
MTH6140 Linear Algebra II

Assignment 7 Solutions

1. Suppose first that w 2 Im(�↵), that is, w = (�↵)(v) for some v 2 V . Then

w = �(v
0
) where v

0
= ↵(v), and hence w 2 Im(�). Now suppose w 2 Im(�),

that is, w = �(v) for some v 2 V . Let v
0
= ↵

�1
(v). (Recall that ↵ is

invertible.) Then w = �(v) = �(↵(v
0
)) = (�↵)(v

0
), and hence w 2 Im(�↵).

2. •

1 0

0 1

�2
=


1 0

0 1

�
, so this linear map is a projection.

•

1 0

0 0

�2
=


1 0

0 0

�
, so this linear map is a projection.

•

0 1

1 0

�2
=


1 0

0 1

�
6=


0 1

1 0

�
, so this linear map is not a projection.

•

1 0

0 2

�2
=


1 0

0 4

�
6=


1 0

0 2

�
, so this linear map is not a projection.

•

�1 1

�2 2

�2
=


�1 1

�2 2

�
, so this linear map is a projection.

3. (a) Observe that D
2
1 = D1, D

2
2 = D2, D1D2 = D2D1 = O and D1+D2 = I.

We have

⇧
2
1 = (PD1P

�1
)(PD1P

�1
) = PD1D1P

�1
= PD1P

�1
= ⇧1,

so ⇧1 is projection, and similarly for ⇧2. Also

⇧1⇧2 = (PD1P
�1
)(PD2P

�1
) = PD1D2P

�1
= POP

�1
= O,

and similarly for ⇧2⇧1, as required. Finally

⇧1 + ⇧2 = (PD1P
�1
) + (PD2P

�1
) = P (D1 +D2)P

�1
= PIP

�1
= I.

4. From the definition of direct sum, every vector v 2 V can be uniquely written

as v = u+w, where u 2 U and w 2 W ; we define ⇡ by the rule that ⇡(v) = u.

The first step is to verify that ⇡ is a linear map. Suppose v
0
= u

0
+w

0
where

u
0 2 U and w

0 2 W , so that ⇡(v
0
) = u

0
. Then v + v

0
= (u + w) + (u

0
+

w
0
) = (u + u

0
) + (w + w

0
), where u + u

0 2 U and w + w
0 2 W , and hence
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⇡(v + v
0
) = u+ u

0
= ⇡(v) + ⇡(v

0
). The identity ⇡(cv) = c⇡(v) can be shown

similarly. With v as before, cv = cu+ cw and hence ⇡(cv) = cu = c⇡(v).

It is immediate from the definition of ⇡ that Im(⇡) ✓ U . Also, for any u 2 U ,

we have that ⇡(u) = u and hence U ✓ Im(⇡). It follows that Im(⇡) = U .

A vector v is in Ker(⇡) i↵ it has the form 0 + w for some w 2 W , and and

hence Ker(⇡) = W .

Finally, suppose v = u + w with u 2 U and w 2 W . Then ⇡(v) = u and

⇡
2
(v) = ⇡(u) = u. Thus ⇡

2
= ⇡, and ⇡ is a projection.

5. (a) We are asked to solve


0 1

�1 0

� 
a

b

�
= �


a

b

�
.

We have b = �a and �a = �b, and hence a = ��
2
a. If a = 0 then

b = 0, but the zero vector is never an eigenvector. Otherwise, �
2
= �1,

which doesn’t have a solution in R. So in this case, the linear map has

no eigenvalues (and no eigenvectors).

(b) As before, we can eliminate the possibility that a = 0. But over C, when
a 6= 0, we have the solutions (eigenvalues) � = ±i. The corresponding

eigenvectors are
⇥
1
i

⇤
and

⇥
1
�i

⇤
. (Any non-zero scaling of these will be

eigenvectors also.)

(c) Using what we have learned so far, we might guess that something like


0 1

2 0

�

will be a suitable candidate. Indeed, repeating the above calculation,

we find that �
2
= 2, which is not solvable over Q, but yields eigenvalues

±
p
2 over R.

6. Suppose v, v
0 2 E(�,↵). Then ↵(v) = �v and ↵(v

0
) = �v

0
, and hence

↵(v + v
0
) = �(v + v

0
). This shows that v + v

0 2 E(�,↵). Also, ↵(cv) =

c↵(v) = c�v = �(cv), and hence cv 2 E(�,↵). Since E(�,↵) is non-empty

(contains 0), and closed under vector addition and scalar multiplication, it

is a subspace of V .

7. Letting v =
⇥
a b c

⇤>
, solving Av = 2v yields 2a + b + c = 0. This

equation defines a subspace of dimension 2, and a possible basis for it is� ⇥
1 0 �2

⇤T
,
⇥
0 1 �1

⇤T �
: this is E(2,↵). (A variety of bases are pos-

sible: any two vectors satisfying 2a + b + c that are not multiples of each

other.)

Solving Av = 3v yields 2a + c = 0 and a + b = 0. These equations define a

subspace of dimension 1, with basis
⇥
�1 1 2

⇤>
: this is E(3,↵).
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