
MTH6140 Linear Algebra II

Assignment 10 Solutions

1. (a) Suppose w,w0 2 V and c 2 K. We need to show that ↵⇤
(w + w0

) =

↵⇤
(w) + ↵⇤

(w0
) and ↵⇤

(cw) = c↵⇤
(w). For all v 2 V we have

v · ↵⇤
(w + w0

) = ↵(v) · (w + w0
)

= ↵(v) · w + ↵(v) · w0

= v · ↵⇤
(w) + v · ↵⇤

(w0
)

= v · (↵⇤
(w) + ↵⇤

(w0
)),

where the first and third equalities are from the definition of adjoint,

the second and fourth use linearity of inner product. Also

v · ↵⇤
(cw) = ↵(v) · (cw) = c(↵(v) · w) = c(v · ↵⇤

(w)) = v · (c↵⇤
(w)).

Again, the first and third equalities are from the definition of adjoint,

the second and fourth use linearity of inner product.

Note that if v ·w = v ·w0
for all v 2 V then w = w0

. This is because the

representation of a linear functional ' : V ! R in the form '(v) = v ·w,
for some fixed w 2 V , is unique.

(b) For all v 2 V we have

v · ↵⇤⇤
(w) = v · (↵⇤

)
⇤
(w) = ↵⇤

(v) · w = v · ↵(w),

and the claim follows, as before.

2. A matrix representing a self-adjoint linear map is symmetric, so that the

missing entries in rows 1, 2 and 3 of matrix A are respectively �1, �3 and 2.

The columns of a matrix representing an orthogonal linear map form an

orthonormal basis. Letting B = (bij) and considering the first column we

find that b211 + b221 + b231 + b241 = 1, i.e., b211 = 1 � (
5
6)

2 � (
1
6)

2 � (
1
6)

2
=

1
4 .

It follows that b11 = ±1
2 . Similar reasoning applied to columns 2, 3 and 4

yields b23 = ±1
6 , b32 = ±1

6 and b44 = ±5
6 .

We just need to determine the signs. Since column 2 is orthogonal to column

1, we know that b11b12 + b21b22 + b31b32 + b41b42 = 0. By trial and error, this

constraint forces the sign of b11 to be negative. Applying similar reasoning

to the remaining columns yields

b11 = �1
2 , b23 =

1
6 , b32 =

1
6 , b44 = �5

6 .
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3. (a) Cancellation does not hold for direct sums, so the final step is not valid.

In more detail, it is possible for a vector space V to have subspaces U ,

U 0
and W such that U 6= U 0

and V = U � W = U 0 � W . In R2
an

example might be U = h[ 01 ]i, U 0
= h[ 11 ]i and W = h[ 10 ]i.

(b) Let u be an arbitrary vector in U . According to the definition of orthog-

onal complement every vector u0 2 U?
is orthogonal to u, i.e., u ·u0

= 0.

We deduce, again from the definition of orthogonal complement, that

u 2 (U?
)
?
. Since u 2 U was arbitrary, we must have U ✓ (U?

)
?
.

It’s not so easy to show inclusion in the other direction directly, so

we take a more oblique approach. By Proposition 7.3, we know that

dim(U) + dim(U?
) = n, where n = dim(V ). By the same token,

dim(U?
) + dim((U?

)
?
) = n. Putting these two identities together

yields dim(U) = dim((U?
)
?
).

Take a basis B for U . Since U ✓ (U?
)
?
we can extend B to a basis B0

of (U?
)
?
. But dim(U) = dim((U?

)
?
), so in fact B = B0

. It follows that

U = (U?
)
?
.

4. (a) For u =
⇥
a1 a2 a3 a4

⇤> 2 F4
2 to be a member of U?

we require

u ·
⇥
0 0 1 1

⇤>
= u ·

⇥
1 1 0 0

⇤>
= 0.

These conditions are satisfied precisely when a1 = a2 and a3 = a4.

Therefore, U?
is spanned by

⇥
0 0 1 1

⇤>
and

⇥
1 1 0 0

⇤>
. In other

words, U = U?
!

