
MTH6140 Linear Algebra II

Assignment 4 Solutions

1. (a) Row 1 of A is the sum of rows 2 and 3, so rows 2 and 3 span the row
space. Rows 2 and 3 are also independent, so form a basis. (In fact,
any two rows form a basis for the row space.)

(b) We know from part (a) that the dimension of the column space is 2. So
any two columns which are not multiples of each other form a basis of
the column space. Columns 1 and 2 will do (as will any pair apart from
2 and 4).

(c) Following the recipe in the note, first apply the elementary operations

R2 �R1, C3 � 2C1

(subtract row 1 from row 2, and cubic twice column 1 from column 3)
to A, resulting in

2

4
1 0 2 0
1 1 0 2
0 �1 2 �2

3

5 !

2

4
1 0 2 0
0 1 �2 2
0 �1 2 �2

3

5 !

2

4
1 0 0 0
0 1 �2 2
0 �1 2 �2

3

5 .

At this point, we are e↵ectively reduced to the situation of a 2 ⇥ 3
matrix. Continuing with

R3 +R2, C3 + 2C2, C4 � 2C2,

we obtain

!
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4
1 0 0 0
0 1 �2 2
0 0 0 0

3

5 !
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4
1 0 0 0
0 1 0 2
0 0 0 0

3

5 !

2

4
1 0 0 0
0 1 0 0
0 0 0 0

3

5 .

We have reached the canonical form for equivalence.

Look again at the sequence of elementary operations used in part (c) to
reduce the matrix A to canonical form, and apply the row operations
in turn to a 3 ⇥ 3 identity matrix and the column operations in turn
to a 4 ⇥ 4 identity matrix. Applying the row operations R2 � R1 and
R3 +R2 we obtain

I3 =

2

4
1 0 0
0 1 0
0 0 1

3

5 !

2

4
1 0 0
�1 1 0
0 0 1

3

5 !
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4
1 0 0
�1 1 0
�1 1 1

3

5 = P,
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and applying column operations C3 � 2C1, C3 + 2C2 and C4 � 2C2 we
obtain

I4 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 !

2

664

1 0 �2 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 !

2

664

1 0 �2 0
0 1 2 0
0 0 1 0
0 0 0 1

3

775 !

2

664

1 0 �2 0
0 1 2 �2
0 0 1 0
0 0 0 1

3

775 = Q.

You should verify that PAQ is indeed the canonical form computed
earlier.

(d) The rank of the matrix in canonical form for equivalence is clearly 2;
this matches the row- and column-ranks found in parts (a) and (b).

Remark. P and Q can also be found by multiplying elementary matri-
ces, if desired, but the above method is simpler.

2. • (Reflexivity.) Set P = Im and Q = In. Then PAQ = ImAIn = A, and
so A is equivalent to A.

• (Symmetry.) Suppose B is equivalent to Q, i.e., there exist invertible
matrices P and Q such that B = PAQ. Then A = P�1BQ�1 and it
follows that A is equivalent to B.

• (Transitivity.) Suppose B is equivalent to A, and C is equivalent
to B. Then B = PAQ and C = P 0BQ0 for some invertible matri-
ces P,Q, P 0, Q0. Now note that C = P 0(PAQ)Q0 = (P 0P )A(QQ0). It
follows that C is equivalent to A.

3. Expanding the determinant yields

bc2 + ca2 + ab2 � cb2 � ba2 � ac2,

where the terms come from the permutations ◆ (identity permutation), (1, 2, 3),
(1, 3, 2), (2, 3), (1, 3) and (1, 2). Note that the transpositions have sign �1
and the other three permutations have sign +1. This expression can be
massaged into the required form.

4. (a) In this case n = 5 is odd, so sign(⇡) is +1 if ⇡ has an odd number of
cycles and�1 if it has an even number. The transposition is ⌧ = (1, 2) =
(1, 2)(3)(4)(5) throughout; it has four cycles so always sign(⌧) = �1.
(Indeed, any transposition ⌧ will have sign(⌧) = �1.) Thus we need to
verify in all cases that sign(�⌧) = � sign(�).

i. � = (1)(2)(3, 4, 5) and �⌧ = (1, 2)(3, 4, 5), so sign(�) = +1 and
sign(�⌧) = �1.

ii. � = (1)(2, 3, 4, 5) and �⌧ = (1, 3, 4, 5, 2), so sign(�) = �1 and
sign(�⌧) = +1.
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iii. � = (1, 3, 2, 4)(5) and �⌧ = (1, 4)(2, 3)(5), so sign(�) = �1 and
sign(�⌧) = +1.

