MTH6140 Linear Algebra II

Coursework 10 Solutions

1. (a) Suppose $w, w' \in V$ and $c \in \mathbb{K}$. We need to show that $\alpha^*(w + w') = \alpha^*(w) + \alpha^*(w')$ and $\alpha^*(cw) = c\alpha^*(w)$. For all $v \in V$ we have

$$v \cdot \alpha^*(w + w') = \alpha(v) \cdot (w + w')$$

= $\alpha(v) \cdot w + \alpha(v) \cdot w'$
= $v \cdot \alpha^*(w) + v \cdot \alpha^*(w')$
= $v \cdot (\alpha^*(w) + \alpha^*(w')),$

where the first and third equalities are from the definition of adjoint, the second and fourth use linearity of inner product. Also

$$v \cdot \alpha^*(cw) = \alpha(v) \cdot (cw) = c(\alpha(v) \cdot w) = c(v \cdot \alpha^*(w)) = v \cdot (c\alpha^*(w)).$$

Again, the first and third equalities are from the definition of adjoint, the second and fourth use linearity of inner product.

Note that if $v \cdot w = v \cdot w'$ for all $v \in V$ then w = w'. This is because the representation of a linear functional $\varphi : V \to \mathbb{R}$ in the form $\varphi(v) = v \cdot w$, for some fixed $w \in V$, is unique.

(b) For all $v \in V$ we have

$$v \cdot \alpha^{**}(w) = v \cdot (\alpha^{*})^{*}(w) = \alpha^{*}(v) \cdot w = v \cdot \alpha(w),$$

and the claim follows, as before.

2. A matrix representing a self-adjoint linear map is symmetric, so that the missing entries in rows 1, 2 and 3 of matrix A are respectively -1, -3 and 2.

The columns of a matrix representing an orthogonal linear map form an orthonormal basis. Letting $B = (b_{ij})$ and considering the first column we find that $b_{11}^2 + b_{21}^2 + b_{31}^2 + b_{41}^2 = 1$, i.e., $b_{11}^2 = 1 - (\frac{5}{6})^2 - (\frac{1}{6})^2 - (\frac{1}{6})^2 = \frac{1}{4}$. It follows that $b_{11} = \pm \frac{1}{2}$. Similar reasoning applied to columns 2, 3 and 4 yields $b_{23} = \pm \frac{1}{6}$, $b_{32} = \pm \frac{1}{6}$ and $b_{44} = \pm \frac{5}{6}$.

We just need to determine the signs. Since column 2 is orthogonal to column 1, we know that $b_{11}b_{12} + b_{21}b_{22} + b_{31}b_{32} + b_{41}b_{42} = 0$. By trial and error, this constraint forces the sign of b_{11} to be negative. Applying similar reasoning to the remaining columns yields

$$b_{11} = -\frac{1}{2}, \quad b_{23} = \frac{1}{6}, \quad b_{32} = \frac{1}{6}, \quad b_{44} = -\frac{5}{6}$$

- **3.** (a) Cancellation does not hold for direct sums, so the final step is not valid. In more detail, it is possible for a vector space V to have subspaces U, U' and W such that $U \neq U'$ and $V = U \oplus W = U' \oplus W$. In \mathbb{R}^2 an example might be $U = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rangle$, $U' = \langle \begin{bmatrix} 1 \\ 1 \end{bmatrix} \rangle$ and $W = \langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle$.
 - (b) Let u be an arbitrary vector in U. According to the definition of orthogonal complement every vector $u' \in U^{\perp}$ is orthogonal to u, i.e., $u \cdot u' = 0$. We deduce, again from the definition of orthogonal complement, that $u \in (U^{\perp})^{\perp}$. Since $u \in U$ was arbitrary, we must have $U \subseteq (U^{\perp})^{\perp}$. It's not so easy to show inclusion in the other direction directly, so we take a more oblique approach. By Proposition 7.3, we know that $\dim(U) + \dim(U^{\perp}) = n$, where $n = \dim(V)$. By the same token, $\dim(U^{\perp}) + \dim((U^{\perp})^{\perp}) = n$. Putting these two identities together yields $\dim(U) = \dim((U^{\perp})^{\perp})$.

Take a basis \mathcal{B} for U. Since $U \subseteq (U^{\perp})^{\perp}$ we can extend \mathcal{B} to a basis \mathcal{B}' of $(U^{\perp})^{\perp}$. But dim $(U) = \dim((U^{\perp})^{\perp})$, so in fact $\mathcal{B} = \mathcal{B}'$. It follows that $U = (U^{\perp})^{\perp}$.

4. (a) For $u = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}^\top \in \mathbb{F}_2^4$ to be a member of U^\perp we require

 $u \cdot \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^{\top} = u \cdot \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^{\top} = 0.$

These conditions are satisfied precisely when $a_1 = a_2$ and $a_3 = a_4$. Therefore, U^{\perp} is spanned by $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^{\top}$ and $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^{\top}$. In other words, $U = U^{\perp}$!

