MTH5130 2021-2022 Semester A Exam

Dr Shu Sasaki

7th February 2022

- Q1 (a) Find an integer $1 \le z \le 143$ satisfying $z \equiv 3^{143} \mod 143$. Show your working. (Hint: $143 = 2^7 + 2^3 + 2^2 + 2^1 + 1$ and $3^{16} \equiv 3 \mod 143$) [6]
- (b) Use (a) to show that 143 is not a prime number. State clearly any result you are using from lectures. [3]
 - (c) Let p be a prime number and let z be a primitive root mod p. Prove that

$$1, z, z^2, \dots, z^{p-2}$$

are all distinct mod p. [9]

A1. (a) [Similar to examples seen in lectures] Since

$$3^{2^2} = 81, \ 3^{2^3} = (81)^2 \equiv (-17), \ 3^{2^4} \equiv (-17)^2 \equiv 3, \ 3^{2^5} \equiv 3^2 = 9, 3^{2^6} \equiv 9^2 = 81, \ 3^{2^7} \equiv (-17)$$

it follows that

$$3^{143} = 3^{2^7 + 2^3 + 2^2 + 2 + 1} \equiv (-17) \cdot (-17) \cdot 81 \cdot 9 \cdot 3 \equiv 3 \cdot 81 \cdot 9 \cdot 3 \equiv (81)^2 \equiv (-17) \equiv 126.$$

Hence z = 126 is what we are looking for.

[+2 for spotting z = 126; +4 for explaining how]

(b) [Similar to examples seen in lectures] If 143 was a prime number, then it would have followed form the Fermat's Little Theorem that $3^{143} \equiv 3 \mod 143$. However, 3 is evidently not congruent to $126 \mod 143$. Hence 143 is NOT a prime number.

[+2 for reference to Fermat's Little Theorem]

- (c) [Seen in lectures] If $z^i \equiv z^j$ for $0 \le i \le j \le p-2$, then $z^{j-i} \equiv 1 \mod p$ (since z is a primitive root mod p, z has multiplicative inverse mod p). However, $j-i \le p-2$ and the order of z by definition is p-1. It therefore follows that i=j.
- [+3 for establishing that z has multiplicative inverse (remarking that z is coprime to p is not enough, while deducing from $z^{p-1} \equiv 1 \mod p$ qualifies for +3), and +3 for arguing why the argument leads to contradiction (the order of z is p-1)]

Q2 Let p > 3 be a prime number. State clearly any results you are using from lectures and prove the following:

(a)

$$\left(\frac{p}{3}\right) = \begin{cases} +1 & \text{if } p \equiv 1 \bmod 3, \\ -1 & \text{if } p \equiv 2 \bmod 3. \end{cases}$$
 [3]

(b)

(c)

A2 (a) [Seen in lectures] The only prime p divisible by 3 is p=3 and this is excluded. Modulo 3, we have

$$\begin{array}{c|cccc} z & 1 & 2 \\ \hline z^2 & 1 & 1, \end{array}$$

i.e. 1 is a square mod 3 while 2 is not. The statement paraphrases this.

[Since I did not prove the Rules, I'd have to allow students to prove $\left(\frac{p}{3}\right) = -1$ if $p \equiv 2 \mod p$, by arguing that $\left(\frac{p}{3}\right) \stackrel{\text{R0}}{=} \left(\frac{2}{3}\right) \stackrel{\text{R3}}{=} (-1)^{(3^2-1)/8} = -1$]

(b) [Seen in lectures] This follows from quadratic reciprocity (Rule 4):

$$\left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}\frac{3-1}{2}} \left(\frac{p}{3}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)$$

where $\frac{p-1}{2}$ is even (resp. odd) if and only if $p \equiv 1$ (resp. $p \equiv 3$) mod 4.

(c) [Partly seen in lectures] Combining (a) and (b),

$$\left(\frac{3}{p}\right) = \left\{ \begin{array}{ll} + \left(\frac{p}{3}\right) & \text{if } p \equiv 1 \bmod 4, \text{ which yields} \\ -\left(\frac{p}{3}\right) & \text{if } p \equiv 3 \bmod 4, \text{ which yields} \\ \end{array} \right. \left\{ \begin{array}{ll} +1 & \text{if } p \equiv 1 \bmod 3, \\ -1 & \text{if } p \equiv 2 \bmod 3, \\ -1 & \text{if } p \equiv 1 \bmod 3, \\ +1 & \text{if } p \equiv 2 \bmod 3, \end{array} \right.$$

hence

It then follows from the CRT that (1) is equivalent to $p \equiv 1 \mod 12$, (2) is equivalent to $p \equiv 11 \mod 12$, (3) is equivalent to $p \equiv 5 \mod 12$ and (4) is equivalent to $p \equiv 7 \mod 12$.

