
MTH6140 Linear Algebra II

Assignment 5 Solutions

1. Let

A =

2

6664

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 0 · · · ann

3

7775

be an upper triangular matrix. We have to show that

det(A) = a11a22 · · · ann.

(a) Suppose that ann = 0. Then A has a row of zeros and det(A) = 0.

Clearly the right-hand side is also zero.

Now suppose that ann 6= 0. Multiply the row n by a
�1
n,n (this row opera-

tion multiplies the determinant by a
�1
n,n) to get a matrix with an,n = 1.

Now applying Type 1 row operations (which don’t change the determi-

nant) we can ensure that the rest of the entries in the final column are

are zero.

Continuing this process i = n� 1, n� 2, . . . , 1, either:

(i) On some iteration we find that ai,i = 0. If this occurs, halt. Row i

of the current matrix is composed entirely of zeros.

(ii) Otherwise, we succeed in reducing A to the identity matrix In. The

sequence of row operations employed multiplied the determinant by

(a1,1a2,2 · · · an,n)�1
.

In case (i), det(A) = 0 and a1,1a2,2 · · · an,n = 0 also. In case (ii), we

have that

(a11a22 · · · an,n)�1
det(A) = det(I) = 1,

so det(A) = a1,1a2,2 · · · ann, as required.
(b) Let us use the cofactor expansion, along column 1. Also, we will use

induction on n, assuming the result true for upper triangular matrices

of size (n� 1)⇥ (n� 1).

All entries in the first column of A are zero except possibly the first

entry a1,1; so there is only one term in the cofactor expansion, namely

a1,1 det(A1,1), where A11 is the minor obtained from A by deleting the

first row and column. But this is a lower triangular matrix with diagonal

entries a2,2, . . . , an,n. By induction, det(A1,1) = a22 · · · an,n, so that

det(A) = a1,1 · · · an,n, as required.
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(c) Finally, we try using the the sum-over-permutations formula. The only

permutation that makes a non-zero contribution is the identity permu-

tation. (First note that ⇡(n) must equal n, as an,n is the only non-zero

entry in the final row of the matrix; then ⇡(n � 1) cannot be n so

must be n � 1, and so on. In general ⇡(i) = i.) Since the sign of the

identity permutation is +1, we deduce that the determinant of A is

a1,1a2,2 · · · an,n.

2. (a) Taking the permutations ⇡ in the order (1)(2)(3), (1)(2, 3), (1, 2)(3),

(1, 2, 3), (1, 3)(2), (1, 3, 2) in the sum-over-permutations (Leibniz) for-

mula we obtain

det(A) = aei� afh� bdi+ bfg + cdh� ceg.

We have used the fact that the sign of the identity is +1, of a transpo-

sition is �1 and of a 3-cycle is +1.

Using the Laplace expansion along the first row we have

det(a) = a

����
e f

h i

����� b

����
d f

g i

����+ c

����
d e

g h

���� .

Then, repeating with the smaller 2⇥ 2 matrices,

det(A) = a(ei� fh)� b(di� fg) + c(dh� eg)

= aei� afh� bdi+ bfg + cdh� ceg.

(b) Remark. As seen in part (a) in the context of a 3 ⇥ 3 matrix, the

terms of the Leibniz (sum-over-permutations) formula, and the terms

obtained from the Laplace expansion along a row appear to be in 1-1

correspondence. In fact this is true for in general for n ⇥ n matrices.

The correspondence between the two is done in detail in the Wikipedia

entry on the Laplace expansion. The point of this part of the question is

to hint at what goes on in the general case. Of course a similar identity

applies to the other terms in the Laplace expansion.

First, let k be the number of cycles in �. Then �
0
has k + 1 cycles,

the extra one being the cycle (1). Thus sign(�
0
) = (�1)n�(k+1)

=

(�1)(n�1)�k
= sign(�).

To verify the second identity, we just follow our noses. Let ⌃ denote

the set of permutations of {2, 3, . . . , n}. Then

a1,1K1,1(A) = a1,1

X

�2⌃

sign(�)a2,�(2)a3,�(3) · · · an,�(n)

=

X

�2⌃

sign(�)a1,�0(1), a2,�0(2)a3,�0(3) · · · an,�0(n)

=

X

�2⌃

sign(�
0
)a1,�0(1), a2,�0(2)a3,�0(3) · · · an,�0(n)

=

X

⇡2Sn,⇡(1)=1

sign(⇡)a1,⇡(1) · · · an,⇡(n).
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The second equality uses the definition of �
0
, and the third uses the fact

we just proved, namely that sign(�
0
) = sign(�).

Remark. Another idea for verifying correctness of the Laplace expansion
is to show that the expression

Pn
j=1 ai,jKi,j(A) satisfies (D1)–(D3), and

hence must be the determinant. The tricky case is (D2), and then only

when the Laplace expansion is done along one of the two equal rows.

One way out is to show that the result of doing a Laplace expansion

along row i and then row j is same as that arising from the reverse

order.

