MTH6140 Linear Algebra II

Coursework 6 Solutions

1. By direct calculation from the definition of the adjugate matrix,

$$\operatorname{Adj}(xI - A) = \begin{bmatrix} x^2 - 1 & 0 & 0\\ x & x^2 - x & x - 1\\ 1 & x - 1 & x^2 - x \end{bmatrix} = x^2 B_2 + x B_1 + B_0,$$

where

$$B_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \quad B_0 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}.$$

Thus,

$$B_{1} - AB_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = -I_{3}.$$

and

$$-AB_0 = -\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3.$$

So the coefficient of x^2 in $p_A(x)$ is -1 and the constant coefficient is 1, since $B_1 - AB_2 = c_2I$ and $-AB_0 = c_0I$. (The whole characteristic polynomial is $p_A(x) = x^3 - x^2 - x + 1$.)

2. (a) First we show linearity with respect to vector addition:

$$(\alpha + \beta)(v + v') = \alpha(v + v') + \beta(v + v')$$

= $\alpha(v) + \alpha(v') + \beta(v) + \beta(v')$
= $\alpha(v) + \beta(v) + \alpha(v') + \beta(v')$
= $(\alpha + \beta)(v) + (\alpha + \beta)(v')$,

where the first and fourth equalities are from the definition of the sum of linear maps, and the second uses linearity of α and β . Then, we check linearity with respect scalar multiplication:

$$(\alpha+\beta)(cv) = \alpha(cv) + \beta(cv) = c\alpha(v) + c\beta(v) = c(\alpha(v) + \beta(v)) = c(\alpha+\beta)(v).$$

(b) Just as in the case of the product of linear maps in the notes, we just chase through the (forced) sequence of equalities:

$$[(\alpha + \beta)(v)]_{\mathcal{B}'} = [\alpha(v) + \beta(v)]_{\mathcal{B}'}$$
$$= [\alpha(v)]_{\mathcal{B}'} + [\beta(v)]_{\mathcal{B}'}$$
$$= A[v]_{\mathcal{B}} + B[v]_{\mathcal{B}}$$
$$= (A + B)[v]_{\mathcal{B}}.$$

(c) First we show linearity with respect to vector addition:

$$(\beta\alpha)(u+u') = \beta(\alpha(u+u'))$$

= $\beta(\alpha(u) + \alpha(u'))$
= $\beta(\alpha(u)) + \beta(\alpha(u'))$
= $(\beta\alpha)(u) + (\beta\alpha)(u').$

where the first and fourth equalities are from the definition of the product of linear maps, and the second and third use linearity of α and β . Then, linearity with respect scalar multiplication goes as follows:

$$(\beta\alpha)(cv) = \beta(\alpha(cv)) = \beta(c\alpha(v)) = c(\beta(\alpha(v))) = c(\beta\alpha)(v).$$

3. Column 2 of A is the sum of columns 1 and 3. Columns 1 and 3 are clearly linearly independent, so form a basis for the column space of A, which is also $\operatorname{Im}(\alpha)$ in the given coordinate system. (Either of the other pairs of columns would also provide a basis for $\operatorname{Im}(\alpha)$.) So $\left(\begin{bmatrix} 1 & 0 & 1 & -2 \end{bmatrix}^{\top}, \begin{bmatrix} 0 & 1 & -1 & 1 \end{bmatrix}^{\top}\right)$ is a basis for $\operatorname{Im}(\alpha)$, and the dimension of $\operatorname{Im}(\alpha)$ is thus 2.

We look for vectors v such that Av = 0. Setting $v = \begin{bmatrix} a & b & c \end{bmatrix}^{\top}$ we find that a = -b = c. So the single vector $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\top}$ is a basis for $\text{Ker}(\alpha)$, which therefore has dimension 1.

Notice that dim $\operatorname{Ker}(\alpha) + \dim \operatorname{Im}(\alpha) = 1 + 2 = 3 = \dim(V)$ as predicted by the Rank-nullity Theorem.

