MTH5130 2021-2022 Semester A Exam

Dr Shu Sasaki

7th February 2022

Q1 (a) Find an integer $1 \leq z \leq 143$ satisfying $z \equiv 3^{143} \bmod 143$. Show your working. (Hint: $143=2^{7}+2^{3}+2^{2}+2^{1}+1$ and $3^{16} \equiv 3 \bmod$ 143) [6]
(b) Use (a) to show that 143 is not a prime number. State clearly any result you are using from lectures. [3]
(c) Let p be a prime number and let z be a primitive root $\bmod p$. Prove that

$$
1, z, z^{2}, \ldots, z^{p-2}
$$

are all distinct $\bmod p$. [9]
A1. (a) [Similar to examples seen in lectures] Since
$3^{2^{2}}=81,3^{2^{3}}=(81)^{2} \equiv(-17), 3^{2^{4}} \equiv(-17)^{2} \equiv 3,3^{2^{5}} \equiv 3^{2}=9,3^{2^{6}} \equiv 9^{2}=81,3^{2^{7}} \equiv(-17)$ it follows that

$$
3^{143}=3^{2^{7}+2^{3}+2^{2}+2+1} \equiv(-17) \cdot(-17) \cdot 81 \cdot 9 \cdot 3 \equiv 3 \cdot 81 \cdot 9 \cdot 3 \equiv(81)^{2} \equiv(-17) \equiv 126 .
$$

Hence $z=126$ is what we are looking for.

I +2 for spotting $z=126 ;+4$ for explaining how]

(b) [Similar to examples seen in lectures] If 143 was a prime number, then it would have followed form the Fermat's Little Theorem that $3^{143} \equiv 3 \bmod 143$. However, 3 is evidently not congruent to $126 \bmod 143$. Hence 143 is NOT a prime number.

[+2 for reference to Fermat's Little Theorem]

(c) [Seen in lectures] If $z^{i} \equiv z^{j}$ for $0 \leq i \leq j \leq p-2$, then $z^{j-i} \equiv 1 \bmod p$ (since z is a primitive root $\bmod p, z$ has multiplicative inverse $\bmod p$). However, $j-i \leq p-2$ and the order of z by definition is $p-1$. It therefore follows that $i=j$.

I +3 for establishing that z has multiplicative inverse (remarking that z is coprime to p is not enough, while deducing from $z^{p-1} \equiv 1 \bmod p$ qualifies for +3), and +3 for arguing why the argument leads to contradiction (the order of z is $p-1$)]

Q2 Let $p>3$ be a prime number. State clearly any results you are using from lectures and prove the following:
(a)

$$
\left(\frac{p}{3}\right)= \begin{cases}+1 & \text { if } p \equiv 1 \bmod 3 \\ -1 & \text { if } p \equiv 2 \bmod 3\end{cases}
$$

(b)

$$
\left(\frac{3}{p}\right)= \begin{cases}+\left(\frac{p}{3}\right) & \text { if } p \equiv 1 \bmod 4 \\ -\left(\frac{p}{3}\right) & \text { if } p \equiv 3 \bmod 4\end{cases}
$$

(c)

$$
\left(\frac{3}{p}\right)= \begin{cases}+1 & \text { if } p \equiv 1 \text { or } 11 \bmod 12 \tag{9}\\ -1 & \text { if } p \equiv 5 \text { or } 7 \bmod 12\end{cases}
$$

A2 (a) [Seen in lectures] The only prime p divisible by 3 is $p=3$ and this is excluded. Modulo 3 , we have

$$
\begin{array}{c|cc}
z & 1 & 2 \\
\hline z^{2} & 1 & 1,
\end{array}
$$

i.e. 1 is a square $\bmod 3$ while 2 is not. The statement paraphrases this.
[Since I did not prove the Rules, I'd have to allow students to prove $\left(\frac{p}{3}\right)=-1$ if $p \equiv 2 \bmod$ p, by arguing that $\left.\left(\frac{p}{3}\right) \stackrel{\mathrm{R} 0}{=}\left(\frac{2}{3}\right) \stackrel{\mathrm{R} 3}{=}(-1)^{\left(3^{2}-1\right) / 8}=-1\right]$
(b) [Seen in lectures] This follows from quadratic reciprocity (Rule 4):

$$
\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2} \frac{3-1}{2}}\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)
$$

where $\frac{p-1}{2}$ is even (resp. odd) if and only if $p \equiv 1($ resp. $p \equiv 3) \bmod 4$.
(c) [Partly seen in lectures] Combining (a) and (b),
hence

