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Question 1.

(a) The list (v1, . . . , vn) is linearly independent if, for all c1, . . . , cn ∈ K, it is the case
that c1v1 + · · · cnvn = 0 implies c1 = · · · = cn = 0; It is spanning if every vector
v ∈ V may be expressed in the form v = c1v1 + · · · cnvn for some c1, . . . , cn ∈ K.

(b) (i) Yes, (ii) yes, (iii) no, and (iv) yes.

(c) The dimension of V is the number of vectors in any basis of V. (All bases have
the same cardinality.)

(d) The sum of U and W is defined by U + W = {u + w : u ∈ U and w ∈W}.

(e) U + W ⊇ {u + 0 : u ∈ U} = U an so dim(U + W) ≥ dim(U). Similarly,
dim(U + W) ≥ dim(W).

(f) The subspaces are not equal, so one contains a vector that is not in the other;
say, v ∈W \U. Take a basis u1, . . . , un−1 of U. Since v /∈ 〈u1, . . . , un−1〉 we see
that u1, . . . , un−1, v is a linearly independent list of vectors. Also, since
〈u1, . . . , un−1, v〉 ⊆ U + W, we see that dim(U + W) ≥ n. On the other hand,
U + W ⊆ V, from which dim(U + W) ≤ n.

Finally, dim(U ∩W) = dim(U) + dim(W)− dim(U + W) =
(n− 1) + (n− 1)− n = n− 2.

Notes. Parts (a,c,d) are basic definitions. Part (b) is an easy test of
bookwork/understanding. Parts (e) and (f) are unseen, and the latter probably won’t
be completed by many students.
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Question 2.

(a) The three types of elementary row operations are: (I) add a multiple of row j to
row i, for some i 6= j; (II) multiply row i by a non zero scalar, and
(III) interchange row i and row j, for some i 6= j.

(b) Elementary row operations preserve the row space of a matrix and hence the
row rank. They preserve the column rank of a matrix but not the column space.

(c) The m× n matrix A = (aij) is in canonical form if a11 = a22 = · · · = arr = 1 for
some r ≤ min{n, m} and aij = 0 otherwise.

(d) We already have 1 in the top left corner, so proceed immediately to zero column
1 and and row 1 using type I operations:1 2 1 3

2 5 0 3
0 2 −4 −6

→
1 2 1 3

0 1 −2 −3
0 2 −4 −6

→
1 0 0 0

0 1 −2 −3
0 2 −4 −6

 .

Now repeat on the bottom right 2× 3 matrix:1 0 0 0
0 1 −2 −3
0 2 −4 −6

→
1 0 0 0

0 1 −2 −3
0 0 0 0

→
1 0 0 0

0 1 0 0
0 0 0 0

 .

(e) Given any matrix A, reduce it to canonical form as in the previous part.
Suppose the resulting matrix, D, has r non-zero entries. It is clear that the
non-zero rows of D are linearly independent, so the row-rank of D is r; by a
similar argument, the column-rank of D is also r. But in reducing A to D we
didn’t change the row and column rank (by part (b)). So the row- and
column-rank of A are both r.

(f) In the example in part (d), r = 2, so the rank of A is two.

Notes. Parts (a–c) are bookwork; (d) is a straightforward application of a method
from the course; (e) is bookwork plus an easy deduction.
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Question 3.

(a) Ker(α) = {u ∈ U : α(u) = 0} and Im(α) = {α(u) : u ∈ U}.

(b) First, all the vectors α(uk+1), . . . , α(un) are clearly in Im(α). We just need to
show that any vector v ∈ Im(α) can be expressed as a linear combination of
α(uk+1), . . . , α(un). Since v ∈ Im(α) there is a vector u ∈ U such that v = α(u).
Also, since u1, . . . , un is a basis of U, we can write u as c1u1 + · · ·+ cnun for
some scalars c1, . . . , cn. Then

v = α(u) = α(c1u1 + · · ·+ cnun)

= c1α(u1) + · · ·+ cnα(un)

= ck+1α(uk+1) + · · ·+ cnα(un),

where we have used the fact that u1, . . . , uk ∈ Ker(α).

(c) dim(Ker(α)) + dim(Im(α)) = dim(U).

(d) Suppose u ∈ Ker(α). Then α(u) = 0 and hence βα(u) = β(α(u)) = β(0) = 0. It
follows that u ∈ Ker(βα).

(e) Since Ker(βα)) ⊇ Ker(α), we have

dim(Ker(βα)) ≥ dim(Ker(α))
= dim(U)− dim(Im(α))

≥ dim(U)− dim(V) = 5− 2 = 3.

Notes. Parts (a,c) are basic definitions/results; part (b) is bookwork; parts (d) and (e)
are similar to coursework.
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Question 4.

(a) A vector v ∈ V is an eigenvector of α with eigenvalue λ ∈ K if v 6= 0 and
α(v) = λv.

(b) α is diagonalisable if V has a basis consisting entirely of eigenectors of α.

(c) Let β = (α− λ1 I) · · · (α− λr−1 I)(α− λr I). Suppose v is any eigenvector of α,
and let λi be the corresponding eigenvector. Then

β(v) = (α− λ1 I) · · · (α− λr−1 I)(α− λr I)v
= (α− λ1 I) · · · (α− λr−1 I)(λi − λr)v
= (λi − λ1) · · · (λi − λr−1)(λi − λr)v
= 0v = 0,

since one of the factors in the product is zero. Since β(v) = 0 for any
eigenvector v, and the eigenvectors of α form a basis for V, it follows that β is
the zero map.

(d) The minimal polynomial of α is the monic polynomial mα(x) of smallest degree
such that mα(α) = 0.

(e) (i) (x− 1)(x− 2), (x− 1)(x− 2)2 and (x− 1)(x− 2)3.

(ii) (x− 2)(x− 3)3, (x− 2)2(x− 3)2 and (x− 2)3(x− 3).

(iii) The only possibility for the minimal polynomial is mα(x) = x− 1. So α is
the identity map.

(iv) The only possibility for the characteristic polynomial is
pα(x) = (x− 2)2(x2 + 1).

Notes. Parts (a,b,d) are basic definitions. Part (c) comes from part of a proof in the
module. Part (e) contains some not-too-hard deductions from facts about pα(x) and
mα(x).
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Question 5.

(a) (v1, . . . , vn) is orthonormal if vi · vj = δij for all i, j.

(b) It is enough to show that U is nonempty, and closed under vector addition and
scalar multiplication. Suppose u, u′ ∈ U and c ∈ R. Then,we have that
(u + u′) · v = u · v + u′ · v = 0 + 0 = 0, and hence u + u′ ∈ U. Similarly,
(cu) · v = c(u · v) = c0 = 0 and hence cu ∈ U.

(c) The adjoint α∗ : V → V of α is the unique linear map satisfying
v · α∗(w) = α(v) · w for all v, w ∈ V. The map α is self-adjoint if α∗ = α.

(d) Suppose α is a self-adjoint linear map on V. Then there is an orthonormal basis
for V consisting of eigenvalues of α.

(e) Suppose u ∈ U. Then, by definition, u · v = 0. Then

α(u) · v = u · α(v) = u · (λv) = λ(u · v) = 0.

It follows that α(u) ∈ U.

Notes. Parts (a) and (c) are basic definitions. That the orthogonal complement of a
subspace W is a subspace is bookwork; part (b) is just the special case dim(W) = 1.
Part (d) is bookwork. Part (e) is bookwork (provided the student recognises it as part
of the proof of the Spectral Theorem).

End of Paper.

c© Queen Mary University of London (2019)


