j:%. Similar reasoning applied to columns 2, 3 and 4

yields b23 = :i:%, b32 = :i:é and b44 = :t%

We just need to determine the signs. Since column 2 is orthogonal to column
1, we know that b11b19 4 bo1bog + b31b30 + ba1b42 = 0. By trial and error, this
constraint forces the sign of b;; to be negative. Applying similar reasoning

to the remaining columns yields
_ 1 _ 1 _ 1 __5
bll - T b23_67 b32_67 b44__€'
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3.

(a)

Cancellation does not hold for direct sums, so the final step is not valid.
In more detail, it is possible for a vector space V' to have subspaces U,
U' and W such that U # U' and V = U®W = U' @ W. In R? an
example might be U = ([?]), U’ = ([1]) and W = ([}]).

Let u be an arbitrary vector in U. According to the definition of orthog-
onal complement every vector v’ € U+ is orthogonal to u, i.e., u-u' = 0.
We deduce, again from the definition of orthogonal complement, that
u € (U+)*L. Since u € U was arbitrary, we must have U C (U4)L.

It’s not so easy to show inclusion in the other direction directly, so
we take a more oblique approach. By Proposition 7.3, we know that
dim(U) + dim(U+) = n, where n = dim(V). By the same token,
dim(Ut) + dim((U+)%) = n. Putting these two identities together
yields dim(U) = dim((U+)1).

Take a basis B for U. Since U C (U+)* we can extend B to a basis B’
of (U+)+. But dim(U) = dim((U+)1), so in fact B = B'. It follows that
U= (Ut

For u = [al as as a4}T € F4 to be a member of UL we require
w0011 =u-[1 100 =0

These conditions are satisfied precisely when a; = as and a3 = ay.
Therefore, U+ is spanned by [O 01 I}T and [1 10 O}T. In other
words, U = U+!

Proposition 7.3 leads us to expect U @ U+ = Fi. What has gone
wrong? The answer is hinted at in the question. The suggested “inner
product” is not valid, as it fails to be positive definite: there are non-
zero vectors v, for example v = [O 01 1], such that v -v = 0.
This causes the Gram-Schmidt procedure to fail (where?), which in
turn invalidates Proposition 7.3 when applied to vector spaces over the
field F5. Proposition 7.3 holds for real vector spaces and, with a suitable
definition of inner product, for complex vector spaces too.

From the definition of the inner product on V¢,

/

veow= (v + ") (w4 iw")
v "

(

= w) =i W) +i(0" W)+ "W
= (w'-v") — (w ) +i(w ") +w” "
=(w v

w/ /+ //) +7/<w/ . v// _ w// . U/)

and
w-v=(w+w")- (v +iv")
= (w V") —i(w V") +i(w" V) +w”
:(w/.v/_’_w//'/v//)_Z'(w/'/U//_w//.,U/).
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(b) That ot is self-adjoint follows from the sequence of equalities:

v-aC(w) = (v + ") - aC(w + iw")

=W+ ") (a(w) +ia(w"))
a(w) =i aw”)) +i(" - aw) + 0" - a(w”)
(U' w' —i(a(v) - w") +i(a ( ) w') + o) - w”
a(v') +ia(v")) - (W' + ")

a®(v) - w

~.

I ||
Q

6. The characteristic polynomial of A is

r—2 0 0
pa()=det(zl —A)=| 0 x-3 1 |=(z—2)7>*x—4).
0 1 x-3
So the eigenvalues are 2 (with multiplicity 2) and 4.

Letting u = [a b ¢|, the solutions to (A — 4I)u = 0 satisfy a = 0 and
b+ c=0. So we may take

0
vp=|1 / \/5
-1 /\/5
as the first of our orthonormal set of eigenvectors.

The solutions to (A —2I)u = 0 satisfy b—c = 0. So we have a 2-dimensional
eigenspace with a possible orthonormal basis

1/v/2 ~1/
v = | 1/2 and vz = 1/2

1/2 1/2

(There is flexibility in the choice of vy and v3: we just need two orthonormal
vectors whose second and third coordinates are equal, and the above is a
natural choice.)

The required matrix P has vy, vo and v3 as its columns:

0 1/vV2 —1/V2
P=|1/vV2 1/2 1/)2
—1/vV2 1/2  1)2

You may verify that P~'AP = PTAP = D, where

D =

O O =~
o NN O
N OO



7.

(a)

Since « is self-adjoint it may be written as a = \y7y + - - - + A\, 7., where
the m; are (orthogonal) projections satisfying mm; = 0 for all ¢ # j.
Define the linear map 8 by 8 = (A)Y3m + -+ 4+ (\.)Y7,.. Note that
the cube roots of all the eigenvalues exist and are unique. (This doesn’t
work for square roots, which may not be real!) Now note that 5% = a,
using 77 = m; and and m;m; = 0.

Alternatively, choose a basis relative to which the matrix representing a
is diagonal. Now show that you can take the cube root of the diagonal
matrix.

In general, the cube root of « is not unique, since the projections m; are
not unique. for example, both I3 and the matrix

01
00
10

O = O

from Assignment 5 are representations of cube roots of the identity map.

If 3 is required to be self-adjoint then the solution is unique. However,
I don’t know any simple demonstration of this fact.