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{cc}
+1 & \text { if (1) } p \equiv 1 \bmod 4 \& p \equiv 1 \bmod 3 \text { or }(2) p \equiv 3 \bmod 4 \& p \equiv 2 \bmod 3, \\
-1 & \text { if }(3) p \equiv 1 \bmod 4 \& p \equiv 2 \bmod 3 \text { or }(4) p \equiv 3 \bmod 4 \& p \equiv 1 \bmod 3 .
\end{array}\right.
$$

It then follows from the CRT that (1) is equivalent to $p \equiv 1 \bmod 12$, (2) is equivalent to $p \equiv 11$ $\bmod 12$, (3) is equivalent to $p \equiv 5 \bmod 12$ and (4) is equivalent to $p \equiv 7 \bmod 12$.

To show (1) for example, we look for solutions (in prime numbers) to the following system of congruence equations:

$$
\begin{aligned}
& x \equiv 1 \\
& \bmod 4 \\
& x \equiv 1 \\
& \bmod 3
\end{aligned}
$$

As $\operatorname{gcd}(4,3)=1$, we use Euclidean algorithm to find r and s such that $4 r+3 s=\operatorname{gcd}(4,3)=1$; in this case it is simple to spot $(r, s)=(1,-1)$ works and the proof of the CRT (Theorem 9) then shows that

$$
4 \cdot 1 \cdot 1+3 \cdot(-1) \cdot 1=1
$$

defines a unique solution $\bmod 4 \cdot 3=12$. Similar for (2), (3) and (4).
$[+3$ for reducing the problem into (1)-(4); +6 for the CRT or any valid argument for the punchline (+1 out of +6 for reference to CRT, +2 in total for proving the case I demonstrated) ; though it is not how I intended, I'd allow the full +9 for the case-by-case analysis: if $p \equiv 1 \bmod 12$, then... etc.]

Q3 (a) Which of the following congruences are soluble? If soluble, find a positive integer solution less than 47 ; if insoluble, explain why.
(i) $x^{2} \equiv 41 \bmod 47$. [4]
(ii) $3 x^{2} \equiv 32 \bmod 47$. [8]
(b) Using Hensel's lemma, find all integers $1 \leq z \leq 125$ satisfying $z^{2}+z \equiv-3 \bmod 125$. [9]

A3 (a-i) [Similar to examples seen in lectures] Since

$$
\left(\frac{41}{47}\right) \stackrel{R 4}{=}(-1)^{\frac{47-1}{2} \frac{41-1}{2}}\left(\frac{47}{41}\right)=\left(\frac{47}{41}\right) \stackrel{R 0}{=}\left(\frac{6}{41}\right) \stackrel{R 1}{=}\left(\frac{2}{41}\right)\left(\frac{3}{41}\right) \stackrel{R 3, \operatorname{Cor} 26}{=} 1 \cdot(-1)=-1,
$$

this is insoluble.
$[+1$ for simply pointing out that it is insoluble; +3 for reference to the Legendre symbol (i.e. calculating it); get only +1 for merely pointing out 41 is a quadratic non-residue $\bmod 47 ;-1$ for no reference to Rules]
(a-ii) [Partly unseen] Since $\operatorname{gcd}(3,47)=1$, we run the Euclid's algorithm, if necessary, to find $16 \cdot 3+(-1) \cdot 47=1$. It therefore follows that

$$
16 \cdot 3 x^{2} \equiv 16 \cdot 32
$$

$\bmod 47$, i.e.