- (b) Proposition 7.3 leads us to expect $U \oplus U^{\perp} = \mathbb{F}_2^4$. What has gone wrong? The answer is hinted at in the question. The suggested "inner product" is not valid, as it fails to be positive definite: there are non-zero vectors v, for example $v = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$, such that $v \cdot v = 0$. This causes the Gram-Schmidt procedure to fail (where?), which in turn invalidates Proposition 7.3 when applied to vector spaces over the field \mathbb{F}_2 . Proposition 7.3 holds for real vector spaces and, with a suitable definition of inner product, for complex vector spaces too.
- 5. (a) From the definition of the inner product on $V^{\mathbb{C}}$,

$$\begin{aligned} v \cdot w &= (v' + iv'') \cdot (w' + iw'') \\ &= (v' \cdot w') - i(v' \cdot w'') + i(v'' \cdot w') + v'' \cdot w'' \\ &= (w' \cdot v') - i(w'' \cdot v') + i(w' \cdot v'') + w'' \cdot v'' \\ &= (w' \cdot v' + w'' \cdot v'') + i(w' \cdot v'' - w'' \cdot v') \end{aligned}$$

and

$$w \cdot v = (w' + iw'') \cdot (v' + iv'')$$

= $(w' \cdot v') - i(w' \cdot v'') + i(w'' \cdot v') + w'' \cdot v''$
= $(w' \cdot v' + w'' \cdot v'') - i(w' \cdot v'' - w'' \cdot v').$

So $w \cdot v = \overline{v \cdot w}$.

(b) That $\alpha^{\mathbb{C}}$ is self-adjoint follows from the sequence of equalities:

$$v \cdot \alpha^{\mathbb{C}}(w) = (v' + iv'') \cdot \alpha^{\mathbb{C}}(w' + iw'')$$

= $(v' + iv'') \cdot (\alpha(w') + i\alpha(w''))$
= $v' \cdot \alpha(w') - i(v' \cdot \alpha(w'')) + i(v'' \cdot \alpha(w')) + v'' \cdot \alpha(w'')$
= $\alpha(v') \cdot w' - i(\alpha(v') \cdot w'') + i(\alpha(v'') \cdot w') + \alpha(v'') \cdot w''$
= $(\alpha(v') + i\alpha(v'')) \cdot (w' + iw'')$
= $\alpha^{\mathbb{C}}(v) \cdot w.$

6. The characteristic polynomial of A is

$$p_A(x) = \det(xI - A) = \begin{vmatrix} x - 2 & 0 & 0 \\ 0 & x - 3 & 1 \\ 0 & 1 & x - 3 \end{vmatrix} = (x - 2)^2 (x - 4).$$

So the eigenvalues are 2 (with multiplicity 2) and 4.

Letting $u = \begin{bmatrix} a & b & c \end{bmatrix}$, the solutions to (A - 4I)u = 0 satisfy a = 0 and b + c = 0. So we may take

$$v_1 = \begin{bmatrix} 0\\ 1/\sqrt{2}\\ -1/\sqrt{2} \end{bmatrix}.$$

as the first of our orthonormal set of eigenvectors.

The solutions to (A - 2I)u = 0 satisfy b - c = 0. So we have a 2-dimensional eigenspace with a possible orthonormal basis

$$v_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/2 \\ 1/2 \end{bmatrix}$$
 and $v_3 = \begin{bmatrix} -1/\sqrt{2} \\ 1/2 \\ 1/2 \end{bmatrix}$.

(There is flexibility in the choice of v_2 and v_3 : we just need two orthonormal vectors whose second and third coordinates are equal, and the above is a natural choice.)

The required matrix P has v_1 , v_2 and v_3 as its columns:

$$P = \begin{bmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/2 & 1/2 \end{bmatrix}$$

You may verify that $P^{-1}AP = P^{\top}AP = D$, where

$$D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (a) Since α is self-adjoint it may be written as α = λ₁π₁ + ··· + λ_rπ_r, where the π_i are (orthogonal) projections satisfying π_iπ_j = 0 for all i ≠ j. Define the linear map β by β = (λ₁)^{1/3}π₁ + ··· + (λ_r)^{1/3}π_r. Note that the cube roots of all the eigenvalues exist and are unique. (This doesn't work for square roots, which may not be real!) Now note that β³ = α, using π_i² = π_i and and π_iπ_j = 0. Alternatively, choose a basis relative to which the matrix representing α is diagonal. Now show that you can take the cube root of the diagonal matrix.
 - (b) In general, the cube root of α is not unique, since the projections π_i are not unique. for example, both I_3 and the matrix

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

from Assignment 5 are representations of cube roots of the identity map.

(c) If β is required to be self-adjoint then the solution is unique. However, I don't know any simple demonstration of this fact.