Coursework 3 Solutions

1. Suppose that V is a vector space over the field \mathbf{k}, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in V. Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis of V if, and only if, $V=\left\langle\mathbf{v}_{1}\right\rangle \oplus \cdots \oplus\left\langle\mathbf{v}_{n}\right\rangle$.

Solution. If $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a basis of V, then each vector $\mathbf{v} \in V$ may be uniquely written in the form

$$
\begin{equation*}
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n} \tag{1}
\end{equation*}
$$

with suitable scalars $\alpha_{1}, \ldots, \alpha_{n}$. Since $\alpha_{i} \mathbf{v}_{i} \in\left\langle\mathbf{v}_{i}\right\rangle$ for $i=1, \ldots, n$, it follows that each $\mathbf{v} \in V$ can be uniquely written in the form $\mathbf{v}=\mathbf{u}_{1}+\mathbf{u}_{2}+\cdots+\mathbf{u}_{n}$ with $\mathbf{u}_{i} \in\left\langle\mathbf{v}_{i}\right\rangle$, which implies that V is the direct sum of the subspaces $\left\langle\mathbf{v}_{i}\right\rangle$ by definition of the direct sum.

Conversely, if $V=\left\langle\mathbf{v}_{1}\right\rangle \oplus \cdots \oplus\left\langle\mathbf{v}_{n}\right\rangle$, then each vector $\mathbf{v} \in V$ has a unique representation in the form (1), which shows that B is spanning and linearly independent, thus a basis of V.
2. If A is a (3×4)-matrix over the field of real numbers, write down elementary matrices for the following operations:
(i) add twice column 2 to column 4,
(ii) multiply column 3 by 5 ,
(iii) interchange rows 1 and 3 ,
(iv) subtract row 1 from row 2 .

In each case write down the inverse operation as an elementary matrix.
Solution. (i) The required elementary matrices are, respectively,

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(ii) The required elementary matrices are, respectively,

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{5} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(iii) The required elementary matrices are, respectively

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \text { and }\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]^{-1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(iv) The required elementary matrices are, respectively,

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

3. What is the rank of the matrix $D=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
(i) regarded as a matrix over \mathbb{R} ?
(ii) regarded as a matrix over the field $\mathbb{Z} / 2 \mathbb{Z}$ with two elements?

Solution. The first two rows of D are clearly linearly independent, so the decisive question is: can the third row vector be written as a linear combination of rows 1 and 2? Setting

$$
(1,1,0)=\alpha(0,1,1)+\beta(1,0,1)=(\beta, \alpha, \alpha+\beta)
$$

we compute that, equivalently, we must have $\alpha=\beta=1$ and $\alpha+\beta=0$.
(i) Over the field \mathbb{R} of real numbers, $1+1=2 \neq 0$, so that

$$
(1,1,0) \notin\langle(0,1,1),(1,0,1)\rangle
$$

and, consequently, $\mathrm{rk}_{\mathbb{R}}(D)=3$.
(ii) If D is regarded as a matrix over $\mathbb{Z} / 2 \mathbb{Z}$, then $\alpha+\beta=1+1=0$, and therefore

$$
(1,1,0)=(0,1,1)+(1,0,1),
$$

which shows that

$$
(1,1,0) \in\langle(0,1,1),(1,0,1)\rangle .
$$

Hence, $\operatorname{rk}_{\mathbb{Z} / 2 \mathbb{Z}}(D)=2$.
4. (i) Call two $(m \times n)$-marices A and B over a field \mathbf{k} equivalent, if there exist invertible matrices P and Q, such that $B=P A Q$. Verify that equivalence is an equivalence relation on the set of all $(m \times n)$-matrices over \mathbf{k}.
(ii) Call two $(n \times n)$-matrices A and B over a field \mathbf{k} similar, if there exists an invertible matrix P such that $B=P^{-1} A P$. Show that similarity is an equivalence relation on the set of $(n \times n)$-matrices over \mathbf{k}.
(iii) What relationship does there exist between equivalence and similarity?

Solution. (i) First, let A be an $(m \times n)$-matrix. Then $A=I_{n} A I_{n}$, which shows that A is equivalent to itself (reflexivity of equivalence).

Next, suppose that two $(m \times n)$-matrices A and B over \mathbf{k} are equivalent; that is, $B=P A Q$ for some invertible matrices P and Q. Then we have $A=P^{-1} B Q^{-1}$, showing that B is equivalent to A, so that the relation equivalence is symmetric.

Third, suppose that A, B, C are $(m \times n)$-matrices over the field \mathbf{k}, that A and B are equivalent, and that B and C are equivalent. Then there exist invertible matrices $P_{1}, P_{2}, Q_{1}, Q_{2}$, such that $B=P_{1} A Q_{1}$ and $C=P_{2} B Q_{2}$. Substituting for B, it follows that $C=\left(P_{2} P_{1}\right) A\left(Q_{1} Q_{2}\right)$. Since the product of invertible matrices is again invertible, we conclude that A is equivalent to C, whence transitivity of the relation equivalence.
(ii) Let A be an $(n \times n)$-matrix. Then $A=I_{n} A I_{N}=I_{n}^{-1} A I_{n}$, showing that A is similar to itself (reflexivity of the relation similar).

Next, let A and B be $(n \times n)$-matrices, and suppose that A is similar to B. Then there exists an invertible matrix P, such that $B=P^{-1} A P$. Thus, $A=\left(P^{-1}\right)^{-1} B P^{-1}$, which tells us that B is also similar to A, whence symmetry of similarity.

Finally, suppose that A, B, C are $(n \times n)$-matrices, that A is similar to B, and that B is similar to C. Then there exist invertible matrices P and Q, such that $B=P^{-1} A P$ and $C=Q^{-1} B Q$. It follows that

$$
C=Q^{-1}\left(P^{-1} A P\right) Q=(P Q)^{-1} A(P Q)
$$

implying that A is similar to C, proving that the relation similar is transitive, as required.
(iii) If A and B are $(n \times n)$-matrices for some positive integer n, and if A and B are similar, then A and B are equivalent.
5. Show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(b-a)(c-a)(c-b)$.

Solution. By Laplace expansion along the first row, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=\left|\begin{array}{cc}
b & c \\
b^{2} & c^{2}
\end{array}\right| & -\left|\begin{array}{cc}
a & c \\
a^{2} & c^{2}
\end{array}\right|+\left|\begin{array}{cc}
a & b \\
a^{2} & b^{2}
\end{array}\right|=\left(b c^{2}-b^{2} c\right)-\left(a c^{2}-a^{2} c\right)+\left(a b^{2}-a^{2} b\right) \\
& =b c^{2}-b^{2} c-a c^{2}+a^{2} c+a b^{2}-a^{2} b=(b-a)(c-a)(c-b) .
\end{aligned}
$$

