
MTH5129 Probability & Statistics II

Coursework 1

1. In this question we revise some standard probability distributions (i.e. ran-

dom variables). For each of the following distributions write down its proba-

bility mass function, its mean, its variance and a description of the experiment

related to it.

a) Bernoulli distribution with parameter p

b) Binomial distribution with parameters n and p

c) Geometric distribution with parameter p

d) Poisson distribution with parameter λ

Solution: This is standard material from any textbook on probability. How-

ever, we present below a broad description of each distribution to avoid con-

fusion:

a) Bernoulli distribution with parameter p – i.e. a single trial with

probability p of success.

b) Binomial distribution with parameters N and p – i.e. N independent

trials each of which has probability p of success.

c) Geometric distribution with parameter p – i.e. a sequence of in-

dependent trials each with probability of success p, where the random

variable counts the number of trials until the first success. This defini-

tion includes the first successful trial; others may sometimes just count

the number of failures.

d) Poisson distribution with parameter λ — a sequence of independent

events each occurring at a rate λ, where the random variable counts the

number of events that occurred in a particular time interval.

2. In this question, we move on to the revision of some “common” continuous

random variables

a) Uniform Distribution. A random variable X has Uniform distribu-

tion on [a, b] and write X ∼ U(a, b) if

fX(x) =

{
1

(b−a)
if a < x < b

0 otherwise

Prove that this probability density function integrates to one.



Solution: Note that all intervals of equal length within the support [a, b]

of the probability density function have equal probability of occurrence:

if a ≤ α < β ≤ b then

P (X ∈ (α, β)) =

∫ β

α

1

b− a
dx =

β − α
b− a

.

The verification of the probability density function follows.

b) Exponential Distribution. A random variable X has exponential

distribution with parameter λ > 0 and write X ∼ Exp(λ) if

fX(x) =

{
λe−λx if x ≥ 0

0 if x < 0

Prove that this probability density function integrates to one.

Solution: We know fX , but it is defined with multiple “cases”. There-

fore we use an important “trick” to deal with this. We know that∫ ∞
−∞

fX(x) dx =

∫ 0

−∞
fX(x) dx+

∫ ∞
0

fX(x) dx

(this would be true whatever fX was).

In the second integral x ranges from 0 to ∞: for all of these values of

x we know that fX(x) = e−x (we are always in the first case of the

definition of fx) so we can replace fX(x) by e−x in the second integral.

Similarly, in the first integral x ranges from −∞ to 0 so fX(x) = 0 (we

are always in the second case of the definition of fX) so we can replace

fX(x) by 0 in the first integral.

Putting this together we get∫ ∞
−∞

fX(x) dx =

∫ 0

−∞
fX(x) dx+

∫ ∞
0

fX(x) dx

=

∫ 0

−∞
0 dx+

∫ ∞
0

e−x dx

= 0 +
[
−e−x

]∞
x=0

= e0 = 1

as required.

Remark 1 (IMPORTANT)

– If you are given a probability density function, it means that the ran-

dom variable is continuous, so you can integrate to find probabilities.

– The above example is very important. Almost all probability density

functions have multiple cases in their definition and you need to be able

to integrate them: the whole point of the probability density function is

that you can integrate to get a probability.



c) Gamma Distribution. A random variable X has a Gamma distri-

bution with shape parameter α > 0 and rate parameter β > 0 and we

write X ∼ Ga(α, β) if

fX(x) =

{
βαxα−1e−βx

Γ(α)
if x > 0,

0 if x ≤ 0,

where Γ(α) is the Gamma function, which is given by

Γ(α) =

∫ ∞
0

xα−1e−x dx.

Prove that this probability density function integrates to one.

Solution: We use a simple change of variable y = βx in the integral

and the verification of the probability density function follows.

Remark 2 Note that in some textbooks, the Gamma distribution can

be defined with β = 1/θ for the scale parameter θ instead, or write it

as Ga(β, α). You always have to make sure what each parameter stands

for and know what notation is used in each case.

d) Chi-Square. A random variable X has a Chi-Square distribution with

ν degrees of freedom and we write X ∼ χ2(ν), if X has a Ga(ν/2, 1/2)

distribution for some integer ν ∈ N. In such a case,

fX(x) =

{
xν/2−1 e−x/2

2ν/2 Γ(ν/2)
if x > 0,

0 if x ≤ 0,

Using the above probability density function, and the fact that Γ(1
2
) =√

π (not shown here), it is easy to see that, the probability density

function of X ∼ χ2(1) is

fX(x) =

{
1√
2πx

e−x/2 if x > 0,

0 if x ≤ 0,

Prove that this probability density function integrates to one.

