MTH6140 Linear Algebra II

Coursework 9 Solutions

1. (a)

$$
\begin{aligned}
p_{A}(x) & =\left|\begin{array}{ccc}
x & 1 & 1 \\
-2 & x-3 & -1 \\
-4 & -2 & x-4
\end{array}\right| \\
& =x\left|\begin{array}{cc}
x-3 & -1 \\
-2 & x-4
\end{array}\right|-\left|\begin{array}{cc}
-2 & -1 \\
-4 & x-4
\end{array}\right|+\left|\begin{array}{cc}
-2 & x-3 \\
-4 & -2
\end{array}\right| \\
& =(x-2)^{2}(x-3) .
\end{aligned}
$$

The minimal polynomial $m_{A}(x)$ divides $p_{A}(x)$ and has the same roots. So $m_{A}(x)$ is either $(x-2)^{2}(x-3)$ or $(x-2)(x-3)$. Computing $(A-$ $2 I)(A-3 I)$ we find

$$
(A-2 I)(A-3 I)=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
2 & 1 & 1 \\
4 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
-3 & -1 & -1 \\
2 & 0 & 1 \\
4 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],
$$

so the minimal polynomial is $(x-2)(x-3)$. Clearly it is a product of distinct linear factors.
(b)

$$
\begin{aligned}
p_{B}(x) & =\left|\begin{array}{ccc}
x-2 & 1 & 0 \\
-2 & x-3 & -1 \\
0 & -2 & x-2
\end{array}\right| \\
& =(x-2)\left|\begin{array}{cc}
x-3 & -1 \\
-2 & x-2
\end{array}\right|-\left|\begin{array}{cc}
-2 & -1 \\
0 & x-2
\end{array}\right| \\
& =(x-2)^{2}(x-3) .
\end{aligned}
$$

Again, the minimal polynomial must be either $(x-2)^{2}(x-3)$ or $(x-$ $2)(x-3)$. Computing $(B-2 I)(B-3 I)$ we find

$$
(B-2 I)(B-3 I)=\left[\begin{array}{ccc}
0 & -1 & 0 \\
2 & 1 & 1 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & -1 & 0 \\
2 & 0 & 1 \\
0 & 2 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & -1 \\
0 & 0 & 0 \\
4 & 0 & 2
\end{array}\right],
$$

so the minimal polynomial cannot be $(x-2)(x-3)$ and hence must be $(x-2)^{2}(x-3)$. (You can check that $(B-2 I)^{2}(B-3 I)=O$, as predicted by the Cayley-Hamilton Theorem.)
2. The minimal polynomial is composed of distinct linear factors. In \mathbb{F}_{2} only two linear factors are possible: x and $x+1$. So the only possible minimal polynomials are $x, x+1$ and $x(x+1)$. These correspond to the zero map, the identity map, and some map α satisfying $\alpha(\alpha+I)=0$. Note that the latter is equivalent to $\alpha^{2}=\alpha$. All three cases are projections.
3. When a matrix in Jordan normal form is squared, the individual blocks are squared. So we just need to say what happens to an individual block. A 3×3 block is transformed as follows:

$$
\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]^{2}=\left[\begin{array}{ccc}
\lambda^{2} & 2 \lambda & 1 \\
0 & \lambda^{2} & 2 \lambda \\
0 & 0 & \lambda^{2}
\end{array}\right] .
$$

More generally, we'll end up with a block that has λ^{2} repeated on the diagonal, 2λ repeated immediately above the diagonal and 1 repeated immediately above that. The square of a 2×2 block will miss out the 1 s .
4. (a) False. If $n=2$ and $A=B=I_{2}$, then

$$
\operatorname{Tr}(A B)=\operatorname{Tr}\left(I_{2}\right)=2 \neq 4=\operatorname{Tr}\left(I_{2}\right) \operatorname{Tr}\left(I_{2}\right) .
$$

(b) True. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Then

$$
\operatorname{Tr}(A+B)=\sum_{i=1}^{n}\left(a_{i i}+b_{i i}\right)=\sum_{i=1}^{n} a_{i i}+\sum_{i=1}^{n} b_{i i}=\operatorname{Tr}(A)+\operatorname{Tr}(B) .
$$