(b) I don’t know a particularly attractive proof, starting with the definition
of sign(⇡) that we are using in the module. A hands-on approach would
examine what happens when we compose the transposition ⌧ = (1, 2)
with an arbitrary permutation ⇡ on {1, . . . , n}. There are basically two
cases. The easier to think about occurs when 1 and 2 are in di↵erent
cycles of ⇡. What happens to the number of cycles in passing from ⇡
to ⇡⌧? After that warm-up, consider what happens if 1 and 2 are in
the same cycle of ⇡. Again, what happens to the number of cycles in
passing from ⇡ to ⇡⌧?

The downside of this strategy is that you may find that you have to
separate out some degenerate situations — e.g., when either (1) or (2)
is a cycle in ⇡ — as sub-cases. It shouldn’t get too messy, though, if
you go about the task systematically.

5. (a) We know from (D1) that the determinant is linear in each row and
column. Applying this fact to row 1, we see that

������

a b c
d e f
g h i

������
+ 2⇥

������

a0 b0 c0

d e f
g h i

������
=

������

a+ 2a0 b+ 2b0 c+ 2c0

d e f
g h i

������
.

(b) In the following calculation, the first equality comes from applying (D1)
twice: first to the first pair of determinants and then the second pair.
In each case it is linearity in row 1 that is used. The second equality
comes from applying (D1) to row 2.

������

a b c
d e f
g h i

������
+ 2⇥

������

a0 b0 c0

d e f
g h i

������
+ 2⇥

������

a b c
d0 e0 f 0

g h i

������
+ 4⇥

������

a0 b0 c0

d0 e0 f 0

g h i

������

=

������

a+ 2a0 b+ 2b0 c+ 2c0

d e f
g h i

������
+ 2⇥

������

a+ 2a0 b+ 2b0 c+ 2c0

d0 e0 f 0

g h i

������

=

������

a+ 2a0 b+ 2b0 c+ 2c0

d+ 2d0 e+ 2e0 f + 2f 0

g h i

������
.

6. (a) Suppose A = (aij) is an n ⇥ n matrix and B is obtained from A by
multiplying row i by a scalar c, as in equation (3.1) of the notes. Then,
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from the Leibniz formula for the permanent:

per(B) =
X

⇡2Sn

a1,⇡(1) · · · ai�1,⇡(i�1) (cai,⇡(i)) ai+1,⇡(i+1) · · · an,⇡(n)

= c
X

⇡2Sn

a1,⇡(1) · · · ai�1,⇡(i�1)ai⇡(i)ai+1,⇡(i+1) · · · an⇡(n)

= c per(A).

Similarly, suppose A, A0 and B are n ⇥ n matrices related as in equa-
tion (3.2). Then

per(B) =
X

⇡2Sn

a1,⇡(1) · · · ai�1,⇡(i�1) (ai⇡(i) + a0i,⇡(i)) ai+1,⇡(i+1) · · · an,⇡(n)

=
X

⇡2Sn

a1,⇡(1) · · · ai�1,⇡(i�1)ai,⇡(i)ai+1,⇡(i+1) · · · an,⇡(n)

+
X

⇡2Sn

a1,⇡(1) · · · ai�1,⇡(i�1)a
0
i⇡(i)ai+1,⇡(i+1) · · · an,⇡(n)

= per(A) + per(A0).

Thus (D1) holds for the perminent.

That property (D3) holds for the permanent is trivial to check.

Property (D2) fails. For example, the 2 ⇥ 2 matrix J2 =


1 1
1 1

�
has

permanent 1 + 1 = 2, even though the matrix has two equal rows. (In
the expansion of the determinant, the two terms cancel out to yield
1� 1 = 0.)

(b) This counterexample works for R, but in F2 the matrix J2 has per-
manent 1 + 1 = 0, so is no longer a counterexample. In fact, if you
try a few random examples, you may begin to suspect that (D2) holds
for the permanent in F2. But if (D2) holds then the permanent must
equal the determinant in F2. Can this be so? In fact yes, since in F2

we have �1 = 1, so the factor sign(⇡) no longer has an e↵ect! So the
determinant and the permanent are the same function in F2.
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