MTH6140 Linear Algebra II

Coursework 8 Solutions

1. (a) D maps each non-constant polynomial to a polynomial of degree one lower, and each constant polynomial to 0 . So D has only one eigenvalue, namely 0 , with corresponding eigenvector 1 (the constant polynomial 1). Naturally, any constant polynomial not equal to 0 is an equally good eigenvector.
Or, symbolically, we are looking for solutions $f(x)=a x^{3}+b x^{2}+c x+d$ to $f^{\prime}(x)=\lambda f(x)$. Substituting for $f(x)$ we have

$$
3 a x^{2}+2 b x+c=f^{\prime}(x)=\lambda f(x)=\lambda a x^{3}+\lambda b x^{2}+\lambda c x+\lambda d .
$$

Equating coefficients, we see that $\lambda a=0, \lambda b=3 a, \lambda c=2 b$ and $\lambda d=c$. There are two cases. If $\lambda=0$ then $a=b=c=0$, leading to the eigenvector 1 identified above. If $\lambda \neq 0$, then $a=b=c=d=0$ and there are no corresponding eigenvectors. (Recall that the zero vector is not an eigenvalue, by definition.)
(b) If $f(x)=a x^{3}+b x^{2}+c x+d$, then $x f^{\prime}(x)=3 a x^{3}+2 b x^{2}+c x$. For f to be an eigenvector, $3 a x^{2}+2 b x^{2}+c x=\lambda\left(a x^{3}+b x^{2}+c x+d\right)$, for some λ, and hence $a(3-\lambda)=b(2-\lambda)=c(1-\lambda)=\lambda d=0$. So there are four possible eigenvalues, namely $\lambda=0, \lambda=1, \lambda=2$ and $\lambda=3$, with corresponding eigenvectors $1, x, x^{2}$ and x^{3} (or some scaling of these).
(c) The eigenvectors $\left(1, x, x^{2}, x^{3}\right)$ of \widehat{D} form a basis for V_{4}, so \widehat{D} is diagonalisable; in fact the matrix relative to the basis $\left(1, x, x^{2}, x^{3}\right)$ is

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] .
$$

However, D has only one eigenvector and so is not diagonalisable.
2. Since α is a projection, $\alpha^{2}=\alpha$. Since α is invertible, we may act on both sides by α^{-1} to obtain $\alpha^{-1} \alpha^{2}=\alpha^{-1} \alpha$, i.e., $\alpha=I$. So α must be the identity map.
3. (a) Following the recipe described and justified in lectures, we may take the columns of P to be the three eigenvectors $v_{1} v_{2}$ and v_{3} of A viewed as column vectors. Also, Q is the inverse of P. Thus.

$$
P=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
-2 & -1 & 2
\end{array}\right] \quad \text { and } \quad Q=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-2 & 0 & -1 \\
2 & 1 & 1
\end{array}\right]
$$

It can be checked that the product $Q A P$ does indeed equal D or, equivalently, $A=P D Q$.
(b) We know that $A=P D P^{-1}$, and hence $A^{t}=\left(P D P^{-1}\right)^{t}=P D^{t} P^{-1}$. Note that

$$
\left(\frac{1}{3} D\right)^{t}=\left[\begin{array}{ccc}
\frac{2}{3} & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & 1
\end{array}\right]^{t} \underset{t \rightarrow \infty}{\longrightarrow}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

so $\left(\frac{1}{3} A\right)^{t}=P\left(\frac{1}{3} D\right)^{t} P^{-1}$ tends to

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
-2 & -1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 1 \\
-2 & 0 & -1 \\
2 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
2 & 1 & 1 \\
4 & 2 & 2
\end{array}\right]
$$

as $t \rightarrow \infty$.
4. (a) False. It may happen that the minimal polynomial is a product of distinct linear factors, but the roots of the minimal polynomial are not real. For example, the eigenvalues of the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

are $1 \pm i$, so A has no eigenvectors when viewed as a linear map on \mathbb{R}^{2}, but has two linearly independent eigenvectors when viewed as a linear map on \mathbb{C}^{2}. These eigenvectors form a basis for \mathbb{C}^{n}. The diagonal form in this case is

$$
\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right] .
$$

Alternatively, the characteristic polynomial of A is $p_{A}(x)=x^{2}-2 x+2$. Over \mathbb{R}, the minimal polynomial $m_{A}(x)$ is equal to $p_{A}(x)$ which is not a product of linear factors. Over \mathbb{C}, it is also the case that $m_{A}(x)=$ $p_{A}(X)$, but now $m_{A}(x)$ factors into distinct linear factors: $m_{A}(x)=$ $(x-1+i)(x+1-i)$.
(b) True. If the minimal polynomial is a product of distinct linear factors over \mathbb{R}, then it is a product of linear factors (the same ones!) over \mathbb{C}. The claim then follows from Theorem 5.20. Alternatively, if \mathbb{R}^{n} has a basis of real eigenvectors of A, then those same eigenvectors will form a basis of \mathbb{C}^{n}. (Stop to think why this is so.)
(c) True. The minimal polynomial has the eigenvalues of A as roots. If these are distinct, say $\lambda_{1}, \ldots, \lambda_{n}$, then the minimal polynomial must be $\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$. (It must have all these factors, and it can't have more as its degree is already n, which is the maximum possible.) So the matrix A is diagonalisable. Alternatively, we know that eigenvectors with distinct eigenvalues are linearly independent. So the eigenvectors of A form a linearly independent list of size n, i.e., a basis, of \mathbb{R}^{n}.
5. (a) The matrix A must satisfy $A-I=O$, so the only possibility is that $A=I$.
(b) We want the matrix A to have 1 as its only eigenvalue, but we want to avoid the situation that arose in part (a). The simplest solution is to add an extra non-zero entry to the identity matrix to yield, say, $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. This matrix satisfies $(A-I)^{2}=O$ but not $A-I=O$.
(c) Since the minimal polynomial has degree 2 , it must equal the characteristic polynomial. Noting that $m_{\alpha}(x)=(x-1)^{2}+1$, we can choose $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, which has characteristic polynomial $x^{2}-2 x+2$.