To show (1) for example, we look for solutions (in prime numbers) to the following system of congruence equations:

$$x \equiv 1 \mod 4$$
$$x \equiv 1 \mod 3$$

As gcd(4,3) = 1, we use Euclidean algorithm to find r and s such that 4r+3s = gcd(4,3) = 1; in this case it is simple to spot (r,s) = (1,-1) works and the proof of the CRT (Theorem 9) then shows that

$$4 \cdot 1 \cdot 1 + 3 \cdot (-1) \cdot 1 = 1$$

defines a unique solution mod $4 \cdot 3 = 12$. Similar for (2), (3) and (4).

[+3 for reducing the problem into (1)-(4); +6 for the CRT or any valid argument for the punchline (+1 out of +6 for reference to CRT, +2 in total for proving the case I demonstrated); though it is not how I intended, I'd allow the full +9 for the case-by-case analysis: if $p \equiv 1 \mod 12$, then... etc.]

Q3 (a) Which of the following congruences are soluble? If soluble, find a positive integer solution less than 47; if insoluble, explain why.

- (i) $x^2 \equiv 41 \mod 47$. [4]
- (ii) $3x^2 \equiv 32 \mod 47$. [8]
 - (b) Using Hensel's lemma, find all integers $1 \le z \le 125$ satisfying $z^2 + z \equiv -3 \mod 125$. [9]

A3 (a-i) [Similar to examples seen in lectures] Since

$$\left(\frac{41}{47}\right) \stackrel{\text{R4}}{=} (-1)^{\frac{47-1}{2}\frac{41-1}{2}} \left(\frac{47}{41}\right) = \left(\frac{47}{41}\right) \stackrel{\text{R0}}{=} \left(\frac{6}{41}\right) \stackrel{\text{R1}}{=} \left(\frac{2}{41}\right) \left(\frac{3}{41}\right) \stackrel{\text{R3,Cor26}}{=} 1 \cdot (-1) = -1,$$

this is insoluble.

[+1 for simply pointing out that it is insoluble; +3 for reference to the Legendre symbol (i.e. calculating it); get only +1 for merely pointing out 41 is a quadratic non-residue mod 47; -1 for no reference to Rules]

(a-ii) [Partly unseen] Since gcd(3,47)=1, we run the Euclid's algorithm, if necessary, to find $16 \cdot 3 + (-1) \cdot 47 = 1$. It therefore follows that

$$16 \cdot 3x^2 \equiv 16 \cdot 32$$

mod 47, i.e.

$$x^2 \equiv 512 \equiv 42$$

mod 47. Since

$$\begin{pmatrix}
\frac{42}{47} \\
\frac{81}{47} \\
\frac{2}{47} \\
\frac{2}{47} \\
\frac{3}{47} \\
\frac{7}{47} \\
\frac{7}{47} \\
\frac{7}{47} \\
\frac{84}{5} \\
\frac{-1}{7} \\
\frac{6}{7} \\
\frac{84}{5} \\
\frac{-1}{7} \\
\frac{6}{7} \\
\frac{84}{5} \\
\frac{7}{5} \\
\frac{80}{5} \\
\frac{2}{5} \\
\frac{83}{5} \\
\frac{-1}{7} \\
\frac{1}{7} \\
\frac{1$$

this latter congruence equation is soluble. To find a solution, either you do trial and error (I'll allow it), or make appeal to Proposition 28 which shows that

$$42^{\frac{47+1}{4}} = 42^{12}$$

defines a solution mod 47. It remains to simply 42^{12} mod 47. Since $12 = 2^3 + 2^2$ and

$$42^2 \equiv (-5)^2 = 25, 42^{2^2} \equiv 25^2 = 625 \equiv 14, 42^{2^3} \equiv 14^2 = 196 \equiv 8$$

mod 47

$$42^{12} = 2^{2^3 + 2^2} \equiv 8 \cdot 14 = 112 \equiv 18$$

mod 47. So x = 18 does the job.

