
MTH5129 Probability & Statistics II

Coursework 6

1. Prove that, if X1, X2, ..., Xn is a sequence of independent random

variables with E(Xi) = µj, Var(Xj) = σ2j then

Var

(
n∑
j=1

Xj

)
=

n∑
j=1

σ2j .

Solution: By the definition of variance,

Var

(
n∑
j=1

Xj

)
= E

(
n∑
j=1

Xj − E

(
n∑
j=1

Xj

))2

= E

(
n∑
j=1

Xj −
n∑
j=1

E[Xj]

)2

= E

(
n∑
j=1

(Xj − E(Xj))

)2

= E

(
n∑
j=1

(Xj − µj)

)2

(∗)
=

n∑
j=1

E(Xj − µj)2 + 2
∑

1≤j<i≤n
E ((Xj − µj) (Xi − µi))

(∗∗)
=

n∑
j=1

Var(Xj) + 2
∑

1≤j<i≤n
Cov(Xj, Xi)

(∗∗∗)
=

n∑
j=1

Var(Xj) =
n∑
j=1

σ2j .

where

(∗) is due to the rule (
∑n

j=1 aj)
2 =

∑n
j=1 a

2
j + 2

∑
1≤j<i≤n ajai,
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(∗∗) is due to the definition of covariance

(∗ ∗ ∗) holds because Xi and Xj are independent and therefore

E ((Xj − µj) (Xi − µi)) = E (Xj − µj)× E (Xi − µi) = 0.

2. Suppose that I roll a (fair) die repeatedly. Let Sn be the total

number of 5’s or 6’s that I observe after throwing the die n times.

What is the

lim
n→∞

P (0.3n < Sn < 0.4n)?

Solution: We use the law of large numbers.

Let Xk be the random variable that is 1 if the roll is a 5 or 6

and zero otherwise. Then Sn =
∑n

k=1Xk. We are interested in

the event

{0.3n < Sn < 0.4n} = {0.3 < Sn
n
< 0.4} = {0.3 < Yn < 0.4}

where Yn = Sn/n as in the law of large numbers. We see that

E(Xk) = 1/3 and that Var(Xk) = 2/9 <∞.

Let ε = 0.01.

{0.3 < Yn < 0.4} ⊃ {|Yn − 1/3| < 0.03}

Hence

P (0.3n < Sn < 0.4n) = P (0.3 < Yn < 0.4) > P (|Yn−1/3| < 0.03)

which tends to 1 by the Law of large numbers. Hence

P (0.3n < Sn < 0.4n)→ 1.

Note you might be inclined to pick ε = 1/3 − 0.3 = 1/30: you

can if you like but since you can pick any ε pick something easy!
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3. X1, X2, . . . , Xn is a random sample from a distribution with

mean µ and variance σ2. How large a sample must be taken

in order that you can be 95% certain that the sample mean

X̄n =
1

n

i=1∑
n

Xi is within 0.1σ of µ?

Solution: First of all, X̄n has mean µ and variance σ2/n (prove

that). We have to find n such that

P (|X̄n−µ| ≤ 0.1σ) ≥ 0.95 or, equivalently, P (|X̄n−µ| > 0.1σ) ≤ 0.05.

By Chebyshev’s inequality, we have

P (|X̄n − µ| ≥ ε) ≤ σ2/n

ε2
.

In our case, ε = 0.1σ and

P
(
|X̄n − µ| ≥ 0.1σ

)
≤ σ2

n(0.1σ)2
=

100

n
.

It remains to find n such that 100
n ≤ 0.05. Hence n ≥ 100

0.05 = 2000.

In words, if n is 2000 or larger, then X̄n is within 0.1σ of µ.

4. Suppose that I measure the heights of 100 people in London. A

person’s height has mean 160cm and standard deviation 15cm.

Find the (approximate) probability that the mean height of

these 100 people I measure is over 163cm. Assume each person’s

height is independent from the others’. Express your answer in

terms of the Φ function.

Solution: Let Xi be the height in cm of the ith person I mea-

sure. The Xi are n = 100 independent random variables with

mean µ = 160 and variance σ2 = 152. We have to estimate the
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probability

P

(
1

100

100∑
j=1

Xj ≥ 163

)
= P

(
100∑
j=1

Xj ≥ 100 · 163

)

= P

(∑100
j=1Xj − nµ√

nσ
≥ 100 · 163− nµ√

nσ

)

= P

(∑100
j=1Xj − nµ√

nσ
≥ 100 · 163− 100 · 160

10 · 15

)

= P

(∑100
j=1Xj − nµ√

nσ
≥ 2

)
= 1− Φ(2) = 0.023.

Explanation. We have transformed both sides of the initial

inequality so that to turn the left hand side into the expression

which appears in the CLT. Namely, by the CLT the random vari-

able Zn :=
∑n

j=1Xj−nµ√
nσ

is approximately normal, N(0, 1). Thus

the probability

P (Zn > x) = 1− P (Zn ≤ x) =≈ 1− Φ(x).

In our case x = 2 and we use the normal distribution table to

see that this probability is approximately 0.977.

5. [Gambler’s ruin problem] Suppose that we are gambling repet-

itively on a game with probability of losing £1 in each gamble

0.55 and winning £1 with probability 0.45. Starting from an ini-

tial capital of £20. Show that the probability we have not gone

bankrupt after 1000 games is (approximately) at most 0.0057.

Solution: The gambler just plays the game for 1000 times and

looks at the distribution of the amount of money she has.

Let Xk be the random variable that is 1 if she wins the k-th

game and −1 if she loses it.

Then the capital at time 1000 is

C1000 = £

(
20 +

1000∑
k=1

Xk

)
.
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Now each Xk has

E[Xk] = −0.1

and

Var(Xk) = 0.99.

Hence by the independence of the Xi’s, we have

S1000 =
1000∑
k=1

Xk

has mean −100 and variance 990.

By the approximate Central Limit Theorem

Z1000 =
S1000 − (−100)√

990
∼ N(0, 1).

Note also that the capital (in pounds) at time 1000 is approxi-

mately

C1000 = 20 +
1000∑
k=1

Xk = 20 + S1000.

Hence, using the above distribution, we can estimate the prob-

ability that the gambler’s capital is negative at time 1000, by

calculating

P (C1000 < 0) = P (S1000 < −20)

= P
(S1000 − (−100)√

990
<
−20− (−100)√

990

)
= P (Z1000 < 2.54)

≈
∫ 2.54

−∞

1√
2π
e−x

2/2 = Φ(2.54) = 0.9943.

since Z1000 is (approximately) a standard Normal random vari-

able.

Now the event that we go bankrupt, at any time between 1 and

1000, is a subset of the event we have negative money at time

1000. Hence,

P (Go bankrupt) ≥ P (C1000 < 0) = 0.9943
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and

P (Not gone bankrupt) = 1− P (Go bankrupt) ≤ 1− 0.9943 = 0.0057.

Therefore, the probability that we have not gone bankrupt is at

most 0.57%.
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