Solution: Proving that these probability density functions integrate

to one should follow similar arguments to the ones for the Gamma

distribution, but you may try it for exercise.

e) Normal Distribution. A random variable X has Normal distribution

with parameters (µ, σ), for σ > 0, and write X ∼ N(µ, σ2) if

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (1)



We shall use the fact that the Normal probability density function in-

tegrates to 1 (the proof is a bit technical – involves passing to polar

coordinates – not shown in this course – non-examinable). It is however

useful to observe that by a simple change of variable in the integral,

namely y = (x− µ)/σ we obtain∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx =
1√
2π

∫ ∞
−∞

e−
y2

2 dy

We now see that the integral in the left hand side of the above formula

does not depend on the parameters (µ, σ)!

f) (Student’s) t Distribution. A random variable X has t distribution

with ν degrees of freedom and we write X ∼ tν if

fX(x) =
Γ
(
ν+1

2

)
√
πν Γ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

.

We shall use the fact that the above probability density function inte-

grates to 1 (non-examinable).

Remark 3 Some books call this distribution Student’s t, because the

first person to derive it published his result under the pseudonym of

“Student”.

g) Cauchy Distribution. A random variable X has Cauchy distribution

with location parameter x0 (specifying the location of the peak of the

distribution) and scale parameter γ and we write X ∼ Cauchy(x0, γ) if

fX(x) =
1

πγ

[
γ2

(x− x0)2 + γ2

]
,

It is an unusual distribution because it has no defined mean or variance

(we will see why in the lecture notes).

Moreover if X is Cauchy then 1/X is also Cauchy (we will learn several

methods for proving such type of statements).

3. The Gamma function Γ involved in Ga(α, β) distribution is given by

Γ(α) =

∫ ∞
0

xα−1e−x dx.

(i). Prove that, for any α > 0, we have

Γ(α) = (α− 1)Γ(α− 1).

(ii). Prove that, for any integer n ≥ 1, we have

Γ(n) = (n− 1)!.



Solution:

(i). We have from the definition of Γ(α) that

Γ(α− 1) =

∫ ∞
0

xα−2e−x dx

Using the fact that
d

dx

(
1

α− 1
xα−1

)
= xα−2,

we get from Integration by Parts, that

Γ(α− 1) =

∫ ∞
0

xα−2e−x dx

=

∫ ∞
0

d

dx

(
1

α− 1
xα−1

)
e−x dx

=

[
1

α− 1
xα−1e−x

]∞
0

−
∫ ∞

0

1

α− 1
xα−1 d

dx

(
e−x
)
dx

= 0− 0 +
1

α− 1

∫ ∞
0

xα−1e−x dx

=
1

α− 1
Γ(α)

which implies the desired formula.

(ii). Use the definition to calculate that Γ(1) = 1. Then use the above part,

to prove (e.g. by induction – see your Number, Sets & Functions notes) the

desired formula.

4. Given a normal random variable X ∼ N(µ, σ2), prove that E(X) = µ and

Var(X) = σ2.

Solution: By the definition of a normal random variable the probability

density function of X is

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

By the definition of expectation we have:

E(X) =

∫ ∞
−∞

xfX(x)dx =

∫ ∞
−∞

x
1√
2πσ

e−
(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

(σu+ µ)e−
u2

2 σdu.

where the last step is due to the following change of variable: u = x−µ
σ

. Then

x = σu + µ, dx = σdu, and the region of integration remains unchanged.

Thus

E(X) =
1√
2π

∫ ∞
−∞

(σu+µ)e−
u2

2 du =
σ√
2π

∫ ∞
−∞

ue−
u2

2 du+µ
1√
2π

∫ ∞
−∞

e−
u2

2 du.



Finally,
∫∞
−∞ ue

−u
2

2 du = 0 because the function g(u) = ue−
u2

2 is odd and∫∞
−∞ e

−u
2

2 du =
√

2π (see the definition of the normal random variable and

the computation explained there).

We thus obtain that E(X) = µ.

To compute the variance, we use the definition of variance and the above

Theorem to get

Var(X) = E(X− E(X))2 = E(X− µ)2 =

∫ ∞
−∞

(x− µ)2fX(x)dx.

The same change of variable gives∫ ∞
−∞

(x− µ)2 1√
2πσ

e−
(x−µ)2

2σ2 dx =
1√
2πσ

∫ ∞
−∞

(σu)2e−
u2

2 σdu

=
σ2

√
2π

∫ ∞
−∞

u2e−
u2

2 du.

