MTH6140 Linear Algebra II

Coursework 3

- **1.** Suppose that V is a vector space over the field \mathbf{k} , and let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be vectors in V. Show that $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of V if, and only if, $V = \langle \mathbf{v}_1 \rangle \oplus \dots \oplus \langle \mathbf{v}_n \rangle$.
- **2.** If A is a (3×4) -matrix over the field of real numbers, write down elementary matrices for the following operations:
 - (i) add twice column 2 to column 4,
 - (ii) multiply column 3 by 5,
 - (iii) interchange rows 1 and 3,
 - (iv) subtract row 1 from row 2.

In each case write down the inverse operation as an elementary matrix.

- **3.** What is the rank of the matrix $D = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
 - (i) regarded as a matrix over \mathbb{R} ?
 - (ii) regarded as a matrix over the field $\mathbb{Z}/2\mathbb{Z}$ with two elements?
- **4.** (i) Call two $(m \times n)$ -marices A and B over a field \mathbf{k} equivalent, if there exist invertible matrices P and Q, such that B = PAQ. Verify that equivalence is an equivalence relation on the set of all $(m \times n)$ -matrices over \mathbf{k} .
- (ii) Call two $(n \times n)$ -matrices A and B over a field \mathbf{k} similar, if there exists an invertible matrix P such that $B = P^{-1}AP$. Show that similarity is an equivalence relation on the set of $(n \times n)$ -matrices over \mathbf{k} .

1

- (iii) What relationship does there exist between equivalence and similarity?
- **5.** Show that $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b).$