- 4. (a) Suppose $u \in \text{Ker}(\alpha)$. Then $\beta\alpha(u) = \beta(\alpha(u)) = \beta(0) = 0$, from which it follows that $u \in \text{Ker}(\beta\alpha)$. Since $u \in \text{Ker}(\alpha)$ was arbitrary, $\text{Ker}(\alpha)$ is a subset of $\text{Ker}(\beta\alpha)$. We know from Proposition 4.4 that $\text{Ker}(\alpha)$ is a vector space, so $\text{Ker}(\alpha)$ is a subspace of $\text{Ker}(\beta\alpha)$.
 - (b) Suppose $w \in \text{Im}(\beta\alpha)$. Then there exists $u \in U$ such that $w = \beta\alpha(u)$. Setting $v = \alpha(u) \in V$, we see that $w = \beta(v)$, and hence $w \in \text{Im}(\beta)$. Since $w \in \text{Im}(\beta\alpha)$ was arbitrary, $\text{Im}(\beta\alpha)$ is a subset of $\text{Im}(\beta)$. Again, by Proposition 4.4, $\text{Im}(\beta\alpha)$ is a subspace of $\text{Im}(\beta)$

- (c) By the Rank-nullity Theorem, $\rho(\beta) + \nu(\beta) = \dim(V) = 2$. Then, by part(b), $\rho(\beta\alpha) \le \rho(\beta) \le 2$. Also by the Rank-nullity Theorem, $\rho(\alpha) + \nu(\alpha) = \dim(V) = 5$. But $\rho(\alpha) \le \dim(V) = 2$, and so $\nu(\alpha) \ge 3$. By part (a), $\nu(\beta\alpha) \ge \nu(\alpha) \ge 3$.
- 5. (a) The key is to consider the restriction of the linear map α to the subspace $U' = \text{Ker}(\beta \alpha)$ of U. Call this map $\alpha' : U' \to V$. Applying the Rank-Nullity Theorem to α' we deduce

$$\nu(\beta\alpha) = \dim(U') = \varrho(\alpha') + \nu(\alpha').$$

Also, since $\beta \alpha(u) = 0$ for all $u \in U'$, we have that $\text{Im}(\alpha')$ is contained in Ker(β). Thus

$$\varrho(\alpha') \le \nu(\beta).$$

Finally, since α' is a restriction of α ,

$$\nu(\alpha') \le \nu(\alpha).$$

Adding the three displayed equations gives the result.

(b) Let β' be the restriction of β to $V' = \text{Im}(a) \subseteq V$. First note that $\text{Im}(\beta \alpha) = \text{Im}(\beta')$, so that

$$\varrho(\beta\alpha) = \varrho(\beta').$$

Also, since β' is a restriction of β , we have

 $\varrho(\beta') \le \varrho(\beta).$

Finally, applying the Rank-nullity Theorem to β' yields

$$\varrho(\beta') + \nu(\beta') = \dim(V') = \varrho(\alpha).$$

The first two displayed equations give $\rho(\beta \alpha) \leq \rho(\beta)$ and the first and the third give $\rho(\beta \alpha) \leq \rho(\alpha)$. Thus, $\rho(\beta \alpha) \leq \min\{\rho(\alpha), \rho(\beta)\}$.

- (c) You're on your own!
- 6. (a) We just need to show that vector addition (i.e., addition of polynomials) and scalar multiplication are preserved: D(f + g) = f' + g' = D(f) + D(g) and D(cf) = cf' = cD(f).
 - (b) Consider a general polynomial $f = a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0$ of degree n-1 and its derivative $D(f) = (n-1)a_{n-1}x^{n-2} + \dots + 2a_2x + a_1$. It is clear that the image D contains exactly the polynomials of degree at most n-2. (We are using the fact that 2, 3, ..., n-1 are all invertible in \mathbb{R} .)

So $\text{Im}(D) = V_{n-1}$ and the rank of D is n-1. Also D(f) = 0 if and only if $a_{n-1} = \cdots = a_1 = 0$, i.e., if and only if f is a constant function. Thus $\text{Ker}(D) = V_1$ and the nullity of D is 1. Note that

$$\varrho(D) + \nu(D) = \dim(\operatorname{Im}(D)) + \dim(\operatorname{Ker}(D)) = (n-1) + 1 = n = \dim(V_n).$$

(c) The matrix representation of ${\cal D}$ is

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(Note that this matrix has rank 3, in agreement with part (b), with n = 4.)