MTH6140 Linear Algebra II

Coursework 1 Solutions

1. (a) Let \mathbf{k} be a field. Show that, for $a, b \in \mathbf{k}, a b=0 \Longleftrightarrow a=0$ or $b=0$.
(b) Let V be a vector space over the field \mathbf{k}. Prove that, for $\alpha \in \mathbf{k}$ and $\mathbf{v} \in V$, $\alpha \mathbf{v}=\mathbf{0} \Longleftrightarrow \alpha=0$ or $\mathbf{v}=\mathbf{0}$.

Solution. (a) \Leftarrow. Without loss of generality, suppose that $a=0$. Then

$$
a b=0 \cdot b=(0+0) \cdot b=0 \cdot b+0 \cdot b,
$$

which implies $0 \cdot b=0$ by adding $-0 \cdot b$ to both sides.
\Rightarrow. Suppose that $a b=0$, and that $a \neq 0$. Then a^{-1} exists, and we have

$$
0=a^{-1}(a b)=\left(a^{-1} a\right) b=1 \cdot b=b .
$$

(b) If $\alpha=0$, then

$$
0 \cdot \mathbf{v}=(0+0) \cdot \mathbf{v}=0 \cdot \mathbf{v}+0 \cdot \mathbf{v}
$$

whence $0 \cdot \mathbf{v}=\mathbf{0}$. Also, if $\mathbf{v}=\mathbf{0}$, then

$$
\alpha \cdot \mathbf{v}=\alpha \cdot \mathbf{0}=\alpha \cdot(\mathbf{0}+\mathbf{0})=\alpha \cdot \mathbf{0}+\alpha \cdot \mathbf{0}
$$

thus $\alpha \cdot \mathbf{0}=\mathbf{0}$, as claimed. Conversely, suppose that $\alpha \mathbf{v}=\mathbf{0}$ and that $\alpha \neq 0$. Then α^{-1} exists, and we have

$$
\mathbf{0}=\alpha^{-1}(\alpha \mathbf{v})=\left(\alpha^{-1} \alpha\right) \mathbf{v}=1 \cdot \mathbf{v}=\mathbf{v},
$$

completing the proof.
2. Let V_{2} be the vector space consisting of all polynomials of degree ≤ 2 in one variable x over the field \mathbb{R}. For each of the following lists of polynomials say, with justification, whether the list is linearly independent, and whether it is spanning. What is the dimension of the vector space V_{2} ?
(i) $x-1, x^{2}-x, x^{2}-1$;
(ii) $x-1, x^{2}-x$;
(iii) $1, x-1, x^{2}-x, x^{2}$;
(iv) $1, x-1, x^{2}-x$.

Solution. (i) Since

$$
x^{2}-1=\left(x^{2}-x\right)+(x-1),
$$

the list is linearly dependent. Also, since $\operatorname{dim}\left(V_{2}\right)=3$ (the polynomials $1, x, x^{2}$ forming an obvious basis), this list is not spanning.
(ii) This list is linearly independent, since

$$
\mathbf{0}=\alpha(x-1)+\beta\left(x^{2}-x\right)=-\alpha+(\alpha-\beta) x+\beta x^{2}
$$

implies $\alpha=\beta=0$. Again, since $\operatorname{dim}\left(V_{2}\right)=3$, it is not spanning.
(iii) Since $\operatorname{dim}\left(V_{2}\right)=3$, this list is linearly dependent. More specifically, one notes, for instance, that

$$
x^{2}=1+(x-1)+\left(x^{2}-x\right) .
$$

However, the sublist consisting of $1, x-1, x^{2}$ is spanning since $1+(x-1)=x$; consequently, the original list is spanning as well.
(iv) This list is linearly independent as well as spanning, thus a basis of V_{2}. Indeed, we have $1+(x-1)=x$, as well as

$$
x^{2}=1+(x-1)+\left(x^{2}-x\right),
$$

which shows that the list (iv) is spanning. Also, since the number of vectors in our list equals $\operatorname{dim}\left(V_{2}\right)=3$, the list must be linearly independent.
3. Suppose that $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ and $B^{\prime}=\left(\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \mathbf{v}_{3}^{\prime}\right)$ are two bases of the 3dimensional vector space V over \mathbb{R}, and that B and B^{\prime} are related as follows:

$$
\mathbf{v}_{1}^{\prime}=\mathbf{v}_{1}+2 \mathbf{v}_{2}, \quad \mathbf{v}_{2}^{\prime}=3 \mathbf{v}_{1}+\mathbf{v}_{3}, \quad \text { and } \quad \mathbf{v}_{3}^{\prime}=2 \mathbf{v}_{1}+\mathbf{v}_{2} .
$$

(i) Write down the transition matrix $P_{B, B^{\prime}}$.
(ii) If $[u]_{B^{\prime}}=[1,2,3]^{t}$, what is $[u]_{B}$?
(iii) From Part (i), compute the transition matrix $P_{B^{\prime}, B}$.
(iv) If $[w]_{B}=[1,2,3]^{t}$, what is $[w]_{B^{\prime}}$?

Solution. (i) By definition of the transition matrix, we have

$$
P_{B, B^{\prime}}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

(ii) We have

$$
[u]_{B}=P_{B, B^{\prime}}[u]_{B^{\prime}}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
13 \\
5 \\
2
\end{array}\right] .
$$

(iii) By Part (i),

$$
P_{B^{\prime}, B}=P_{B, B^{\prime}}^{-1}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
-\frac{1}{3} & \frac{2}{3} & 1 \\
0 & 0 & 1 \\
\frac{2}{3} & -\frac{1}{3} & -2
\end{array}\right] .
$$

(iv) By Part (iii),

$$
[w]_{B^{\prime}}=P_{B^{\prime}, B}[w]_{B}=\left[\begin{array}{ccc}
-\frac{1}{3} & \frac{2}{3} & 1 \\
0 & 0 & 1 \\
\frac{2}{3} & -\frac{1}{3} & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
-6
\end{array}\right] .
$$

4. Let A, B be subspaces of the vector space $V=\mathbb{R}^{3}$ given by

$$
A:=\{(x, y, z): x, y, z \in \mathbb{R} \text { and } x+y+z=0\}
$$

and

$$
B:=\{(x, x, z): x, z \in \mathbb{R}\} .
$$

Show that $V=A+B$. Is this sum of subspaces of V direct?

Proof (i) ($1,1,0$) is in B but not in A and $(1,0,-1)$ is in A but not in B, so neither subspace is a subset of the other. It follows that $\mathrm{A}+\mathrm{B}$ has bigger dimension than A or B (which are each two dimensional) so at least 3 , which is the dimension of V . So $\mathrm{V}=\mathrm{A}+\mathrm{B}$.
(ii) No, since $(1,1,-2)$ is in both A, B and is not zero. Or, the direct sum of A, B would be 4-dimensional and V is only 3-dimensional.

