MTH6140 Linear Algebra II

Coursework 7 Solutions

1. Suppose first that $w \in \operatorname{Im}(\beta \alpha)$, that is, $w=(\beta \alpha)(v)$ for some $v \in V$. Then $w=\beta\left(v^{\prime}\right)$ where $v^{\prime}=\alpha(v)$, and hence $w \in \operatorname{Im}(\beta)$. Now suppose $w \in \operatorname{Im}(\beta)$, that is, $w=\beta(v)$ for some $v \in V$. Let $v^{\prime}=\alpha^{-1}(v)$. (Recall that α is invertible.) Then $w=\beta(v)=\beta\left(\alpha\left(v^{\prime}\right)\right)=(\beta \alpha)\left(v^{\prime}\right)$, and hence $w \in \operatorname{Im}(\beta \alpha)$.
2. - $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, so this linear map is a projection.

- $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, so this linear map is a projection.
- $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, so this linear map is not a projection.
- $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right] \neq\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, so this linear map is not a projection.
- $\left[\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right]^{2}=\left[\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right]$, so this linear map is a projection.

3. (a) Observe that $D_{1}^{2}=D_{1}, D_{2}^{2}=D_{2}, D_{1} D_{2}=D_{2} D_{1}=O$ and $D_{1}+D_{2}=I$. We have

$$
\Pi_{1}^{2}=\left(P D_{1} P^{-1}\right)\left(P D_{1} P^{-1}\right)=P D_{1} D_{1} P^{-1}=P D_{1} P^{-1}=\Pi_{1},
$$

so Π_{1} is projection, and similarly for Π_{2}. Also

$$
\Pi_{1} \Pi_{2}=\left(P D_{1} P^{-1}\right)\left(P D_{2} P^{-1}\right)=P D_{1} D_{2} P^{-1}=P O P^{-1}=O,
$$

and similarly for $\Pi_{2} \Pi_{1}$, as required. Finally

$$
\Pi_{1}+\Pi_{2}=\left(P D_{1} P^{-1}\right)+\left(P D_{2} P^{-1}\right)=P\left(D_{1}+D_{2}\right) P^{-1}=P I P^{-1}=I
$$

4. From the definition of direct sum, every vector $v \in V$ can be uniquely written as $v=u+w$, where $u \in U$ and $w \in W$; we define π by the rule that $\pi(v)=u$. The first step is to verify that π is a linear map. Suppose $v^{\prime}=u^{\prime}+w^{\prime}$ where $u^{\prime} \in U$ and $w^{\prime} \in W$, so that $\pi\left(v^{\prime}\right)=u^{\prime}$. Then $v+v^{\prime}=(u+w)+\left(u^{\prime}+\right.$ $\left.w^{\prime}\right)=\left(u+u^{\prime}\right)+\left(w+w^{\prime}\right)$, where $u+u^{\prime} \in U$ and $w+w^{\prime} \in W$, and hence
$\pi\left(v+v^{\prime}\right)=u+u^{\prime}=\pi(v)+\pi\left(v^{\prime}\right)$. The identity $\pi(c v)=c \pi(v)$ can be shown similarly. With v as before, $c v=c u+c w$ and hence $\pi(c v)=c u=c \pi(v)$.
It is immediate from the definition of π that $\operatorname{Im}(\pi) \subseteq U$. Also, for any $u \in U$, we have that $\pi(u)=u$ and hence $U \subseteq \operatorname{Im}(\pi)$. It follows that $\operatorname{Im}(\pi)=U$. A vector v is in $\operatorname{Ker}(\pi)$ iff it has the form $\mathbf{0}+w$ for some $w \in W$, and and hence $\operatorname{Ker}(\pi)=W$.

Finally, suppose $v=u+w$ with $u \in U$ and $w \in W$. Then $\pi(v)=u$ and $\pi^{2}(v)=\pi(u)=u$. Thus $\pi^{2}=\pi$, and π is a projection.
5. (a) We are asked to solve

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\lambda\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

We have $b=\lambda a$ and $-a=\lambda b$, and hence $a=-\lambda^{2} a$. If $a=0$ then $b=0$, but the zero vector is never an eigenvector. Otherwise, $\lambda^{2}=-1$, which doesn't have a solution in \mathbb{R}. So in this case, the linear map has no eigenvalues (and no eigenvectors).
(b) As before, we can eliminate the possibility that $a=0$. But over \mathbb{C}, when $a \neq 0$, we have the solutions (eigenvalues) $\lambda= \pm i$. The corresponding eigenvectors are $\left[\begin{array}{c}1 \\ i\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -i\end{array}\right]$. (Any non-zero scaling of these will be eigenvectors also.)
(c) Using what we have learned so far, we might guess that something like

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]
$$

will be a suitable candidate. Indeed, repeating the above calculation, we find that $\lambda^{2}=2$, which is not solvable over \mathbb{Q}, but yields eigenvalues $\pm \sqrt{2}$ over \mathbb{R}.
6. Suppose $v, v^{\prime} \in E(\lambda, \alpha)$. Then $\alpha(v)=\lambda v$ and $\alpha\left(v^{\prime}\right)=\lambda v^{\prime}$, and hence $\alpha\left(v+v^{\prime}\right)=\lambda\left(v+v^{\prime}\right)$. This shows that $v+v^{\prime} \in E(\lambda, \alpha)$. Also, $\alpha(c v)=$ $c \alpha(v)=c \lambda v=\lambda(c v)$, and hence $c v \in E(\lambda, \alpha)$. Since $E(\lambda, \alpha)$ is non-empty (contains $\mathbf{0}$), and closed under vector addition and scalar multiplication, it is a subspace of V.
7. Letting $v=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$, solving $A v=2 v$ yields $2 a+b+c=0$. This equation defines a subspace of dimension 2 , and a possible basis for it is $\left(\left[\begin{array}{lll}1 & 0 & -2\end{array}\right]^{T},\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]^{T}\right.$): this is $E(2, \alpha)$. (A variety of bases are possible: any two vectors satisfying $2 a+b+c$ that are not multiples of each other.)
Solving $A v=3 v$ yields $2 a+c=0$ and $a+b=0$. These equations define a subspace of dimension 1 , with basis $\left[\begin{array}{lll}-1 & 1 & 2\end{array}\right]^{\top}$: this is $E(3, \alpha)$.