$$
x^{2} \equiv 512 \equiv 42
$$

$\bmod 47$. Since

$$
\begin{array}{ll}
& \left(\begin{array}{l}
\left.\frac{42}{47}\right) \\
\stackrel{R 1}{=} \\
\stackrel{R 3, \operatorname{Cor} 26}{=} \\
\left(\frac{2}{47}\right)
\end{array}\right. \\
1 \cdot(-1)\left(\frac{3}{47}\right)\left(\frac{7}{47}\right) \\
\stackrel{R 4}{=} & (-1)(-1)^{\frac{47-1}{2} \frac{7-1}{2}}\left(\frac{47}{7}\right) \\
\stackrel{R 0}{=} & -\left(\frac{5}{7}\right) \\
\stackrel{R 4}{=} & (-1)(-1)^{\frac{5-1}{2} \frac{7-1}{2}}\left(\frac{7}{5}\right) \\
\stackrel{R 0}{=} & \left(\frac{2}{5}\right) \\
\stackrel{R 3}{=} & (-1)(-1) \\
= & 1
\end{array}
$$

this latter congruence equation is soluble. To find a solution, either you do trial and error (I'll allow it), or make appeal to Proposition 28 which shows that

$$
42^{\frac{47+1}{4}}=42^{12}
$$

defines a solution $\bmod 47$. It remains to simply $42^{12} \bmod 47$. Since $12=2^{3}+2^{2}$ and

$$
42^{2} \equiv(-5)^{2}=25,42^{2^{2}} \equiv 25^{2}=625 \equiv 14,42^{2^{3}} \equiv 14^{2}=196 \equiv 8
$$

$\bmod 47$

$$
42^{12}=2^{2^{3}+2^{2}} \equiv 8 \cdot 14=112 \equiv 18
$$

$\bmod 47$. So $x=18$ does the job.
[+4 for simplifying the equation; +2 for reference to Proposition 28; +2 for simplifying 42^{12} $\bmod 47]$
(b) [Similar to examples seen in lectures] Let $P(x)=x^{2}+x+3$. The $P^{\prime}(x)=2 x+1$.

Step 1 Find all solutions to $P(x) \equiv 0 \bmod 5$. By trial and error, $z_{1} \equiv 1$ or $3 \bmod 5$ works.
Step 2 Let $z_{1}=1$. Since $P^{\prime}\left(z_{1}\right)=2 z_{1}+1=3$, the multiplicative inverse $Q^{\prime}\left(z_{1}\right)$ of $P^{\prime}\left(z_{1}\right)$ $\bmod 5$ is 2 . To find $Q^{\prime}\left(z_{1}\right)$, we need to solve the congruence equation $3 x \equiv 1 \bmod 5$ by either using Euclid's algorithm to find a pair of integers r, s such that $3 r+5 s=1$ (and reduce $\bmod 5)$ or computing the $\bmod 5$ table

$$
\begin{array}{c|c|c|c|c|c}
r & 0 & 1 & 2 & 3 & 4 \\
\hline 3 r & 0 & 3 & 1 & 4 & 2
\end{array}
$$

It now follows from Hensel's lemma that

$$
z_{1}-P\left(z_{1}\right) Q^{\prime}\left(z_{1}\right)=1-5 \cdot 2=-9 \equiv 16
$$

defines a solution to $P(x) \equiv 0 \bmod 5^{2}$.
Step 3 Let $z_{2}=16$. Since $Q^{\prime}\left(z_{1}\right)=Q^{\prime}\left(z_{2}\right)=2$, it follows from Hensel's lemma that

$$
z_{2}-P\left(z_{2}\right) Q^{\prime}\left(z_{2}\right)=16-275 \cdot 2=-534 \equiv 91
$$

defines a solution $\bmod 5^{3}=125$.
To find the other solution, we repeat run the same algorithm:
Step 2' Let $z_{1}=3$. Since $P^{\prime}\left(z_{1}\right)=2 z_{1}+1=2 \cdot 3+1=7 \equiv 2 \bmod 5$, the multiplicative inverse $Q^{\prime}\left(z_{1}\right)$ of $P^{\prime}\left(z_{1}\right) \bmod 5$ is 3 . It then follows from Hensel's lemma that

$$
z_{1}-P\left(z_{1}\right) Q^{\prime}\left(z_{1}\right)=3-15 \cdot 3=-42 \equiv 8
$$

