MTH6140 Linear Algebra II

Coursework 3

1. Suppose that V is a vector space over the field \mathbf{k}, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in V. Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis of V if, and only if, $V=\left\langle\mathbf{v}_{1}\right\rangle \oplus \cdots \oplus\left\langle\mathbf{v}_{n}\right\rangle$.
2. If A is a (3×4)-matrix over the field of real numbers, write down elementary matrices for the following operations:
(i) add twice column 2 to column 4,
(ii) multiply column 3 by 5 ,
(iii) interchange rows 1 and 3 ,
(iv) subtract row 1 from row 2 .

In each case write down the inverse operation as an elementary matrix.
3. What is the rank of the matrix $D=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
(i) regarded as a matrix over \mathbb{R} ?
(ii) regarded as a matrix over the field $\mathbb{Z} / 2 \mathbb{Z}$ with two elements?
4. (i) Call two $(m \times n)$-marices A and B over a field \mathbf{k} equivalent, if there exist invertible matrices P and Q, such that $B=P A Q$. Verify that equivalence is an equivalence relation on the set of all $(m \times n)$-matrices over \mathbf{k}.
(ii) Call two $(n \times n)$-matrices A and B over a field \mathbf{k} similar, if there exists an invertible matrix P such that $B=P^{-1} A P$. Show that similarity is an equivalence relation on the set of $(n \times n)$-matrices over \mathbf{k}.
(iii) What relationship does there exist between equivalence and similarity?
5. Show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(b-a)(c-a)(c-b)$.

