MTH6140 Linear Algebra II

Coursework 2

1. Let V be a finitely generated vector space, and let $B \subseteq V$ be a finite list of vectors. Show that B is a basis of V if, and only if, B is a maximal linearly independent list.
2. Let U and W be subspaces of the vector space V. Show that their sum

$$
U+W=\{u+w: u \in U \text { and } w \in W\}
$$

is a subspace of V containing U and W.
3. Let $V=\mathbb{R}^{2}$, and let $\mathbf{v}_{1}=(\alpha, 0), \mathbf{v}_{2}=(0, \beta)$. When is $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ a basis of V ? Please justify your answer.
4. Let X, Y, D be subspaces of the real vector space $V=\mathbb{R}^{2}$ given by

$$
\begin{aligned}
X & :=\{(x, 0): x \in \mathbb{R}\}, \\
Y & :=\{(0, y): y \in \mathbb{R}\}, \\
D & :=\{(x, x): x \in \mathbb{R}\} .
\end{aligned}
$$

Show that $V=X \oplus Y=X \oplus D=Y \oplus D$.

