MTH6140 Linear Algebra II

Coursework 6

1. This question asks you to verify certain steps of the proof of the Cayley-Hamilton Theorem in the context of a particular small example. Consider the 3×3 matrix

	[1	0	0
A =	1	0	1
	0	1	0

over \mathbb{R} .

- (a) Compute $\operatorname{Adj}(xI A)$ and write it in the form $x^2B_2 + xB_1 + B_0$.
- (b) Verify that $B_1 AB_2$ and $-AB_0$ are both multiples of the identity matrix, as we discovered in the proof of the Cayley-Hamilton theorem. Hence deduce the coefficients of x^2 and x^0 (i.e., the constant term) in the characteristic polynomial of A.
- 2. This question involves chasing sequences of equalities based on definitions related to linear maps.
 - (a) Let V and W be vector spaces, and $\alpha, \beta : V \to W$ be linear maps. Verify the claim in the notes that $\alpha + \beta : V \to W$ is a linear map.
 - (b) Suppose that \mathcal{B} and \mathcal{B}' are bases of V and W, respectively. Suppose further that α and β are represented by matrices A and B, with respect to the bases \mathcal{B} and \mathcal{B}' . Show that the linear map $\alpha + \beta$ is represented by the matrix A+B. In other words, show that $[(\alpha+\beta)(v)]_{\mathcal{B}'} = (A+B)[v]_{\mathcal{B}}$, for all $v \in V$.
 - (c) Let U, V and W be vector spaces, and $\alpha : U \to V$ and $\beta : V \to W$ be linear maps. Carefully verify the claim in the notes that $\beta \alpha : U \to W$ is a linear map.

3. Suppose V and W are vector spaces of dimensions 3 and 4, respectively, over \mathbb{R} . Fix bases for V and W. A linear map $\alpha : V \to W$, is represented by the following matrix A relative to the chosen bases:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \\ -2 & -1 & 1 \end{bmatrix}.$$

- (a) Compute bases for $\text{Ker}(\alpha)$ and $\text{Im}(\alpha)$ and hence find the dimensions of these two subspaces. (Note that $\text{Im}(\alpha)$ is just the column space of A.)
- (b) Verify that your answer to (a) is consistent with the Rank-nullity Theorem.
- **4.** Let U, V and W be vector spaces, and $\alpha : U \to V$ and $\beta : V \to W$ be linear maps.
 - (a) Show that $\operatorname{Ker}(\alpha)$ is a subspace of $\operatorname{Ker}(\beta\alpha)$.
 - (b) Show that $\text{Im}(\beta\alpha)$ is a subspace of $\text{Im}(\beta)$.
 - (c) Suppose that $\dim(U) = 5$, $\dim(V) = 2$ and $\dim(W) = 4$. Show that the dimension of $\operatorname{Im}(\beta\alpha)$ is at most 2, and the dimension of $\operatorname{Ker}(\beta\alpha)$ is at least 3.
- 5. Harder. Recall that the rank $\rho(\alpha)$ of a linear map α is the dimension of $\operatorname{Im}(\alpha)$ and the nullity $\nu(\alpha)$ is the dimension of $\operatorname{Ker}(\alpha)$. Let U, V and W be vector spaces, and $\alpha: U \to V$ and $\beta: V \to W$ be linear maps.
 - (a) Prove that $\nu(\beta \alpha) \leq \nu(\alpha) + \nu(\beta)$.
 - (b) Prove that $\rho(\beta\alpha) \leq \min\{\rho(\alpha), \rho(\beta)\}.$
 - (c) Discover, state and prove some lower bounds (and maybe further upper bounds) on $\nu(\beta\alpha)$ and $\varrho(\beta\alpha)$ in terms of $\nu(\alpha)$, $\nu(\beta)$, $\varrho(\alpha)$ and $\varrho(\beta)$.
- 6. Let D be the map on the set of real polynomials that takes each polynomial f(x) to its derivative f'(x).
 - (a) Prove that D is a linear map.
 - (b) Let V_n be the vector space of polynomials of degree at most n-1. Consider D as a map from V_n to itself. Find its image, its kernel, its rank, and its nullity. Check that the rank-nullity theorem is satisfied.
 - (c) Now consider the case when n = 4. Write down the matrix representing D with respect to the basis $(1, x, x^2, x^3)$ of V_4 .