[+4 for simplifying the equation; +2 for reference to Proposition 28; +2 for simplifying 42^{12} mod 47]

(b) [Similar to examples seen in lectures] Let $P(x) = x^2 + x + 3$. The P'(x) = 2x + 1.

Step 1 Find all solutions to $P(x) \equiv 0 \mod 5$. By trial and error, $z_1 \equiv 1 \text{ or } 3 \mod 5$ works.

Step 2 Let $z_1 = 1$. Since $P'(z_1) = 2z_1 + 1 = 3$, the multiplicative inverse $Q'(z_1)$ of $P'(z_1)$

mod $\overline{5}$ is $\overline{2}$. To find $Q'(z_1)$, we need to solve the congruence equation $3x \equiv 1 \mod 5$ by either using Euclid's algorithm to find a pair of integers r, s such that 3r + 5s = 1 (and reduce mod 5) or computing the mod $\overline{5}$ table

It now follows from Hensel's lemma that

$$z_1 - P(z_1)Q'(z_1) = 1 - 5 \cdot 2 = -9 \equiv 16$$

defines a solution to $P(x) \equiv 0 \mod 5^2$.

Step 3 Let $z_2=16$. Since $Q'(z_1)=Q'(z_2)=2$, it follows from Hensel's lemma that

$$z_2 - P(z_2)Q'(z_2) = 16 - 275 \cdot 2 = -534 \equiv 91$$

defines a solution mod $5^3 = 125$.

To find the other solution, we repeat run the same algorithm:

Step 2' Let $z_1 = 3$. Since $P'(z_1) = 2z_1 + 1 = 2 \cdot 3 + 1 = 7 \equiv 2 \mod 5$, the multiplicative inverse $Q'(z_1)$ of $P'(z_1)$ mod 5 is 3. It then follows from Hensel's lemma that

$$z_1 - P(z_1)Q'(z_1) = 3 - 15 \cdot 3 = -42 \equiv 8$$

defines a solution to $P(x) \equiv 0 \mod 5^2$.

Step 3' Let $z_2 = 8$. Since $Q'(z_1) = Q'(z_2) = 2$, it follows from Hensel's lemma that

$$z_2 - P(z_2)Q'(z_2) = 8 - 75 \cdot 3 = -217 \equiv 33$$

defines a solution mod $5^3 = 125$.

Since P(x) is quadratic, there are at most two solutions mod 125. They are $\{91, 33\}$.

[+1 for spotting the solutions correctly; +2 for spotting the mod 5 solutions; +2 for Step 2 with $z_1 = 1$; +1 for Step 3 with $z_1 = 1$; +2 for Step 2 with $z_1 = 3$; +1 for Step 3 with $z_1 = 3$]

- Q4 (a) Compute the continued fraction expression for $\sqrt{23}$. Show your working. [4]
- (b) Compute the convergents $\frac{s_1}{t_1}$, $\frac{s_2}{t_2}$, $\frac{s_3}{t_3}$ to $\sqrt{23}$. Show your working. [4]
- (c) By working out the second smallest positive solution to the equation $x^2 23y^2 = 1$, compute the convergent $\frac{s_7}{t_7}$. [10]
 - A4 (a) [Similar to examples seen in lectures] By the algorithm:

$$a = \lfloor \sqrt{23} \rfloor = 4 \qquad \longrightarrow \qquad \rho_1 = \frac{1}{\sqrt{23} - 4} = \frac{\sqrt{23} + 4}{7}$$

$$a_1 = \lfloor \frac{\sqrt{23} + 4}{7} \rfloor = 1 \qquad \longrightarrow \qquad \rho_2 = \frac{1}{\frac{\sqrt{23} + 4}{7} - 1} = \frac{\sqrt{23} + 3}{2}$$

$$a_2 = \lfloor \frac{\sqrt{23} + 3}{2} \rfloor = 3 \qquad \longrightarrow \qquad \rho_3 = \frac{1}{\frac{\sqrt{23} + 3}{2} - 3} = \frac{\sqrt{23} + 3}{7}$$

$$a_3 = \lfloor \frac{\sqrt{23} + 3}{7} \rfloor = 1 \qquad \longrightarrow \qquad \rho_4 = \frac{1}{\frac{\sqrt{23} + 3}{7} - 1} = \sqrt{23} + 4$$

$$a_4 = \lfloor \sqrt{23} + 4 \rfloor = 8 \qquad \longrightarrow \qquad \rho_5 = \frac{1}{(\sqrt{23} + 4) - 8} = \frac{1}{\sqrt{23} - 4} = \rho_1$$

$$a_5 = a_1 \qquad \dots$$

we find $\sqrt{23} = [\alpha; \overline{\alpha_1, \alpha_2, \alpha_3, \alpha_4}] = [4; \overline{1, 3, 1, 8}].$

