MTH6140 Linear Algebra II

Coursework 10 Solutions

1. (a) Suppose $w, w^{\prime} \in V$ and $c \in \mathbb{K}$. We need to show that $\alpha^{*}\left(w+w^{\prime}\right)=$ $\alpha^{*}(w)+\alpha^{*}\left(w^{\prime}\right)$ and $\alpha^{*}(c w)=c \alpha^{*}(w)$. For all $v \in V$ we have

$$
\begin{aligned}
v \cdot \alpha^{*}\left(w+w^{\prime}\right) & =\alpha(v) \cdot\left(w+w^{\prime}\right) \\
& =\alpha(v) \cdot w+\alpha(v) \cdot w^{\prime} \\
& =v \cdot \alpha^{*}(w)+v \cdot \alpha^{*}\left(w^{\prime}\right) \\
& =v \cdot\left(\alpha^{*}(w)+\alpha^{*}\left(w^{\prime}\right)\right),
\end{aligned}
$$

where the first and third equalities are from the definition of adjoint, the second and fourth use linearity of inner product. Also

$$
v \cdot \alpha^{*}(c w)=\alpha(v) \cdot(c w)=c(\alpha(v) \cdot w)=c\left(v \cdot \alpha^{*}(w)\right)=v \cdot\left(c \alpha^{*}(w)\right) .
$$

Again, the first and third equalities are from the definition of adjoint, the second and fourth use linearity of inner product.
Note that if $v \cdot w=v \cdot w^{\prime}$ for all $v \in V$ then $w=w^{\prime}$. This is because the representation of a linear functional $\varphi: V \rightarrow \mathbb{R}$ in the form $\varphi(v)=v \cdot w$, for some fixed $w \in V$, is unique.
(b) For all $v \in V$ we have

$$
v \cdot \alpha^{* *}(w)=v \cdot\left(\alpha^{*}\right)^{*}(w)=\alpha^{*}(v) \cdot w=v \cdot \alpha(w),
$$

and the claim follows, as before.
2. A matrix representing a self-adjoint linear map is symmetric, so that the missing entries in rows 1,2 and 3 of matrix A are respectively $-1,-3$ and 2 .
The columns of a matrix representing an orthogonal linear map form an orthonormal basis. Letting $B=\left(b_{i j}\right)$ and considering the first column we find that $b_{11}^{2}+b_{21}^{2}+b_{31}^{2}+b_{41}^{2}=1$, i.e., $b_{11}^{2}=1-\left(\frac{5}{6}\right)^{2}-\left(\frac{1}{6}\right)^{2}-\left(\frac{1}{6}\right)^{2}=\frac{1}{4}$. It follows that $b_{11}= \pm \frac{1}{2}$. Similar reasoning applied to columns 2, 3 and 4 yields $b_{23}= \pm \frac{1}{6}, b_{32}= \pm \frac{1}{6}$ and $b_{44}= \pm \frac{5}{6}$.
We just need to determine the signs. Since column 2 is orthogonal to column 1 , we know that $b_{11} b_{12}+b_{21} b_{22}+b_{31} b_{32}+b_{41} b_{42}=0$. By trial and error, this constraint forces the sign of b_{11} to be negative. Applying similar reasoning to the remaining columns yields

$$
b_{11}=-\frac{1}{2}, \quad b_{23}=\frac{1}{6}, \quad b_{32}=\frac{1}{6}, \quad b_{44}=-\frac{5}{6} .
$$