(b) Proposition 7.3 leads us to expect U � U?
= F4

2. What has gone

wrong? The answer is hinted at in the question. The suggested “inner

product” is not valid, as it fails to be positive definite: there are non-

zero vectors v, for example v =
⇥
0 0 1 1

⇤
, such that v · v = 0.

This causes the Gram-Schmidt procedure to fail (where?), which in

turn invalidates Proposition 7.3 when applied to vector spaces over the

field F2. Proposition 7.3 holds for real vector spaces and, with a suitable

definition of inner product, for complex vector spaces too.

5. (a) From the definition of the inner product on V C
,

v · w = (v0 + iv00) · (w0
+ iw00

)

= (v0 · w0
)� i(v0 · w00

) + i(v00 · w0
) + v00 · w00

= (w0 · v0)� i(w00 · v0) + i(w0 · v00) + w00 · v00

= (w0 · v0 + w00 · v00) + i(w0 · v00 � w00 · v0)

and

w · v = (w0
+ iw00

) · (v0 + iv00)

= (w0 · v0)� i(w0 · v00) + i(w00 · v0) + w00 · v00

= (w0 · v0 + w00 · v00)� i(w0 · v00 � w00 · v0).

So w · v = v · w.
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(b) That ↵C
is self-adjoint follows from the sequence of equalities:

v · ↵C
(w) = (v0 + iv00) · ↵C

(w0
+ iw00

)

= (v0 + iv00) · (↵(w0
) + i↵(w00

))

= v0 · ↵(w0
)� i(v0 · ↵(w00

)) + i(v00 · ↵(w0
)) + v00 · ↵(w00

)

= ↵(v0) · w0 � i(↵(v0) · w00
) + i(↵(v00) · w0

) + ↵(v00) · w00

= (↵(v0) + i↵(v00)) · (w0
+ iw00

)

= ↵C
(v) · w.

6. The characteristic polynomial of A is

pA(x) = det(xI � A) =

������

x� 2 0 0

0 x� 3 1

0 1 x� 3

������
= (x� 2)

2
(x� 4).

So the eigenvalues are 2 (with multiplicity 2) and 4.

Letting u =
⇥
a b c

⇤
, the solutions to (A � 4I)u = 0 satisfy a = 0 and

b+ c = 0. So we may take

v1 =

2

4
0

1/
p
2

�1/
p
2

3

5 .

as the first of our orthonormal set of eigenvectors.

The solutions to (A�2I)u = 0 satisfy b� c = 0. So we have a 2-dimensional

eigenspace with a possible orthonormal basis

v2 =

2

4
1/
p
2

1/2
1/2

3

5 and v3 =

2

4
�1/

p
2

1/2
1/2

3

5 .

(There is flexibility in the choice of v2 and v3: we just need two orthonormal

vectors whose second and third coordinates are equal, and the above is a

natural choice.)

The required matrix P has v1, v2 and v3 as its columns:

P =

2

4
0 1/

p
2 �1/

p
2

1/
p
2 1/2 1/2

�1/
p
2 1/2 1/2

3

5

You may verify that P�1AP = P>AP = D, where

D =

2

4
4 0 0

0 2 0

0 0 2

3

5 .
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7. (a) Since ↵ is self-adjoint it may be written as ↵ = �1⇡1+ · · ·+�r⇡r, where

the ⇡i are (orthogonal) projections satisfying ⇡i⇡j = 0 for all i 6= j.
Define the linear map � by � = (�1)

1/3⇡1 + · · · + (�r)
1/3⇡r. Note that

the cube roots of all the eigenvalues exist and are unique. (This doesn’t

work for square roots, which may not be real!) Now note that �3
= ↵,

using ⇡2
i = ⇡i and and ⇡i⇡j = 0.

Alternatively, choose a basis relative to which the matrix representing ↵
is diagonal. Now show that you can take the cube root of the diagonal

matrix.

(b) In general, the cube root of ↵ is not unique, since the projections ⇡i are

not unique. for example, both I3 and the matrix

2

4
0 1 0

0 0 1

1 0 0

3

5

from Assignment 5 are representations of cube roots of the identity map.

(c) If � is required to be self-adjoint then the solution is unique. However,

I don’t know any simple demonstration of this fact.
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