MTH6140 Linear Algebra II

Coursework 6

1. This question asks you to verify certain steps of the proof of the CayleyHamilton Theorem in the context of a particular small example. Consider the 3×3 matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

over \mathbb{R}.
(a) Compute $\operatorname{Adj}(x I-A)$ and write it in the form $x^{2} B_{2}+x B_{1}+B_{0}$.
(b) Verify that $B_{1}-A B_{2}$ and $-A B_{0}$ are both multiples of the identity matrix, as we discovered in the proof of the Cayley-Hamilton theorem. Hence deduce the coefficients of x^{2} and x^{0} (i.e., the constant term) in the characteristic polynomial of A.
2. This question involves chasing sequences of equalities based on definitions related to linear maps.
(a) Let V and W be vector spaces, and $\alpha, \beta: V \rightarrow W$ be linear maps. Verify the claim in the notes that $\alpha+\beta: V \rightarrow W$ is a linear map.
(b) Suppose that \mathcal{B} and \mathcal{B}^{\prime} are bases of V and W, respectively. Suppose further that α and β are represented by matrices A and B, with respect to the bases \mathcal{B} and \mathcal{B}^{\prime}. Show that the linear map $\alpha+\beta$ is represented by the matrix $A+B$. In other words, show that $[(\alpha+\beta)(v)]_{\mathcal{B}^{\prime}}=(A+B)[v]_{\mathcal{B}}$, for all $v \in V$.
(c) Let U, V and W be vector spaces, and $\alpha: U \rightarrow V$ and $\beta: V \rightarrow W$ be linear maps. Carefully verify the claim in the notes that $\beta \alpha: U \rightarrow W$ is a linear map.
3. Suppose V and W are vector spaces of dimensions 3 and 4 , respectively, over \mathbb{R}. Fix bases for V and W. A linear map $\alpha: V \rightarrow W$, is represented by the following matrix A relative to the chosen bases:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
-2 & -1 & 1
\end{array}\right]
$$

(a) Compute bases for $\operatorname{Ker}(\alpha)$ and $\operatorname{Im}(\alpha)$ and hence find the dimensions of these two subspaces. (Note that $\operatorname{Im}(\alpha)$ is just the column space of A.)
(b) Verify that your answer to (a) is consistent with the Rank-nullity Theorem.
4. Let U, V and W be vector spaces, and $\alpha: U \rightarrow V$ and $\beta: V \rightarrow W$ be linear maps.
(a) Show that $\operatorname{Ker}(\alpha)$ is a subspace of $\operatorname{Ker}(\beta \alpha)$.
(b) Show that $\operatorname{Im}(\beta \alpha)$ is a subspace of $\operatorname{Im}(\beta)$.
(c) Suppose that $\operatorname{dim}(U)=5, \operatorname{dim}(V)=2$ and $\operatorname{dim}(W)=4$. Show that the dimension of $\operatorname{Im}(\beta \alpha)$ is at most 2, and the dimension of $\operatorname{Ker}(\beta \alpha)$ is at least 3 .
5. Harder. Recall that the rank $\varrho(\alpha)$ of a linear map α is the dimension of $\operatorname{Im}(\alpha)$ and the nullity $\nu(\alpha)$ is the dimension of $\operatorname{Ker}(\alpha)$. Let U, V and W be vector spaces, and $\alpha: U \rightarrow V$ and $\beta: V \rightarrow W$ be linear maps.
(a) Prove that $\nu(\beta \alpha) \leq \nu(\alpha)+\nu(\beta)$.
(b) Prove that $\varrho(\beta \alpha) \leq \min \{\varrho(\alpha), \varrho(\beta)\}$.
(c) Discover, state and prove some lower bounds (and maybe further upper bounds) on $\nu(\beta \alpha)$ and $\varrho(\beta \alpha)$ in terms of $\nu(\alpha), \nu(\beta), \varrho(\alpha)$ and $\varrho(\beta)$.
6. Let D be the map on the set of real polynomials that takes each polynomial $f(x)$ to its derivative $f^{\prime}(x)$.
(a) Prove that D is a linear map.
(b) Let V_{n} be the vector space of polynomials of degree at most $n-1$. Consider D as a map from V_{n} to itself. Find its image, its kernel, its rank, and its nullity. Check that the rank-nullity theorem is satisfied.
(c) Now consider the case when $n=4$. Write down the matrix representing D with respect to the basis $\left(1, x, x^{2}, x^{3}\right)$ of V_{4}.