(c) False. If $n=2$ and $A=I_{2}$, then $\operatorname{Tr}\left(A^{-1}\right)=2 \neq \frac{1}{2}=\operatorname{Tr}(A)^{-1}$.
5. (a) $\operatorname{Tr}(A)=0+4-2=2$ and

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
0 & 5 & -3 \\
1 & -2 & 1 \\
1 & -5 & 4
\end{array}\right|=-5\left|\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right|-3\left|\begin{array}{cc}
1 & -2 \\
1 & -5
\end{array}\right|=-15+9=-6 .
$$

(b)

$$
\begin{aligned}
p_{A}(x)=\operatorname{det}(x I-A) & =\left|\begin{array}{ccc}
x & -5 & 3 \\
-1 & x+2 & -1 \\
-1 & 5 & x-4
\end{array}\right| \\
& =x\left|\begin{array}{cc}
x+2 & -1 \\
5 & x-4
\end{array}\right|+5\left|\begin{array}{cc}
-1 & -1 \\
-1 & x-4
\end{array}\right|+3\left|\begin{array}{cc}
-1 & x+2 \\
-1 & 5
\end{array}\right| \\
& =x^{3}-2 x^{2}-5 x+6 \\
& =(x-1)(x+2)(x-3) .
\end{aligned}
$$

Note that the constant coefficient of $p_{A}(x)$ is $6=(-1)^{3} \operatorname{det}(A)$ and the coefficient of x^{2} is $-2=-\operatorname{Tr}(A)$.
(c) From the factorisation of the characteristic polynomial, we see that the eigenvalues of A are $1,-2$ and 3 . The product of eigenvalues is -6 which is indeed equal to $\operatorname{det}(A)$, and the sum is 2 , which is the trace of A.
6. Let $r=\operatorname{dim}(\operatorname{Im}(\pi))$ be the rank of π. Choose a basis v_{1}, \ldots, v_{r} of $\operatorname{Im}(\pi)$ and a basis v_{r+1}, \ldots, v_{n} of $\operatorname{Ker}(\pi)$. Since $V=\operatorname{Im}(\pi) \oplus \operatorname{Ker}(\pi)$, we know that v_{1}, \ldots, v_{n} is a basis of V. Let Π be the representation of π in this basis. What does the matrix Π look like? Well, $\pi\left(v_{i}\right)=v_{i}$ if $1 \leq i \leq r$, and $\pi\left(v_{i}\right)=0$ for $r<i \leq n$. So Π is a block matrix with I_{r} in the top left corner and zeros elsewhere. In particular, $\operatorname{Tr}(\Pi)=r$.
Although Π is a particular (and special) matrix representing π, we know that any matrix representing Π has trace r, since similar matrices have the same trace.
7. There are three properties to check.

- Symmetric. For all $p, q \in V_{n}$,

$$
p \cdot q=\int_{0}^{1} p(x) q(x) d x=\int_{0}^{1} q(x) p(x) d x=q \cdot p .
$$

- Bilinear. For all polynomials $p, p^{\prime}, q \in V_{n}$, and scalars $c \in \mathbb{R}$ we have

$$
\begin{aligned}
\left(p+p^{\prime}\right) \cdot q & =\int_{0}^{1}\left(p(x)+p^{\prime}(x)\right) q(x) d x \\
& =\int_{0}^{1} p(x) q(x) d x+\int_{0}^{1} p^{\prime}(x) q(x) d x \\
& =p \cdot q+p^{\prime} \cdot q .
\end{aligned}
$$

and

$$
(c p) \cdot q=\int_{0}^{1} c p(x) q(x) d x=c \int_{0}^{1} p(x) q(x) d x=c(p \cdot q) .
$$

The same clearly holds for the second argument.

- Positive definite. For all polynomials $p \in V_{n}$,

$$
p \cdot p=\int_{0}^{1} p(x)^{2} d x \geq 0
$$

with equality only if p is identically zero.