defines a solution to $P(x) \equiv 0 \bmod 5^{2}$.
Step 3' Let $z_{2}=8$. Since $Q^{\prime}\left(z_{1}\right)=Q^{\prime}\left(z_{2}\right)=2$, it follows from Hensel's lemma that

$$
z_{2}-P\left(z_{2}\right) Q^{\prime}\left(z_{2}\right)=8-75 \cdot 3=-217 \equiv 33
$$

defines a solution $\bmod 5^{3}=125$.
Since $P(x)$ is quadratic, there are at most two solutions mod 125 . They are $\{91,33\}$.
I +1 for spotting the solutions correctly; +2 for spotting the $\bmod 5$ solutions; +2 for Step 2 with $z_{1}=1$; $+\mathbf{1}$ for Step 3 with $z_{1}=1 ;+2$ for Step 2 with $z_{1}=3 ;+1$ for Step 3 with $z_{1}=3$]

Q4 (a) Compute the continued fraction expression for $\sqrt{23}$. Show your working. [4]
(b) Compute the convergents $\frac{s_{1}}{t_{1}}, \frac{s_{2}}{t_{2}}, \frac{s_{3}}{t_{3}}$ to $\sqrt{23}$. Show your working. [4]
(c) By working out the second smallest positive solution to the equation $x^{2}-23 y^{2}=1$, compute the convergent $\frac{s_{7}}{t_{7}}$. [10]

A4 (a) [Similar to examples seen in lectures] By the algorithm:

$$
\begin{aligned}
& \alpha=\lfloor\sqrt{23}\rfloor=4 \quad \longrightarrow \quad \rho_{1}=\frac{1}{\sqrt{23}-4}=\frac{\sqrt{23}+4}{7} \\
& \alpha_{1}=\left\lfloor\frac{\sqrt{23}+4}{7}\right\rfloor=1 \quad \longrightarrow \quad \rho_{2}=\frac{1}{\frac{\sqrt{23}+4}{7}-1}=\frac{\sqrt{23}+3}{2} \\
& \alpha_{2}=\left\lfloor\frac{\sqrt{23}+3}{2}\right\rfloor=3 \quad \longrightarrow \quad \rho_{3}=\frac{1}{\frac{\sqrt{23}+3}{2}-3}=\frac{\sqrt{23}+3}{7} \\
& \alpha_{3}=\left\lfloor\frac{\sqrt{23}+3}{7}\right\rfloor=1 \quad \longrightarrow \quad \rho_{4}=\frac{1}{\frac{\sqrt{23}+3}{7}-1}=\sqrt{23}+4 \\
& \alpha_{4}=\lfloor\sqrt{23}+4\rfloor=8 \quad \longrightarrow \quad \rho_{5}=\frac{1}{(\sqrt{23}+4)-8}=\frac{1}{\sqrt{23}-4}=\rho_{1} \\
& \alpha_{5}=\alpha_{1} \quad \ldots
\end{aligned}
$$

we find $\sqrt{23}=\left[\alpha ; \overline{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}\right]=[4 ; \overline{1,3,1,8}]$.
[+1 for simply answering the question; +3 for explaining calculations]
(b) [Similar to examples seen in lectures] The convergents are calculated as

$$
\begin{aligned}
\frac{s_{-1}}{t_{-1}} & =\frac{1}{0} \\
\frac{s_{0}}{t_{0}} & =\frac{\alpha}{1}=\frac{4}{1} \\
\frac{s_{1}}{t_{1}} & =\frac{\alpha_{1} s_{0}+s_{-1}}{\alpha_{1} t_{0}+t_{-1}}=\frac{1 \cdot 4+1}{1 \cdot 1+0}=\frac{5}{1} \\
\frac{s_{2}}{t_{2}} & =\frac{\alpha_{2} s_{1}+s_{0}}{\alpha_{2} t_{1}+t_{0}}=\frac{3 \cdot 5+4}{3 \cdot 1+1}=\frac{19}{4} \\
\frac{s_{3}}{t_{3}} & =\frac{\alpha_{3} s_{2}+s_{1}}{\alpha_{3} t_{2}+t_{1}}=\frac{1 \cdot 19+5}{1 \cdot 4+1}=\frac{24}{5}
\end{aligned}
$$