3. (a) Cancellation does not hold for direct sums, so the final step is not valid. In more detail, it is possible for a vector space V to have subspaces U, U^{\prime} and W such that $U \neq U^{\prime}$ and $V=U \oplus W=U^{\prime} \oplus W$. In \mathbb{R}^{2} an example might be $U=\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\rangle, U^{\prime}=\left\langle\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\rangle$ and $W=\left\langle\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\rangle$.
(b) Let u be an arbitrary vector in U. According to the definition of orthogonal complement every vector $u^{\prime} \in U^{\perp}$ is orthogonal to u, i.e., $u \cdot u^{\prime}=0$. We deduce, again from the definition of orthogonal complement, that $u \in\left(U^{\perp}\right)^{\perp}$. Since $u \in U$ was arbitrary, we must have $U \subseteq\left(U^{\perp}\right)^{\perp}$.
It's not so easy to show inclusion in the other direction directly, so we take a more oblique approach. By Proposition 7.3, we know that $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=n$, where $n=\operatorname{dim}(V)$. By the same token, $\operatorname{dim}\left(U^{\perp}\right)+\operatorname{dim}\left(\left(U^{\perp}\right)^{\perp}\right)=n$. Putting these two identities together yields $\operatorname{dim}(U)=\operatorname{dim}\left(\left(U^{\perp}\right)^{\perp}\right)$.
Take a basis \mathcal{B} for U. Since $U \subseteq\left(U^{\perp}\right)^{\perp}$ we can extend \mathcal{B} to a basis \mathcal{B}^{\prime} of $\left(U^{\perp}\right)^{\perp}$. But $\operatorname{dim}(U)=\operatorname{dim}\left(\left(U^{\perp}\right)^{\perp}\right)$, so in fact $\mathcal{B}=\mathcal{B}^{\prime}$. It follows that $U=\left(U^{\perp}\right)^{\perp}$.
4. (a) For $u=\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right]^{\top} \in \mathbb{F}_{2}^{4}$ to be a member of U^{\perp} we require

$$
u \cdot\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]^{\top}=u \cdot\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]^{\top}=0
$$

These conditions are satisfied precisely when $a_{1}=a_{2}$ and $a_{3}=a_{4}$. Therefore, U^{\perp} is spanned by $\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]^{\top}$ and $\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]^{\top}$. In other words, $U=U^{\perp}$!
(b) Proposition 7.3 leads us to expect $U \oplus U^{\perp}=\mathbb{F}_{2}^{4}$. What has gone wrong? The answer is hinted at in the question. The suggested "inner product" is not valid, as it fails to be positive definite: there are nonzero vectors v, for example $v=\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$, such that $v \cdot v=0$. This causes the Gram-Schmidt procedure to fail (where?), which in turn invalidates Proposition 7.3 when applied to vector spaces over the field \mathbb{F}_{2}. Proposition 7.3 holds for real vector spaces and, with a suitable definition of inner product, for complex vector spaces too.
5. (a) From the definition of the inner product on $V^{\mathbb{C}}$,

$$
\begin{aligned}
v \cdot w & =\left(v^{\prime}+i v^{\prime \prime}\right) \cdot\left(w^{\prime}+i w^{\prime \prime}\right) \\
& =\left(v^{\prime} \cdot w^{\prime}\right)-i\left(v^{\prime} \cdot w^{\prime \prime}\right)+i\left(v^{\prime \prime} \cdot w^{\prime}\right)+v^{\prime \prime} \cdot w^{\prime \prime} \\
& =\left(w^{\prime} \cdot v^{\prime}\right)-i\left(w^{\prime \prime} \cdot v^{\prime}\right)+i\left(w^{\prime} \cdot v^{\prime \prime}\right)+w^{\prime \prime} \cdot v^{\prime \prime} \\
& =\left(w^{\prime} \cdot v^{\prime}+w^{\prime \prime} \cdot v^{\prime \prime}\right)+i\left(w^{\prime} \cdot v^{\prime \prime}-w^{\prime \prime} \cdot v^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
w \cdot v & =\left(w^{\prime}+i w^{\prime \prime}\right) \cdot\left(v^{\prime}+i v^{\prime \prime}\right) \\
& =\left(w^{\prime} \cdot v^{\prime}\right)-i\left(w^{\prime} \cdot v^{\prime \prime}\right)+i\left(w^{\prime \prime} \cdot v^{\prime}\right)+w^{\prime \prime} \cdot v^{\prime \prime} \\
& =\left(w^{\prime} \cdot v^{\prime}+w^{\prime \prime} \cdot v^{\prime \prime}\right)-i\left(w^{\prime} \cdot v^{\prime \prime}-w^{\prime \prime} \cdot v^{\prime}\right) .
\end{aligned}
$$

