MTH6140 Linear Algebra II

Coursework 6 Solutions

1. By direct calculation from the definition of the adjugate matrix,

$$
\operatorname{Adj}(x I-A)=\left[\begin{array}{ccc}
x^{2}-1 & 0 & 0 \\
x & x^{2}-x & x-1 \\
1 & x-1 & x^{2}-x
\end{array}\right]=x^{2} B_{2}+x B_{1}+B_{0}
$$

where

$$
B_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{array}\right], \quad B_{0}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right] .
$$

Thus,

$$
\begin{aligned}
B_{1}-A B_{2} & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]=-I_{3}
\end{aligned}
$$

and

$$
-A B_{0}=-\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3} .
$$

So the coefficient of x^{2} in $p_{A}(x)$ is -1 and the constant coefficient is 1 , since $B_{1}-A B_{2}=c_{2} I$ and $-A B_{0}=c_{0} I$. (The whole characteristic polynomial is $p_{A}(x)=x^{3}-x^{2}-x+1$.)
2. (a) First we show linearity with respect to vector addition:

$$
\begin{aligned}
(\alpha+\beta)\left(v+v^{\prime}\right) & =\alpha\left(v+v^{\prime}\right)+\beta\left(v+v^{\prime}\right) \\
& =\alpha(v)+\alpha\left(v^{\prime}\right)+\beta(v)+\beta\left(v^{\prime}\right) \\
& =\alpha(v)+\beta(v)+\alpha\left(v^{\prime}\right)+\beta\left(v^{\prime}\right) \\
& =(\alpha+\beta)(v)+(\alpha+\beta)\left(v^{\prime}\right),
\end{aligned}
$$

where the first and fourth equalities are from the definition of the sum of linear maps, and the second uses linearity of α and β. Then, we check linearity with respect scalar multiplication:
$(\alpha+\beta)(c v)=\alpha(c v)+\beta(c v)=c \alpha(v)+c \beta(v)=c(\alpha(v)+\beta(v))=c(\alpha+\beta)(v)$.
(b) Just as in the case of the product of linear maps in the notes, we just chase through the (forced) sequence of equalities:

$$
\begin{aligned}
{[(\alpha+\beta)(v)]_{\mathcal{B}^{\prime}} } & =[\alpha(v)+\beta(v)]_{\mathcal{B}^{\prime}} \\
& =[\alpha(v)]_{\mathcal{B}^{\prime}}+[\beta(v)]_{\mathcal{B}^{\prime}} \\
& =A[v]_{\mathcal{B}}+B[v]_{\mathcal{B}} \\
& =(A+B)[v]_{\mathcal{B}} .
\end{aligned}
$$

(c) First we show linearity with respect to vector addition:

$$
\begin{aligned}
(\beta \alpha)\left(u+u^{\prime}\right) & =\beta\left(\alpha\left(u+u^{\prime}\right)\right) \\
& =\beta\left(\alpha(u)+\alpha\left(u^{\prime}\right)\right) \\
& =\beta(\alpha(u))+\beta\left(\alpha\left(u^{\prime}\right)\right) \\
& =(\beta \alpha)(u)+(\beta \alpha)\left(u^{\prime}\right) .
\end{aligned}
$$

where the first and fourth equalities are from the definition of the product of linear maps, and the second and third use linearity of α and β. Then, linearity with respect scalar multiplication goes as follows:

$$
(\beta \alpha)(c v)=\beta(\alpha(c v))=\beta(c \alpha(v))=c(\beta(\alpha(v)))=c(\beta \alpha)(v) .
$$

