MTH5129 Probability \& Statistics II

Coursework 4

1. Suppose X and Y are jointly continuous random variables with joint density function

$$
f_{X, Y}(x, y)=c e^{-|x|-|y|}, \quad \forall(x, y) \in \mathbb{R}^{2}
$$

Find whether X and Y are independent.
(c is a constant chosen to make $f_{X, Y}$ a density function).
Solution: We use the Theorem which states that
X and Y are independent if and only if we can 'factorize' $f_{X, Y}$ into two bits: one depending only on x and one depending only on y.

In this case $f_{X, Y}(x, y)=c e^{-|x|} e^{-|y|}$ which is obviously composed by two parts as above. Explicitly let $g(x)=c e^{-|x|}$ and $h(y)=e^{-|y|}$. We see that $f_{X, Y}(x, y)=g(x) h(y)$ for all x and y. Hence X and Y are independent.
2. Suppose that X and Y are two random variables.
a) Prove that if X and Y are independent then

$$
E\left(X^{k} Y^{m}\right)=E\left(X^{k}\right) E\left(Y^{m}\right)
$$

b) Deduce that if X and Y are independent then $\operatorname{Corr}(X, Y)=0$.

Solution:

a) We prove this for any X and Y continuous random variables (Exercise. Prove this for discrete random variables). Given that $E(X)=\mu_{1}$ and $E(Y)=\mu_{2}$ are constants, we have:

$$
\begin{aligned}
E\left[X^{k} Y^{m}\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{k} y^{m} f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{k} y^{m} f_{X}(x) f_{Y}(y) d x d y \quad \text { (by independence) } \\
& =\int_{-\infty}^{\infty} y^{m} f_{Y}(y)\left(\int_{-\infty}^{\infty} x^{k} f_{X}(x) d x\right) d y \\
& =E\left(X^{k}\right) \int_{-\infty}^{\infty} y^{m} f_{Y}(y) d y \\
& =E\left(X^{k}\right) E\left(Y^{m}\right)
\end{aligned}
$$

b) Evaluate the above formula for $k=1$ and $m=1$ to get

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0
$$

3. Suppose we choose independently X and Y to be two $\operatorname{Uniform}(0,1)$ random variables. Use their convolution to find the probability density function of their sum $Z=X+Y$.
Solution: We have

$$
f_{X}(x)=f_{Y}(x)= \begin{cases}1, & \text { if } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

The probability density function of their sum is given by

$$
\begin{aligned}
f_{Z}(z) & =\left(f_{X} * f_{Y}\right)(z)=\int_{-\infty}^{+\infty} f_{X}(z-y) f_{Y}(y) d y \\
& =\int_{0}^{1} f_{X}(z-y) d y
\end{aligned}
$$

Note that $0<z-y<1$ if and only if $z-1<y<z$, hence:
For $z<0$ and $z>2$, we have $f_{Z}(z)=0$.
For $z \in(0,1)$, we have

$$
f_{Z}(z)=\int_{0}^{z} d y=z
$$

For $z \in(1,2)$, we have

$$
f_{Z}(z)=\int_{z-1}^{1} d y=2-z
$$

Overall, we have

$$
f_{Z}(z)= \begin{cases}z, & \text { if } 0<z<1 \\ 2-z, & \text { if } 1<z<2 \\ 0 & \text { otherwise }\end{cases}
$$

4. Let X have the probability density function

$$
f_{X}(x)= \begin{cases}4 x^{3}, & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $Y=2 X-1$ using the cumulative distribution function method.

Solution: Using the cumulative distribution function method, we have

$$
F_{X}(x)=\int_{0}^{x} 4 t^{3} d t=x^{4}
$$

while given that $y=2 x-1$ we have $-1<y<1$ corresponding to the initial $0<x<1$. Then, for all $-1<y<1$ we have

$$
F_{Y}(y)=P(Y \leq y)=P(2 X-1 \leq y)=P\left(X \leq \frac{y+1}{2}\right)=F_{X}\left(\frac{y+1}{2}\right)
$$

thus

$$
F_{Y}(y)= \begin{cases}0, & \text { if } y \leq-1 \\ \left(\frac{y+1}{2}\right)^{4}, & \text { if }-1<y<-1 \\ 1, & \text { if } y \geq 1\end{cases}
$$

This finally implies that

$$
f_{Y}(y)= \begin{cases}2\left(\frac{y+1}{2}\right)^{3}=\frac{1}{4}(y+1)^{3}, & \text { for }-1<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

5. Suppose X and Y are two independent $\operatorname{Uniform}(0,1)$ random variables. Use the cumulative distribution function method to find the probability density function of their sum $U=X+Y$.

Solution: Given that $X \in(0,1)$ and $Y \in(0,1)$, we have $U \in(0,2)$.
Then for $u \in(0,2)$, the equality $U=u$ implies that $X=u-Y$. Hence, since we want $0 \leq U \leq u$, we observe that we need $0 \leq X \leq u-Y$, which is possible if and only if $Y \leq u$.

However, given that $0<X<1$ and $0<Y<1$, we need to split into two cases:

For $u \in(0,1)$, we have $0 \leq X \leq u-Y$ for any $0 \leq Y \leq u$, thus

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =P(X+Y \leq u) \\
& =P(X \leq u-Y) \\
& =\int_{0}^{u} \int_{0}^{u-y} f_{X, Y}(x, y) d x d y \\
& =\int_{0}^{u} \int_{0}^{u-y} d x d y \\
& =\int_{0}^{u}(u-y) d y \\
& =\left[u y-\frac{1}{2} y^{2}\right]_{y=0}^{u}=u^{2}-\frac{1}{2} u^{2}=\frac{1}{2} u^{2} .
\end{aligned}
$$

For $u \in(1,2)$, we either have $0 \leq X \leq u-Y$ for any $u-1<Y<1$, or $0 \leq X \leq 1$ for any $0 \leq Y \leq u-1$, thus

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =P(X+Y \leq u) \\
& =P(X \leq u-Y) \\
& =\int_{u-1}^{1} \int_{0}^{u-y} f_{X, Y}(x, y) d x d y+\int_{0}^{u-1} \int_{0}^{1} f_{X, Y}(x, y) d x d y \\
& =\int_{u-1}^{1} \int_{0}^{u-y} d x d y+\int_{0}^{u-1} \int_{0}^{1} d x d y \\
& =\int_{u-1}^{1}(u-y) d y+\int_{0}^{u-1} d y \\
& =\left[u y-\frac{1}{2} y^{2}\right]_{y=u-1}^{1}+u-1=2 u-\frac{1}{2} u^{2}-1
\end{aligned}
$$

So, we have

$$
f_{U}(u)=\frac{d F(u)}{d u}= \begin{cases}u, & \text { if } 0<u<1 \\ 2-u, & \text { if } 1<u<2 \\ 0 & \text { otherwise }\end{cases}
$$

