MTH6140 Linear Algebra II

Coursework 10

1. (a) Prove that the adjoint α^{*} defined by (7.1) in the Course Notes is indeed a linear map, as claimed. Note that for reasons given in just below (7.1), it is enough to show that $v \cdot \alpha^{*}\left(w+w^{\prime}\right)=v \cdot\left(\alpha^{*}(w)+\alpha^{*}\left(w^{\prime}\right)\right)$ and $v \cdot \alpha^{*}(c w)=v \cdot\left(c \alpha^{*}(w)\right)$, for all $v \in V$.
(b) Prove that $\alpha^{* *}=\left(\alpha^{*}\right)^{*}$ satisfies $\alpha^{* *}=\alpha$. Again, it is enough to show that $v \cdot \alpha^{* *}(w)=v \cdot \alpha(w)$, for all $v \in V$.
2. Festive. Linear algebra Sudoku. The following are matrices representing linear maps with respect to the standard bases of \mathbb{R}^{3} and \mathbb{R}^{4}. However, some entries are missing.

$$
A=\left[\begin{array}{ccc}
1 & -3 & * \\
* & 2 & 2 \\
-1 & * & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
* & \frac{5}{6} & \frac{1}{6} & -\frac{1}{6} \\
\frac{5}{6} & \frac{1}{2} & * & \frac{1}{6} \\
\frac{1}{6} & * & -\frac{5}{6} & -\frac{1}{2} \\
\frac{1}{6} & -\frac{1}{6} & \frac{1}{2} & *
\end{array}\right]
$$

Given that the first linear map is self-adjoint and the second is orthogonal, fill in the missing entries.
3. Let U be a subspace of a real vector space V.
(a) What is wrong with the following "proof" that $U=\left(U^{\perp}\right)^{\perp}$? We know from lectures that $V=U \oplus U^{\perp}$, and from this it follows that $V=$ $U^{\perp} \oplus\left(U^{\perp}\right)^{\perp}$. Combining these we have $U \oplus U^{\perp}=\left(U^{\perp}\right)^{\perp} \oplus U^{\perp}$. Now cancel U^{\perp} from both sides.
(b) Harder. Give a correct proof of $U=\left(U^{\perp}\right)^{\perp}$. One way is to show first that $U \subseteq\left(U^{\perp}\right)^{\perp}$. Then show that $\operatorname{dim}(U)=\operatorname{dim}\left(\left(U^{\perp}\right)^{\perp}\right)$.
4. (a) Define an "inner product" on \mathbb{F}_{2}^{4} by

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right]^{\top} \cdot\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right]^{\top}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}
$$

(with arithmetic over \mathbb{F}_{2}, of course). Let U be the subspace of \mathbb{F}_{2}^{4} spanned by $\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]^{\top}$ and $\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]^{\top}$. Find a basis for the subspace $U^{\perp}=\left\{v \in \mathbb{F}_{2}^{4}: v \cdot u=0\right.$ for all $\left.u \in U\right\}$.
(b) Harder. How do you square this finding with Proposition 7.3?
5. (a) Let V be an inner product space over \mathbb{R}. As in the notes, form the associated vector space $V^{\mathbb{C}}$ over \mathbb{C}. Show that the inner product on $V^{\mathbb{C}}$ defined in the notes, i.e., $v \cdot w=\left(v^{\prime}+i v^{\prime \prime}\right) \cdot\left(w^{\prime}+i w^{\prime \prime}\right)=\left(v^{\prime} \cdot w^{\prime}\right)-i\left(v^{\prime} \cdot w^{\prime \prime}\right)+i\left(v^{\prime \prime} \cdot w^{\prime}\right)+v^{\prime \prime} \cdot w^{\prime \prime}$, is indeed skew symmetric and positive definite.
(b) Let $\alpha: V \rightarrow V$ be a linear map. As in the notes, extend α to a linear $\operatorname{map} \alpha^{\mathbb{C}}: V^{\mathbb{C}} \rightarrow V^{\mathbb{C}}$ by defining

$$
\alpha^{\mathbb{C}}(v)=\alpha^{\mathbb{C}}\left(v^{\prime}+i v^{\prime \prime}\right)=\alpha\left(v^{\prime}\right)+i \alpha\left(v^{\prime \prime}\right),
$$

where $v^{\prime}, v^{\prime \prime} \in V$. Verify that if α is self-adjoint as a linear map on V then $\alpha^{\mathbb{C}}$ is self-adjoint as a linear map on $V^{\mathbb{C}}$. That is, show that

$$
\left(v^{\prime}+i v^{\prime \prime}\right) \cdot \alpha^{\mathbb{C}}\left(w^{\prime}+i w^{\prime \prime}\right)=\alpha^{\mathbb{C}}\left(v^{\prime}+i v^{\prime \prime}\right) \cdot\left(w^{\prime}+i w^{\prime \prime}\right)
$$

for all $v^{\prime}, v^{\prime \prime}, w^{\prime}, w^{\prime \prime} \in V$.
6. The following matrix represents a self-adjoint linear map on \mathbb{R}^{3}.

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

Find eigenvalues and a set of orthogonal eigenvectors for A. Hence determine an orthogonal matrix P such that $P^{-1} A P$ is diagonal.
7. (a) Let α be a self-adjoint linear map on a real vector space. Prove that α has a cube root, i.e., that there exists a linear map β such that $\alpha=\beta^{3}$.
(b) Harder. Is this cube root β unique?
(c) Hardest. Is the cube root β unique if we require β to be self-adjoint?