[+1 for simply answering the question; +3 for explaining calculations]

(b) [Similar to examples seen in lectures] The convergents are calculated as

$$\begin{array}{rcl} \frac{s_{-1}}{t_{-1}} & = & \frac{1}{0}, \\ \frac{s_0}{t_0} & = & \frac{\alpha}{1} = \frac{4}{1}, \\ \frac{s_1}{t_1} & = & \frac{\alpha_1 s_0 + s_{-1}}{\alpha_1 t_0 + t_{-1}} = \frac{1 \cdot 4 + 1}{1 \cdot 1 + 0} = \frac{5}{1}, \\ \frac{s_2}{t_2} & = & \frac{\alpha_2 s_1 + s_0}{\alpha_2 t_1 + t_0} = \frac{3 \cdot 5 + 4}{3 \cdot 1 + 1} = \frac{19}{4}, \\ \frac{s_3}{t_3} & = & \frac{\alpha_3 s_2 + s_1}{\alpha_3 t_2 + t_1} = \frac{1 \cdot 19 + 5}{1 \cdot 4 + 1} = \frac{24}{5}. \end{array}$$

[+1 each]

(c) [Similar to examples seen in lectures] Since the cycle is of length l=4, the fundamental solution to $x^2-23y^2=\pm 1$ is $(s_3,t_3)=(24,5)$. By Theorem 48, for every $N=1,2,\ldots$, the pair (s_{4N-1},t_{4N-1}) is a solution to $x^2-23y^2=(-1)^{4N}=1$, hence the second smallest solution to $x^2-23y^2=\pm 1$ is defined to be (s_7,t_7) . On the other hand, $s_7+t_7\sqrt{23}$ can be computed by

$$(24 + 5\sqrt{23})^2 = 1151 + 240\sqrt{23},$$

hence $(s_7, t_7) = (1151, 240)$.

[+1 for spotting the fundamental solution; +3 for pointing out (s_3, t_3) is the fundamental solution; +3 for pointing out that the second smallest positive solution is (s_7, t_7) ; +3 for correctly

calculating (s_7, t_7)]

Q5 (a) [Similar to examples seen in lectures] Using that 137 is a prime number, find all solutions to

$$x^2 \equiv -1 \mod 137$$

satisfying $1 \le x \le 137$. Show your working. [9]

(b) [Similar to examples seen in lectures] Using (a), write 137 as a sum of two squares. Show your working. State clearly any results you are using from lectures. [9]

A5 (a) Since $137 \equiv 1 \mod 4$, we may use Proposition 29. To this end, we firstly find a such that $\left(\frac{a}{137}\right) = -1$. For example a = 3 does the job. It then follows from Proposition 29 that $3^{\frac{137-1}{4}} = 3^{34}$ is a solution mod 137. Since

$$3^{2^2} = 81, \ 3^{2^3} = 81^2 \equiv 122, \ 3^{2^4} \equiv 88, \ 3^{2^5} \equiv 72,$$

we see that

$$3^{34} = 3^{2^5 + 2} = 3^{2^5} 3^2 \equiv 72 \cdot 9 = 648 \equiv 100$$

mod 137. Since 100 is a solution mod 137, so is $-100 \equiv 37 \mod 137$.

[+2 for reference to Proposition 29 (in particular, +1 for asserting that $137 \equiv 1 \mod 4$); +2 for finding a; +3 for simplifying $3^{34} \mod 137$ to get one solution; +2 for spotting the solutions]

(b) We make appeal to Hermite's algorithm with z=37 as its first step. Convergents to $\frac{37}{137}$ are calculated as follows: by the algorithm,

$$a = \lfloor \frac{37}{137} \rfloor = 0 \longrightarrow \rho_1 = \frac{1}{\frac{37}{137} - 0} = \frac{137}{37}$$

$$a_1 = \lfloor \frac{137}{37} \rfloor = 3 \longrightarrow \rho_2 = \frac{1}{\frac{137}{37} - 3} = \frac{37}{26}$$

$$a_2 = \lfloor \frac{37}{26} \rfloor = 1 \longrightarrow \rho_3 = \frac{1}{\frac{37}{26} - 1} = \frac{26}{11}$$

