MTH6140

Coursework 1

1. (a) Let \mathbf{k} be a field. Show that, for $a, b \in \mathbf{k}, a b=0 \Longleftrightarrow a=0$ or $b=0$.
(b) Let V be a vector space over the field \mathbf{k}. Prove that, for $\alpha \in \mathbf{k}$ and $\mathbf{v} \in V$, $\alpha \mathbf{v}=\mathbf{0} \Longleftrightarrow \alpha=0$ or $\mathbf{v}=\mathbf{0}$.
2. Let V_{2} be the vector space consisting of all polynomials of degree ≤ 2 in one variable x over the field \mathbb{R}. For each of the following lists of polynomials say, with justification, whether the list is linearly independent, and whether it is spanning. What is the dimension of the vector space V_{2} ?
(i) $x-1, x^{2}-x, x^{2}-1$;
(ii) $x-1, x^{2}-x$;
(iii) $1, x-1, x^{2}-x, x^{2}$;
(iv) $1, x-1, x^{2}-x$.
3. Suppose that $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ and $B^{\prime}=\left(\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \mathbf{v}_{3}^{\prime}\right)$ are two bases of the 3dimensional vector space V over \mathbb{R}, and that B and B^{\prime} are related as follows:

$$
\mathbf{v}_{1}^{\prime}=\mathbf{v}_{1}+2 \mathbf{v}_{2}, \quad \mathbf{v}_{2}^{\prime}=3 \mathbf{v}_{1}+\mathbf{v}_{3}, \quad \text { and } \quad \mathbf{v}_{3}^{\prime}=2 \mathbf{v}_{1}+\mathbf{v}_{2}
$$

(i) Write down the transition matrix $P_{B, B^{\prime}}$.
(ii) If $[u]_{B^{\prime}}=[1,2,3]^{t}$, what is $[u]_{B}$?
(iii) From Part (i), compute the transition matrix $P_{B^{\prime}, B}$.
(iv) If $[w]_{B}=[1,2,3]^{t}$, what is $[w]_{B^{\prime}}$?
4. Let A, B be subspaces of the vector space $V=\mathbb{R}^{3}$ given by

$$
A:=\{(x, y, z): x, y, z \in \mathbb{R} \text { and } x+y+z=0\}
$$

and

$$
B:=\{(x, x, z): x, z \in \mathbb{R}\} .
$$

Show that $V=A+B$. Is this sum of subspaces of V direct?

