MTH6140 Linear Algebra II

Coursework 7

1. Suppose V and W are vector spaces, and $\alpha: V \rightarrow V$ and $\beta: V \rightarrow W$ are linear maps. Prove that, if α is invertible then $\operatorname{Im}(\beta \alpha)=\operatorname{Im}(\beta)$. (Thus the rank of $\beta \alpha$ is equal to the rank of β.)
2. The following matrices represent linear maps on \mathbb{R}^{2} with respect to some basis. Which of these linear maps are projections?
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$,
(c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$,
(e) $\left[\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right]$.
3. Suppose $1 \leq r<n$, and let D_{1} and D_{2} be the $n \times n$ diagonal matrices

$$
D_{1}=\left[\begin{array}{cc}
I_{r} & O \\
O & O
\end{array}\right] \quad \text { and } \quad D_{2}=\left[\begin{array}{cc}
O & O \\
O & I_{n-r}
\end{array}\right]
$$

over an arbitrary field \mathbb{K}. Let P be any invertible $n \times n$ matrix. Define the matrices $\Pi_{1}=P D_{1} P^{-1}$ and $\Pi_{2}=P D_{2} P^{-1}$. Show that Π_{1} and Π_{2} are projections on \mathbb{K}^{n}, that $\Pi_{1} \Pi_{2}=\Pi_{2} \Pi_{1}=O$ and that $\Pi_{1}+\Pi_{2}=I$. (C.f. Proposition 5.4.)
4. Complete the proof of Proposition 5.3 of the (draft) notes, following the sketch provided there. (Having defined π as in the sketch, you need to show that π is a linear map, that $\operatorname{Im}(\pi)=U$ and $\operatorname{Ker}(\pi)=W$, and that $\pi^{2}=\pi$.)
5. Consider the linear map on \mathbb{K}^{2} represented by the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

(a) Find the eigenvectors and eigenvalues of A when $\mathbb{K}=\mathbb{R}$.
(b) Find the eigenvectors and eigenvalues of A when $\mathbb{K}=\mathbb{C}$.
(c) Write down a 2×2 matrix over \mathbb{K} that has two eigenvalues if $\mathbb{K}=\mathbb{R}$ and none if $\mathbb{K}=\mathbb{Q}$. Explain your answer.
6. Let α be a linear map on vector space V. Recall that $E(\lambda, \alpha)$ is the set of all vectors $v \in V$ such that $\alpha(v)=\lambda v$. Verify that $E(\lambda, \alpha)$ is a subspace of V.
7. Suppose the linear map α on \mathbb{R}^{3} is represented with respect to the standard basis by the matrix

$$
A=\left[\begin{array}{ccc}
0 & -1 & -1 \\
2 & 3 & 1 \\
4 & 2 & 4
\end{array}\right]
$$

What are the dimensions of the eigenspaces $E(2, \alpha)$ and $E(3, \alpha)$? Give bases for these eigenspaces.

