MTH6140 Linear Algebra II

Coursework 1

1. (a) Let **k** be a field. Show that, for $a, b \in \mathbf{k}$, $ab = 0 \iff a = 0$ or b = 0.

(b) Let V be a vector space over the field **k**. Prove that, for $\alpha \in \mathbf{k}$ and $\mathbf{v} \in V$, $\alpha \mathbf{v} = \mathbf{0} \iff \alpha = 0$ or $\mathbf{v} = \mathbf{0}$.

2. Let V_2 be the vector space consisting of all polynomials of degree ≤ 2 in one variable x over the field \mathbb{R} . For each of the following lists of polynomials say, with justification, whether the list is *linearly independent*, and whether it is *spanning*. What is the dimension of the vector space V_2 ?

(i) $x - 1, x^2 - x, x^2 - 1;$

(ii)
$$x - 1, x^2 - x;$$

- (iii) 1, x 1, $x^2 x$, x^2 ;
- (iv) 1, x 1, $x^2 x$.

3. Suppose that $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ and $B' = (\mathbf{v}'_1, \mathbf{v}'_2, \mathbf{v}'_3)$ are two bases of the 3-dimensional vector space V over \mathbb{R} , and that B and B' are related as follows:

$$\mathbf{v}_1' = \mathbf{v}_1 + 2\mathbf{v}_2, \quad \mathbf{v}_2' = 3\mathbf{v}_1 + \mathbf{v}_3, \text{ and } \mathbf{v}_3' = 2\mathbf{v}_1 + \mathbf{v}_2.$$

- (i) Write down the transition matrix $P_{B,B'}$.
- (ii) If $[u]_{B'} = [1, 2, 3]^t$, what is $[u]_B$?
- (iii) From Part (i), compute the transition matrix $P_{B',B}$.
- (iv) If $[w]_B = [1, 2, 3]^t$, what is $[w]_{B'}$?

4. Let A, B be subspaces of the vector space $V = \mathbb{R}^3$ given by

$$A := \{ (x, y, z) : x, y, z \in \mathbb{R} \text{ and } x + y + z = 0 \}$$

and

$$B := \{ (x, x, z) : x, z \in \mathbb{R} \}.$$

Show that V = A + B. Is this sum of subspaces of V direct?