MTH6140 Linear Algebra II

Coursework 4

1. Consider the following 3×4 matrix over \mathbb{R} :

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 2 \\
0 & -1 & 2 & -2
\end{array}\right]
$$

(a) Find a maximal independent set of rows in A. (These rows will form a basis for the row space.)
(b) Find a maximal independent set of columns in A.
(c) Use the procedure in the notes to reduce A to the canonical form for equivalence. Hence find invertible matrices P and Q such that $P A Q$ is in the canonical form for equivalence. Verify that $P A Q$ has the correct form by explicitly multiplying the matrices P, A and Q.
(d) From part (c), what is the rank of A ? Verify that your answer is consistent with (a) and (b).
2. Recall that $m \times n$ matrices A and B are equivalent if there exist invertible matrices P and $Q(m \times m$ and $n \times n$ respectively) such that $B=P A Q$. Verify that equivalence is an equivalence relation on $m \times n$ matrices.
3. Show, by direct calculation using the Leibniz (sum-over-permutations) formula, that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b)
$$

4. In the notes and lectures, we use the fact that if π is any permutation and τ is a transposition then $\operatorname{sign}(\pi \tau)=-\operatorname{sign}(\pi)$. (Recall that in computing the composition $\pi \tau$ we apply τ first and then π.)
(a) For each of the pairs of permutations π and τ on $\{1,2,3,4,5\}$ below, compute $\operatorname{sign}(\pi), \operatorname{sign}(\tau)$ and $\operatorname{sign}(\pi \tau)$ and check that the claimed identity holds:
i. $\pi=(3,4,5)$ and $\tau=(1,2)$,
ii. $\pi=(2,3,4,5)$ and $\tau=(1,2)$, and
iii. $\pi=(1,3,2,4)$ and $\tau=(1,2)$.

Note that the singleton cycles have been suppressed so, for example, $(3,4,5)=(1)(2)(3,4,5)$.
(b) Harder. Prove that $\operatorname{sign}(\pi \tau)=-\operatorname{sign}(\pi)$ holds for any permutation π and transposition τ on $\{1, \ldots, n\}$.
5. (a) Express

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|+2 \times\left|\begin{array}{lll}
a^{\prime} & b^{\prime} & c^{\prime} \\
d & e & f \\
g & h & i
\end{array}\right|
$$

as a single 3×3 determinant.
(b) Express

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|+2 \times\left|\begin{array}{ccc}
a^{\prime} & b^{\prime} & c^{\prime} \\
d & e & f \\
g & h & i
\end{array}\right|+2 \times\left|\begin{array}{ccc}
a & b & c \\
d^{\prime} & e^{\prime} & f^{\prime} \\
g & h & i
\end{array}\right|+4 \times\left|\begin{array}{ccc}
a^{\prime} & b^{\prime} & c^{\prime} \\
d^{\prime} & e^{\prime} & f^{\prime} \\
g & h & i
\end{array}\right|
$$

as a single 3×3 determinant.
6. The permanent of an $n \times n$ matrix $A=\left(a_{i j}\right)$ over \mathbb{K} is defined by the formula

$$
\operatorname{per}(A)=\sum_{\pi \in S_{n}} a_{1, \pi(1)} a_{2, \pi(2)} \cdots a_{n, \pi(n)} .
$$

(The only change from the determinant is that the factor $\operatorname{sign}(\pi)$ is missing.)
(a) Assume that $\mathbb{K}=\mathbb{R}$. Which of the three properties (D1)-(D3) hold for the permanent of a matrix? (Note that the determinant is the only function satisfying (D1)-(D3), so at least one of the properties must fail for the permanent.) In each case, either demonstrate that the property holds or provide a counterexample. By all means use the corresponding section from the notes as a model, but do present your answer in full.
(b) Harder. Repeat this exercise with $\mathbb{K}=\mathbb{F}_{2}$. How do you square your answer with the parenthetical remark in part (a)?

