
MTH6140 Linear Algebra II

Assignment 6 Solutions

1. By direct calculation from the definition of the adjugate matrix,

Adj(xI � A) =

2

4
x2 � 1 0 0

x x2 � x x� 1
1 x� 1 x2 � x

3

5 = x2B2 + xB1 +B0,

where

B2 =

2

4
1 0 0
0 1 0
0 0 1

3

5 , B1 =

2

4
0 0 0
1 �1 1
0 1 �1

3

5 , B0 =

2

4
�1 0 0
0 0 �1
1 �1 0

3

5 .

Thus,

B1 � AB2 =

2

4
0 0 0
1 �1 1
0 1 �1

3

5�

2

4
1 0 0
1 0 1
0 1 0

3

5 ·

2

4
1 0 0
0 1 0
0 0 1

3

5

=

2

4
0 0 0
1 �1 1
0 1 �1

3

5�

2

4
1 0 0
1 0 1
0 1 0

3

5

=

2

4
�1 0 0
0 �1 0
0 0 �1

3

5 = �I3.

and

�AB0 = �

2

4
1 0 0
1 0 1
0 1 0

3

5 ·

2

4
�1 0 0
0 0 �1
1 �1 0

3

5 =

2

4
1 0 0
0 1 0
0 0 1

3

5 = I3.

So the coe�cient of x2 in pA(x) is �1 and the constant coe�cient is 1, since
B1 � AB2 = c2I and �AB0 = c0I. (The whole characteristic polynomial is
pA(x) = x3 � x2 � x+ 1.)

2. (a) First we show linearity with respect to vector addition:

(↵ + �)(v + v0) = ↵(v + v0) + �(v + v0)

= ↵(v) + ↵(v0) + �(v) + �(v0)

= ↵(v) + �(v) + ↵(v0) + �(v0)

= (↵ + �)(v) + (↵ + �)(v0),
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where the first and fourth equalities are from the definition of the sum
of linear maps, and the second uses linearity of ↵ and �. Then, we
check linearity with respect scalar multiplication:

(↵+�)(cv) = ↵(cv)+�(cv) = c↵(v)+c�(v) = c(↵(v)+�(v)) = c(↵+�)(v).

(b) Just as in the case of the product of linear maps in the notes, we just
chase through the (forced) sequence of equalities:

[(↵ + �)(v)]B0 = [↵(v) + �(v)]B0

= [↵(v)]B0 + [�(v)]B0

= A[v]B +B[v]B
= (A+B)[v]B.

(c) First we show linearity with respect to vector addition:

(�↵)(u+ u0) = �(↵(u+ u0))

= �(↵(u) + ↵(u0))

= �(↵(u)) + �(↵(u0))

= (�↵)(u) + (�↵)(u0).

where the first and fourth equalities are from the definition of the prod-
uct of linear maps, and the second and third use linearity of ↵ and �.
Then, linearity with respect scalar multiplication goes as follows:

(�↵)(cv) = �(↵(cv)) = �(c↵(v)) = c(�(↵(v))) = c(�↵)(v).

3. Column 2 of A is the sum of columns 1 and 3. Columns 1 and 3 are clearly
linearly independent, so form a basis for the column space of A, which is also
Im(↵) in the given coordinate system. (Either of the other pairs of columns

would also provide a basis for Im(↵).) So
� ⇥

1 0 1 �2
⇤>

,
⇥
0 1 �1 1

⇤> �

is a basis for Im(↵), and the dimension of Im(↵) is thus 2.

We look for vectors v such that Av = 0. Setting v =
⇥
a b c

⇤>
we find that

a = �b = c. So the single vector
⇥
1 �1 1

⇤>
is a basis for Ker(↵), which

therefore has dimension 1.

Notice that dimKer(↵) + dim Im(↵) = 1 + 2 = 3 = dim(V ) as predicted by
the Rank-nullity Theorem.

4. (a) Suppose u 2 Ker(↵). Then �↵(u) = �(↵(u)) = �(0) = 0, from which
it follows that u 2 Ker(�↵). Since u 2 Ker(↵) was arbitrary, Ker(↵) is
a subset of Ker(�↵). We know from Proposition 4.4 that Ker(↵) is a
vector space, so Ker(↵) is a subspace of Ker(�↵).

(b) Suppose w 2 Im(�↵). Then there exists u 2 U such that w = �↵(u).
Setting v = ↵(u) 2 V , we see that w = �(v), and hence w 2 Im(�).
Since w 2 Im(�↵) was arbitrary, Im(�↵) is a subset of Im(�). Again,
by Proposition 4.4, Im(�↵) is a subspace of Im(�)
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(c) By the Rank-nullity Theorem, %(�) + ⌫(�) = dim(V ) = 2. Then, by
part(b), %(�↵)  %(�)  2.

Also by the Rank-nullity Theorem, %(↵) + ⌫(↵) = dim(V ) = 5. But
%(↵)  dim(V ) = 2, and so ⌫(↵) � 3. By part (a), ⌫(�↵) � ⌫(↵) � 3.

5. (a) The key is to consider the restriction of the linear map ↵ to the subspace
U 0 = Ker(�↵) of U . Call this map ↵0 : U 0 ! V . Applying the Rank-
Nullity Theorem to ↵0 we deduce

⌫(�↵) = dim(U 0) = %(↵0) + ⌫(↵0).

Also, since �↵(u) = 0 for all u 2 U 0, we have that Im(↵0) is contained
in Ker(�). Thus

%(↵0)  ⌫(�).

Finally, since ↵0 is a restriction of ↵,

⌫(↵0)  ⌫(↵).

Adding the three displayed equations gives the result.

(b) Let �0 be the restriction of � to V 0 = Im(a) ✓ V . First note that
Im(�↵) = Im(�0), so that

%(�↵) = %(�0).

Also, since �0 is a restriction of �, we have

%(�0)  %(�).

Finally, applying the Rank-nullity Theorem to �0 yields

%(�0) + ⌫(�0) = dim(V 0) = %(↵).

The first two displayed equations give %(�↵)  %(�) and the first and
the third give %(�↵)  %(↵). Thus, %(�↵)  min{%(↵), %(�)}.

(c) You’re on your own!

6. (a) We just need to show that vector addition (i.e., addition of polynomials)
and scalar multiplication are preserved: D(f + g) = f 0 + g0 = D(f) +
D(g) and D(cf) = cf 0 = cD(f).

(b) Consider a general polynomial f = an�1xn�1 + · · ·+ a2x2 + a1x+ a0 of
degree n�1 and its derivative D(f) = (n�1)an�1xn�2+ · · ·+2a2x+a1.
It is clear that the image D contains exactly the polynomials of degree
at most n�2. (We are using the fact that 2, 3, . . . , n�1 are all invertible
in R.)
So Im(D) = Vn�1 and the rank of D is n � 1. Also D(f) = 0 if and
only if an�1 = · · · = a1 = 0, i.e, if and only if f is a constant function.
Thus Ker(D) = V1 and the nullity of D is 1. Note that

%(D)+⌫(D) = dim(Im(D))+dim(Ker(D)) = (n�1)+1 = n = dim(Vn).
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(c) The matrix representation of D is

2

664

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

3

775 .

(Note that this matrix has rank 3, in agreement with part (b), with
n = 4.)
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