To compute the last integral we use the integration by parts:∫ ∞
−∞

u2e−
u2

2 du = −
∫ ∞
−∞

u d(e−
u2

2 ) = −ue−
u2

2 |u=∞
u=−∞ +

∫ ∞
−∞

e−
u2

2 du =
√

2π.

We thus obtain that Var(X) = σ2.

Remark 4 In the above calculation, we use ue−
u2

2 |u=∞
u=−∞ = 0. The proof of

this simple fact goes as follows:

ue−
u2

2 |u=∞
u=−∞ = lim

M→−∞, N→∞
ue−

u2

2 |u=N
u=M = lim

M→−∞, N→∞
(Ne−

N2

2 −Me−
M2

2 )

= lim
N→∞

Ne−
N2

2 − lim
M→−∞

Me−
M2

2 = 0,

where the latter follows from the L’Hôpital’s rule, e.g.

lim
N→∞

Ne−
N2

2 = lim
N→∞

N

e
N2

2

= lim
N→∞

1

Ne
N2

2

= 0.

5. Suppose that there are two urns. The first contains 5 red balls, 3 green balls,

and 2 blue balls. The second contains 2 red balls and 4 green balls.

We pick a ball at random from the first urn and place it in the second urn.

We then pick a ball at random from the second urn (which might be the ball

we have just placed there).

a) What is the probability this ball is red?

b) What is the probability it is green?



c) What is the probability it is blue?

d) What is the expected number of trials of the above experiment until we

finally pick a blue ball?

Solution:

a) Let A be the event that the ball we pick at the end is red, let B1 be the

event that the ball we pick from the first urn is red, let B2 be the event

that the first ball we pick from the first urn is green and let B3 be the

event that the first ball we pick from the first urn is blue. Obviously

B1, B2 and B3 form a partition. Thus we use the Theorem of Total

Probability.

We see that P (B1) = 5/10 = 1/2, that P (B2) = 3/10 = 1/5 and that

P (B3) = 2/10.

Now if B1 occurs then there are 3 red balls and 4 green balls in the

second urn when we pick, so P (A | B1) = 3/7.

If B2 occurs then there are 2 red balls and 5 green balls in the second

urn so P (A | B2) = 2/7.

If B3 occurs then there are 2 red balls 4 green balls and a blue ball in

the second urn so P (A | B3) = 2/7.

Thus by the Theorem of Total Probability

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2) + P (A | B3)P (B3)

=
5

10
· 3

7
+

3

10
· 2

7
+

2

10
· 2

7
=

25

70
=

5

14

b) For the second part, let A be the event that the ball we pick at the end

is green. We use the same partition as in the first part.

As above we calculate the conditional probabilities. This time P (A |
B1) = 4/7, P (A | B2) = 5/7 and P (A | B3) = 4/7. Thus by the

Theorem of Total Probability

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2) + P (A | B3)P (B3)

=
5

10
· 4

7
+

3

10
· 5

7
+

2

10
· 4

7
=

43

70
.

c) For the final part, let A be the event that the ball we pick at the end is

blue. We use the same partition as in the first part.

As above we calculate the conditional probabilities. This time P (A |
B1) = 0, P (A | B2) = 0 and P (A | B3) = 1/7. Thus by the Theorem of

Total Probability

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2) + P (A | B3)P (B3)

=
5

10
· 0 +

3

10
· 0 +

2

10
· 1

7
=

2

70
=

1

35
.



d) Let X be a random variable counting the number of experiments per-

formed until we finally pick a blue ball. We call an experiment to be

a “success” if we choose a blue ball at the end. This is a Geometric

random variable with probability of success given by the part above,

namely p = 1/35.

Therefore, X ∼ Geom(p) and we know that E(X) = 1/p = 35 (Prove

this – Check your Introduction to Probability notes). This means that

we expect to perform the experiment 35 times in order to finally pick a

blue ball.

6. I roll two fair dice. Use the Theorem of Total Probability for Expectations

to calculate the expected value of the product of the two numbers rolled.

Solution: Let X be the product of the two dice. Let B1, B2, . . . , B6 be the

events that the first die shows a 1, 2, . . . , 6 respectively. These obviously form

a partition and P (Bi) = 1/6 for each i.

Now define by D the outcome of the second die and calculate

E(X | Bi) = E(iD) = i E(D) =
7

2
i.

Hence,

E(X) =
6∑
i=1

7

2
i · 1

6
=

7

12

6∑
i=1

i =
7

12

6 · 7
2

=
49

4
.