So $w \cdot v=\overline{v \cdot w}$.
(b) That $\alpha^{\mathbb{C}}$ is self-adjoint follows from the sequence of equalities:

$$
\begin{aligned}
v \cdot \alpha^{\mathbb{C}}(w) & =\left(v^{\prime}+i v^{\prime \prime}\right) \cdot \alpha^{\mathbb{C}}\left(w^{\prime}+i w^{\prime \prime}\right) \\
& =\left(v^{\prime}+i v^{\prime \prime}\right) \cdot\left(\alpha\left(w^{\prime}\right)+i \alpha\left(w^{\prime \prime}\right)\right) \\
& =v^{\prime} \cdot \alpha\left(w^{\prime}\right)-i\left(v^{\prime} \cdot \alpha\left(w^{\prime \prime}\right)\right)+i\left(v^{\prime \prime} \cdot \alpha\left(w^{\prime}\right)\right)+v^{\prime \prime} \cdot \alpha\left(w^{\prime \prime}\right) \\
& =\alpha\left(v^{\prime}\right) \cdot w^{\prime}-i\left(\alpha\left(v^{\prime}\right) \cdot w^{\prime \prime}\right)+i\left(\alpha\left(v^{\prime \prime}\right) \cdot w^{\prime}\right)+\alpha\left(v^{\prime \prime}\right) \cdot w^{\prime \prime} \\
& =\left(\alpha\left(v^{\prime}\right)+i \alpha\left(v^{\prime \prime}\right)\right) \cdot\left(w^{\prime}+i w^{\prime \prime}\right) \\
& =\alpha^{\mathbb{C}}(v) \cdot w .
\end{aligned}
$$

6. The characteristic polynomial of A is

$$
p_{A}(x)=\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x-2 & 0 & 0 \\
0 & x-3 & 1 \\
0 & 1 & x-3
\end{array}\right|=(x-2)^{2}(x-4) .
$$

So the eigenvalues are 2 (with multiplicity 2) and 4 .
Letting $u=\left[\begin{array}{lll}a & b & c\end{array}\right]$, the solutions to $(A-4 I) u=0$ satisfy $a=0$ and $b+c=0$. So we may take

$$
v_{1}=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right] .
$$

as the first of our orthonormal set of eigenvectors.
The solutions to $(A-2 I) u=0$ satisfy $b-c=0$. So we have a 2-dimensional eigenspace with a possible orthonormal basis

$$
v_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / 2 \\
1 / 2
\end{array}\right] \quad \text { and } \quad v_{3}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / 2 \\
1 / 2
\end{array}\right] .
$$

(There is flexibility in the choice of v_{2} and v_{3} : we just need two orthonormal vectors whose second and third coordinates are equal, and the above is a natural choice.)
The required matrix P has v_{1}, v_{2} and v_{3} as its columns:

$$
P=\left[\begin{array}{ccc}
0 & 1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / 2 & 1 / 2 \\
-1 / \sqrt{2} & 1 / 2 & 1 / 2
\end{array}\right]
$$

You may verify that $P^{-1} A P=P^{\top} A P=D$, where

$$
D=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

7. (a) Since α is self-adjoint it may be written as $\alpha=\lambda_{1} \pi_{1}+\cdots+\lambda_{r} \pi_{r}$, where the π_{i} are (orthogonal) projections satisfying $\pi_{i} \pi_{j}=0$ for all $i \neq j$. Define the linear map β by $\beta=\left(\lambda_{1}\right)^{1 / 3} \pi_{1}+\cdots+\left(\lambda_{r}\right)^{1 / 3} \pi_{r}$. Note that the cube roots of all the eigenvalues exist and are unique. (This doesn't work for square roots, which may not be real!) Now note that $\beta^{3}=\alpha$, using $\pi_{i}^{2}=\pi_{i}$ and and $\pi_{i} \pi_{j}=0$.
Alternatively, choose a basis relative to which the matrix representing α is diagonal. Now show that you can take the cube root of the diagonal matrix.
(b) In general, the cube root of α is not unique, since the projections π_{i} are not unique. for example, both I_{3} and the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

from Assignment 5 are representations of cube roots of the identity map.
(c) If β is required to be self-adjoint then the solution is unique. However, I don't know any simple demonstration of this fact.