3. A Type 1 operation of the form Ri  Ri + cRj can be simulated by a

sequence of Type 1
0
and Type 2 operations: Rj  cRj, Ri  Ri + Rj and

Rj  c
�1
Rj. To verify this, suppose A is a matrix and that vi and vj are

the ith and jth rows of A. (So vi and vj are row vectors rather than column

vectors.) Applying the above sequence of operations to A causes rows i and j

to evolve as follows:

(vi, vj)! (vi, cvj)! (vi + cvj, cvj)! (vi + cvj, vj);

The overall e↵ect is the same as a Type 1 operation.

A Type 3 operation of the form Rj $ Rj can be simulated by a sequence of

Type 1 and Type 2 operations: Rj  Rj + Ri, Ri  (�1)Ri, Ri  Ri + Rj

and Rj  Rj�Ri. To verify this, suppose A, vi and vj are as above. Applying

the above sequence of operations to A causes rows i and j to evolve as follows:

(vi, vj) ! (vi, vi + vj) ! (�vi, vi + vj) ! (vj, vi + vj) ! (vj, vi).

The overall e↵ect is the same as a Type 2 operation. Finally the Type 1

operations used in this sequence can be simulated by Type 1
0
and Type 2

operations, as we saw earlier.

4. The adjugate of A is

Adj(A) =

2

4
2 �2 1

�3 2 �1
�1 1 �1

3

5 .

Explanation of the first row of the matrix A
0
= (a

0
i,j) = Adj(A):

a
0
1,1 = K1,1 = (�1)1+1

����
1 1

0 2

���� = 2, a
0
1,2 = K2,1 = (�1)2+1

����
1 0

0 2

���� = �2 and

a
0
1,3 = K3,1 = (�1)3+1

����
1 0

1 1

���� = 1.

The other rows can be computed similarly.

By, e.g., Laplace expansion along the first row we have det(A) = 1⇥2�1⇥3 =

�1.
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It is then easy to verify that

A · Adj(A) =

2

4
�1 0 0

0 �1 0

0 0 �1

3

5 = �I3 = det(A)I3.

5. (a) pA(x) = det(xI � A) = x
3 � 1 (e.g., by using the Leibniz formula). So

pA(A) = A
3 � I =

2

4
0 1 0

0 0 1

1 0 0

3

5
3

�

2

4
1 0 0

0 1 0

0 0 1

3

5 = I � I = O.

(b) Consider a general polynomial mA(x) = ax
2
+ bx+ c of degree at most

2. Note that

I =

2

4
1 0 0

0 1 0

0 0 1

3

5 , A =

2

4
0 1 0

0 0 1

1 0 0

3

5 , A
2
=

2

4
0 0 1

1 0 0

0 1 0

3

5 .

Thus, substituting A for x in mA(x), we obtain

mA(A) = a

2

4
0 0 1

1 0 0

0 1 0

3

5+ b

2

4
0 1 0

0 0 1

1 0 0

3

5+ c

2

4
1 0 0

0 1 0

0 0 1

3

5 =

2

4
c b a

a c b

b a c

3

5 .

So the only way mA(A) can equal O is for a = b = c = 0.

(c) It is convenient in this part to label rows and columns 0, 1, . . . , n � 1

instead of 1, 2, . . . , n. Then the matrix A has a 1 at position (i, j)

if and only if j = i + 1 (mod n). By an easy direct calculation, the

characteristic polynomial is

pA(x) = det(Ix� A) =

�����������

x �1 0 · · · 0

0 x �1 · · · 0

...
...

. . .
...

...
... x �1

�1 0 · · · 0 x

�����������

= x
n � 1.

(There are two perumutations leading to non-zero terms in the Leibniz

formula: one is the identity with sign 1, and the other is the cyclic

permutation (0, 1, . . . , n � 1), with sign �(�1)n. The first of these

yields the term x
n
and the second the term �(�1)n(�1)n = �1.)

The e↵ect of right multiplication by A is to cyclicly permute the columns

right by one position. (Check this!) Thus, A
n
= IA

n
= I and the

matrix A satisfies its own characteristic polynomial.

Consider any polynomial mA(c) = cn�1x
n�1

+ · · · + c1x + c0 of degree

less than n. The first row of the matrix

c0I + c1A+ c2A
2
+ · · ·+ cn�1A

n�1
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is [c0, c1, . . . , cn�1]. Therefore it is clear that mA(A) = O only if c0 =

c1 = · · · = cn�1 = 0. In other words, the matrix A satisfies no non-

trivial polynomial of degree less than n.

6. You just need to follow your nose and have faith:

pA0(x) = det(xI � A
0
)

= det(xI � P
�1
AP )

= det(P
�1
(xI � A)P )

= det(P
�1
) det(xI � A) det(P )

= det(P
�1
) det(P ) det(xI � A)

= det(I) det(xI � A)

= det(xI � A) = pA(x).
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