MTHG6140 Linear Algebra I1

Coursework 8 Solutions

1. (a)

D maps each non-constant polynomial to a polynomial of degree one
lower, and each constant polynomial to 0. So D has only one eigenvalue,
namely 0, with corresponding eigenvector 1 (the constant polynomial
1). Naturally, any constant polynomial not equal to 0 is an equally
good eigenvector.

Or, symbolically, we are looking for solutions f(z) = ax® + bz + cx +d
to f'(z) = Af(z). Substituting for f(x) we have

3ax® + 2br +c = f'(x) = A\f(x) = Xax® + \bx? + Aex + \d.

Equating coefficients, we see that A\a = 0, A\b = 3a, A\c = 2b and \d = c.
There are two cases. If A = 0 then a = b = ¢ = 0, leading to the
eigenvector 1 identified above. If A # 0, then a = b = ¢ = d = 0 and
there are no corresponding eigenvectors. (Recall that the zero vector is
not an eigenvalue, by definition.)

If f(x)=az®+bx*+ cx +d, then zf'(x) = 3az® + 2bx* + cz. For f to
be an eigenvector, 3ax? + 2bx? + cx = A az® + bx? + cx + d), for some
A, and hence a(3 — A) = b(2 — \) = ¢(1 — A) = Ad = 0. So there are
four possible eigenvalues, namely A =0, A =1, A =2 and A = 3, with
corresponding eigenvectors 1, z, 22 and 23 (or some scaling of these).

The eigenvectors (1, z, 2% x?) of D form a basis for Vi, so D is diago-
nalisable; in fact the matrix relative to the basis (1, z, 2%, 2?) is

o O O O
O O = O
SN OO
w o o O

However, D has only one eigenvector and so is not diagonalisable.

2. Since « is a projection, a? = «. Since « is invertible, we may act on both

sides by a~! to obtain a '«
map.

2 =a'a,ie, a=1. Soa must be the identity



3.

(a)

Following the recipe described and justified in lectures, we may take
the columns of P to be the three eigenvectors v; v, and vs of A viewed
as column vectors. Also, @) is the inverse of P. Thus.

10 -1 3 1 1
P=(0 1 1 and Q=1[-2 0 -1
-2 -1 2 2 1 1

It can be checked that the product QAP does indeed equal D or, equiv-
alently, A = PDQ.

We know that A = PDP~! and hence A = (PDP~!')! = PD'P~L.

Note that .

200 000
(D)= 10 2 of — [0 0 O],
00 1] T |oo 1
so (+A)' = P(3D)'P~! tends to
1 0 —17foo0o0][3 1 1 -2 -1 -1
0 1 1|]lo0o0||-20 —1|=|2 1 1],
-2 -1 2|00 1|]2 1 1 4 2 2
as t — oo.

False. It may happen that the minimal polynomial is a product of
distinct linear factors, but the roots of the minimal polynomial are not
real. For example, the eigenvalues of the matrix

1 1
=l
are 1 +1, so A has no eigenvectors when viewed as a linear map on R?,

but has two linearly independent eigenvectors when viewed as a linear
map on C?. These eigenvectors form a basis for C*. The diagonal form

in this case is
1414 0
0 1—ql

Alternatively, the characteristic polynomial of A is pa(x) = 2% — 22+ 2.
Over R, the minimal polynomial m4(z) is equal to p4(z) which is not
a product of linear factors. Over C, it is also the case that ma(x) =
pa(X), but now ma(z) factors into distinct linear factors: ma(z) =
(r—14+4d)(x+1—1).

True. If the minimal polynomial is a product of distinct linear factors
over R, then it is a product of linear factors (the same ones!) over C.
The claim then follows from Theorem 5.20. Alternatively, if R™ has a
basis of real eigenvectors of A, then those same eigenvectors will form
a basis of C". (Stop to think why this is so.)
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(c)

True. The minimal polynomial has the eigenvalues of A as roots. If
these are distinct, say Ay, ..., A,, then the minimal polynomial must be
(x = A1)+ (z = A,). (It must have all these factors, and it can’t have
more as its degree is already n, which is the maximum possible.) So the
matrix A is diagonalisable. Alternatively, we know that eigenvectors
with distinct eigenvalues are linearly independent. So the eigenvectors
of A form a linearly independent list of size n, i.e., a basis, of R™.

The matrix A must satisfy A — I = O, so the only possibility is that
A=1.

We want the matrix A to have 1 as its only eigenvalue, but we want
to avoid the situation that arose in part (a). The simplest solution
is to add an extra non-zero entry to the identity matrix to yield, say,
A= [§1]. This matrix satisfies (A — I)> = O but not A —I = O.

Since the minimal polynomial has degree 2, it must equal the charac-
teristic polynomial. Noting that m,(z) = (x — 1)* + 1, we can choose
A= [11], which has characteristic polynomial z* — 2z + 2.