$$a_3 = \lfloor \frac{26}{11} \rfloor = 2 \longrightarrow \rho_4 = \frac{1}{\frac{26}{11} - 2} = \frac{11}{4}$$

$$a_4 = \lfloor \frac{11}{4} \rfloor = 2 \longrightarrow \rho_5 = \frac{1}{\frac{11}{4} - 2} = \frac{4}{3}$$

$$a_5 = \lfloor \frac{4}{3} \rfloor = 1 \longrightarrow \rho_6 = \frac{1}{\frac{4}{3} - 1} = 3 \in \mathbb{N}$$

$$a_6 = \lfloor 3 \rfloor = 3,$$

we see that $\frac{37}{137} = [a; a_1, a_2, a_3, a_4, a_5, a_6] = [0; 3, 1, 2, 2, 1, 3]$. It therefore follows that

$$\frac{s_1}{t_1} = [0; 3] = \frac{1}{3}, \quad \frac{s_2}{t_2} = [0; 3, 1] = \frac{1}{4}, \quad \frac{s_3}{t_3} = [0; 3, 1, 2] = \frac{3}{11}, \quad \frac{s_4}{t_4} = [0; 3, 1, 2, 2] = \frac{7}{26}, \dots$$

Since

$$t_3 < \sqrt{137} < t_4,$$

the pair $(x, y) = (t_3, 137 \cdot s_3 - 37t_3) = (11, 137 \cdot 3 - 37 \cdot 11) = (11, 4)$ satisfies $x^2 + y^2 = 137$.

[+2 for correctly working out convergents; +4 for observing via Hermite that $(x, y) = (t_3, 137 \cdot s_3 - 37t_3)$ is a solution; +3 to spot the solution]

Q6 What are the units of $\mathbb{Z}[\sqrt{15}]$? Describe them all. Justify your answer. [10]

A6. [Similar to examples seen in lectures] Since $15 \equiv 3 \mod 4$, the units are of the form $s + t\sqrt{15}$ such that $s^2 - 15t^2 = \pm 1$. Since the continued fraction for $\sqrt{15}$ is $[\alpha; \overline{\alpha_1, \alpha_2}] = [3; \overline{1, 6}]$:

$$a = \lfloor \sqrt{15} \rfloor = 3 \qquad \longrightarrow \qquad \rho_1 = \frac{1}{\sqrt{15} - 3} = \frac{\sqrt{15} + 3}{6}$$

$$a_1 = \lfloor \frac{\sqrt{15} + 3}{6} \rfloor = 1 \qquad \longrightarrow \qquad \rho_2 = \frac{1}{\frac{\sqrt{15} + 3}{6} - 1} = \sqrt{15} + 3$$

$$a_2 = \lfloor \sqrt{15} + 3 \rfloor = 6 \qquad \longrightarrow \qquad \rho_3 = \frac{1}{(\sqrt{15} + 3) - 6} = \frac{1}{\sqrt{15} - 3} = \rho_1$$

$$a_3 = a_1 \qquad \cdots$$

with convergents:

$$\frac{s_{-1}}{t_{-1}} = \frac{1}{0},$$

$$\frac{s_{0}}{t_{0}} = \frac{\alpha}{1} = \frac{3}{1},$$

$$\frac{s_{1}}{t_{1}} = \frac{\alpha_{1}s_{0} + s_{-1}}{\alpha_{1}t_{0} + t_{-1}} = \frac{1 \cdot 3 + 1}{1 \cdot 1 + 0} = \frac{4}{1},$$

$$\frac{s_{2}}{t_{2}} = \frac{\alpha_{2}s_{1} + s_{0}}{\alpha_{2}t_{1} + t_{0}} = \frac{6 \cdot 4 + 3}{6 \cdot 1 + 1} = \frac{27}{7},$$
...

the fundamental solution is $(s_1, t_1) = (4, 1)$. The units are of the form $s_n + t_n \sqrt{15}$, $s_n - t_n \sqrt{15}$, $-s_n + t_n \sqrt{15}$, $-s_n - t_n \sqrt{15}$ where s_n and t_n are defined by $s_n + t_n \sqrt{15} = (4 + \sqrt{15})^n$.

[+3 for observing that it suffices to solve the equation $x^2 - 15y^2 = \pm 1$; +2 for finding the fundamental solution; +1 for observing that $s_n + t_n \sqrt{15}$ is a solution; +4 for spotting the rest]