MTH5129 Probability \& Statistics II

Coursework 3

1. Suppose X and Y have joint density function

$$
f_{X, Y}(x, y)= \begin{cases}2 e^{-x-y} & \text { if } x>y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the conditional density function $f_{Y \mid X=x}(y)$.
In lectures we calculated the $f_{X \mid Y=y}$.
Solution: By definition

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

whenever $f_{X}(x)>0$. Hence we need to find the marginal density f_{X}. If $x \leq 0$ then $f_{x}(x)=0$. If $x>0$ we have

$$
\begin{aligned}
f_{x}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, t) d t \\
& =\int_{-\infty}^{0} f_{X, Y}(x, t) d t+\int_{0}^{x} f_{X, Y}(x, t) d t+\int_{x}^{\infty} f_{X, Y}(x, t) d t \\
& =\int_{0}^{x} 2 e^{-x-t} d t \\
& =\left[-2 e^{-x-t}\right]_{t=0}^{x} \\
& =2 e^{-x}-2 e^{-2 x} .
\end{aligned}
$$

Hence, if $x \leq 0$ then $f_{Y \mid X=x}$ is not defined. If $x>0$ then

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)} .
$$

If $y>x$ or $y<0$ then $f_{X, Y}(x, y)=0$ and so $f_{Y \mid X=x}(y)=0$.
Finally (the interesting case!) if $0<y<x$:

$$
f_{Y \mid X=x}(y)=\frac{2 e^{-x-y}}{2 e^{-x}-2 e^{-2 x}}=\frac{e^{-y}}{1-e^{-x}}
$$

Hence, putting it all together: $f_{Y \mid X=x}(y)$ is defined only for $x>0$ and it is given by

$$
f_{Y \mid X=x}(y)= \begin{cases}\frac{e^{-y}}{1-e^{-x}} & \text { if } x>y>0 \\ 0 & \text { otherwise }\end{cases}
$$

2. Suppose that X, Y, Z are random variables. If $a \in \mathbb{R}$, prove that
a) $\operatorname{Cov}(\mathrm{aX}, \mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{aY})=\mathrm{a} \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
b) $\operatorname{Cov}(\mathrm{a}+\mathrm{X}, \mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{a}+\mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
c) $\operatorname{Cov}(\mathrm{X}, \mathrm{Y}+\mathrm{Z})=\operatorname{Cov}(\mathrm{X}, \mathrm{Y})+\operatorname{Cov}(\mathrm{X}, \mathrm{Z})$

Solution: All parts can be proved by using the definition of Covariance (see definition and procedure followed in lecture).
Below we prove part (a) - other equations follow similarly:

$$
\begin{aligned}
\operatorname{Cov}(a X, Y) & =E[(a X-E(a X))(Y-E(Y))] \\
& =E[(a X-a E(X))(Y-E(Y))] \\
& =E[a(X-E(X))(Y-E(Y))] \\
& =a E[(X-E(X))(Y-E(Y))] \\
& =a \operatorname{Cov}(X, Y)
\end{aligned}
$$

3. Suppose we throw a dice. Define the events A to be "the outcome is an odd number", B to be "the outcome is 2 ", C to be "the outcome is either a 5 or a $6^{\prime \prime}$.
a) What is the sample space Ω ?
b) Are the events A and B independent?
c) Are the events A and C independent?
d) Are the events A, B and C independent?

Solution:

a) This question translates to "What are the possible outcomes from throwing a dice?" The answer is

$$
\Omega=\{1,2,3,4,5,6\}
$$

b) We have

$$
P(A)=3 / 6=1 / 2
$$

and

$$
P(B)=1 / 6
$$

while

$$
P(A \cap B)=0
$$

which means that

$$
P(A \cap B) \neq P(A) \cdot P(B)
$$

hence the events A and B are not independent.
c) We have

$$
P(C)=2 / 6=1 / 3
$$

and

$$
P(A \cap C)=P(\text { Outcome }=5)=1 / 6
$$

which means that

$$
P(A \cap C)=P(A) \cdot P(C)
$$

hence the events A and C are independent.
d) Since we know that the events A and B are not independent, we immediately have that the events A, B and C are not independent.
4. Suppose that X, Y are discrete, independent random variables. You are reminded that this means that for any x, y from the range of X and Y

$$
P(X=x, Y=y)=P(X=x) \times P(Y=y)
$$

Find $E(X Y \mid Y=y)$.
Solution: To calculate $E(X Y \mid\{Y=y\})$ note that

$$
\begin{aligned}
& E(X Y \mid\{Y=y\})= E(X y \mid\{Y=y\})=y E(X \mid\{Y=y\}) \\
& \quad \quad \text { (by property of expectations) } \\
&=y \sum_{x} x P(X=x \mid\{Y=y\}) \\
&\quad \quad \text { (by the definition of } E(X \mid\{Y=y\})) \\
&=y \sum_{x} x P(X=x) \quad \text { (since } X \text { and } Y \text { are independent) } \\
&=y E(X) \quad \text { (by the definition of } E(X)) .
\end{aligned}
$$

5. Suppose X and Y have joint density function

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x-y} & \text { if } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find whether X and Y are independent.
Solution: We present two ways of solving this question.
One way: Find the marginal probability density functions $f_{X}(x)$ and $f_{Y}(y)$ and show that $f_{X}(x) \cdot f_{Y}(y)=f_{X, Y}(x, y)$.
Another way: Let

$$
g(x)= \begin{cases}e^{-x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
h(y)=\left\{\begin{array}{ll}
e^{-y} & \text { if } y>0 \\
0 & \text { otherwise }
\end{array} .\right.
$$

What is $g(x) h(y)$?
If $x \leq 0$ or $y \leq 0$ then $g(x) h(y)=0$ which equals $f_{X, Y}(x, y)$ in this case.
If $x>0$ and $y>0$ then

$$
g(x) h(y)=e^{-x} e^{-y}=e^{-x-y}=f_{X, Y}(x, y)
$$

In all cases $g(x) h(y)=f_{X, Y}(x, y)$ so X and Y are independent.