3. Column 2 of A is the sum of columns 1 and 3 . Columns 1 and 3 are clearly linearly independent, so form a basis for the column space of A, which is also $\operatorname{Im}(\alpha)$ in the given coordinate system. (Either of the other pairs of columns would also provide a basis for $\operatorname{Im}(\alpha)$.) So ($\left[\begin{array}{llll}1 & 0 & 1 & -2\end{array}\right]^{\top},\left[\begin{array}{llll}0 & 1 & -1 & 1\end{array}\right]^{\top}$) is a basis for $\operatorname{Im}(\alpha)$, and the dimension of $\operatorname{Im}(\alpha)$ is thus 2 .
We look for vectors v such that $A v=0$. Setting $v=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$ we find that $a=-b=c$. So the single vector $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{\top}$ is a basis for $\operatorname{Ker}(\alpha)$, which therefore has dimension 1 .
Notice that $\operatorname{dim} \operatorname{Ker}(\alpha)+\operatorname{dim} \operatorname{Im}(\alpha)=1+2=3=\operatorname{dim}(V)$ as predicted by the Rank-nullity Theorem.
4. (a) Suppose $u \in \operatorname{Ker}(\alpha)$. Then $\beta \alpha(u)=\beta(\alpha(u))=\beta(0)=0$, from which it follows that $u \in \operatorname{Ker}(\beta \alpha)$. Since $u \in \operatorname{Ker}(\alpha)$ was arbitrary, $\operatorname{Ker}(\alpha)$ is a subset of $\operatorname{Ker}(\beta \alpha)$. We know from Proposition 4.4 that $\operatorname{Ker}(\alpha)$ is a vector space, so $\operatorname{Ker}(\alpha)$ is a subspace of $\operatorname{Ker}(\beta \alpha)$.
(b) Suppose $w \in \operatorname{Im}(\beta \alpha)$. Then there exists $u \in U$ such that $w=\beta \alpha(u)$. Setting $v=\alpha(u) \in V$, we see that $w=\beta(v)$, and hence $w \in \operatorname{Im}(\beta)$. Since $w \in \operatorname{Im}(\beta \alpha)$ was arbitrary, $\operatorname{Im}(\beta \alpha)$ is a subset of $\operatorname{Im}(\beta)$. Again, by Proposition 4.4, $\operatorname{Im}(\beta \alpha)$ is a subspace of $\operatorname{Im}(\beta)$
(c) By the Rank-nullity Theorem, $\varrho(\beta)+\nu(\beta)=\operatorname{dim}(V)=2$. Then, by $\operatorname{part}(\mathrm{b}), \varrho(\beta \alpha) \leq \varrho(\beta) \leq 2$.
Also by the Rank-nullity Theorem, $\varrho(\alpha)+\nu(\alpha)=\operatorname{dim}(V)=5$. But $\varrho(\alpha) \leq \operatorname{dim}(V)=2$, and so $\nu(\alpha) \geq 3$. By part (a), $\nu(\beta \alpha) \geq \nu(\alpha) \geq 3$.
5. (a) The key is to consider the restriction of the linear map α to the subspace $U^{\prime}=\operatorname{Ker}(\beta \alpha)$ of U. Call this map $\alpha^{\prime}: U^{\prime} \rightarrow V$. Applying the RankNullity Theorem to α^{\prime} we deduce

$$
\nu(\beta \alpha)=\operatorname{dim}\left(U^{\prime}\right)=\varrho\left(\alpha^{\prime}\right)+\nu\left(\alpha^{\prime}\right) .
$$

Also, since $\beta \alpha(u)=0$ for all $u \in U^{\prime}$, we have that $\operatorname{Im}\left(\alpha^{\prime}\right)$ is contained in $\operatorname{Ker}(\beta)$. Thus

$$
\varrho\left(\alpha^{\prime}\right) \leq \nu(\beta) .
$$

Finally, since α^{\prime} is a restriction of α,

$$
\nu\left(\alpha^{\prime}\right) \leq \nu(\alpha) .
$$

Adding the three displayed equations gives the result.
(b) Let β^{\prime} be the restriction of β to $V^{\prime}=\operatorname{Im}(a) \subseteq V$. First note that $\operatorname{Im}(\beta \alpha)=\operatorname{Im}\left(\beta^{\prime}\right)$, so that

$$
\varrho(\beta \alpha)=\varrho\left(\beta^{\prime}\right) .
$$

Also, since β^{\prime} is a restriction of β, we have

$$
\varrho\left(\beta^{\prime}\right) \leq \varrho(\beta)
$$

Finally, applying the Rank-nullity Theorem to β^{\prime} yields

$$
\varrho\left(\beta^{\prime}\right)+\nu\left(\beta^{\prime}\right)=\operatorname{dim}\left(V^{\prime}\right)=\varrho(\alpha) .
$$

The first two displayed equations give $\varrho(\beta \alpha) \leq \varrho(\beta)$ and the first and the third give $\varrho(\beta \alpha) \leq \varrho(\alpha)$. Thus, $\varrho(\beta \alpha) \leq \min \{\varrho(\alpha), \varrho(\beta)\}$.
(c) You're on your own!
6. (a) We just need to show that vector addition (i.e., addition of polynomials) and scalar multiplication are preserved: $D(f+g)=f^{\prime}+g^{\prime}=D(f)+$ $D(g)$ and $D(c f)=c f^{\prime}=c D(f)$.
(b) Consider a general polynomial $f=a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ of degree $n-1$ and its derivative $D(f)=(n-1) a_{n-1} x^{n-2}+\cdots+2 a_{2} x+a_{1}$. It is clear that the image D contains exactly the polynomials of degree at most $n-2$. (We are using the fact that $2,3, \ldots, n-1$ are all invertible in \mathbb{R}.)
So $\operatorname{Im}(D)=V_{n-1}$ and the rank of D is $n-1$. Also $D(f)=0$ if and only if $a_{n-1}=\cdots=a_{1}=0$, i.e, if and only if f is a constant function. Thus $\operatorname{Ker}(D)=V_{1}$ and the nullity of D is 1 . Note that
$\varrho(D)+\nu(D)=\operatorname{dim}(\operatorname{Im}(D))+\operatorname{dim}(\operatorname{Ker}(D))=(n-1)+1=n=\operatorname{dim}\left(V_{n}\right)$.
(c) The matrix representation of D is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

(Note that this matrix has rank 3, in agreement with part (b), with $n=4$.)