[+1 each]
(c) [Similar to examples seen in lectures] Since the cycle is of length $l=4$, the fundamental solution to $x^{2}-23 y^{2}= \pm 1$ is $\left(s_{3}, t_{3}\right)=(24,5)$. By Theorem 48 , for every $N=1,2, \ldots$, the pair $\left(s_{4 N-1}, t_{4 N-1}\right)$ is a solution to $x^{2}-23 y^{2}=(-1)^{4 N}=1$, hence the second smallest solution to $x^{2}-23 y^{2}= \pm 1$ is defined to be $\left(s_{7}, t_{7}\right)$. On the other hand, $s_{7}+t_{7} \sqrt{23}$ can be computed by

$$
(24+5 \sqrt{23})^{2}=1151+240 \sqrt{23}
$$

hence $\left(s_{7}, t_{7}\right)=(1151,240)$.
[$\mathbf{+ 1}$ for spotting the fundamental solution; +3 for pointing out $\left(s_{3}, t_{3}\right)$ is the fundamental solution; +3 for pointing out that the second smallest positive solution is $\left(s_{7}, t_{7}\right) ;+3$ for correctly
calculating $\left(s_{7}, t_{7}\right)$]
Q5 (a) [Similar to examples seen in lectures] Using that 137 is a prime number, find all solutions to

$$
x^{2} \equiv-1 \bmod 137
$$

satisfying $1 \leq x \leq 137$. Show your working. [9]
(b) [Similar to examples seen in lectures] Using (a), write 137 as a sum of two squares. Show your working. State clearly any results you are using from lectures. [9]

A5 (a) Since $137 \equiv 1 \bmod 4$, we may use Proposition 29. To this end, we firstly find a such that $\left(\frac{a}{137}\right)=-1$. For example $a=3$ does the job. It then follows from Proposition 29 that $3^{\frac{137-1}{4}}=3^{34}$ is a solution mod 137. Since

$$
3^{2^{2}}=81,3^{2^{3}}=81^{2} \equiv 122, \quad 3^{2^{4}} \equiv 88,3^{2^{5}} \equiv 72
$$

we see that

$$
3^{34}=3^{2^{5}+2}=3^{2^{5}} 3^{2} \equiv 72 \cdot 9=648 \equiv 100
$$

$\bmod 137$. Since 100 is a solution $\bmod 137$, so is $-100 \equiv 37 \bmod 137$.
[+2 for reference to Proposition 29 (in particular, +1 for asserting that $137 \equiv 1 \bmod 4$); +2 for finding $a ;+3$ for simplifying $3^{34} \bmod 137$ to get one solution; +2 for spotting the solutions]
(b) We make appeal to Hermite's algorithm with $z=37$ as its first step. Convergents to $\frac{37}{137}$ are calculated as follows: by the algorithm,

$$
\begin{array}{lll}
\begin{array}{l}
a \\
=\left\lfloor\frac{37}{137}\right\rfloor=0
\end{array} & \longrightarrow & \rho_{1}=\frac{1}{\frac{37}{137}-0}=\frac{137}{37} \\
\alpha_{1}=\left\lfloor\frac{137}{37}\right\rfloor=3 & \longrightarrow & \rho_{2}=\frac{1}{\frac{137}{37}-3}=\frac{37}{26} \\
\alpha_{2}=\left\lfloor\frac{37}{26}\right\rfloor=1 & \longrightarrow & \rho_{3}=\frac{1}{\frac{37}{26}-1}=\frac{26}{11} \\
\alpha_{3}=\left\lfloor\frac{26}{11}\right\rfloor=2 & \longrightarrow & \rho_{4}=\frac{1}{\frac{26}{11}-2}=\frac{11}{4} \\
\alpha_{4}=\left\lfloor\frac{11}{4}\right\rfloor=2 & \longrightarrow & \rho_{5}=\frac{1}{\frac{11}{4}-2}=\frac{4}{3} \\
\alpha_{5}=\left\lfloor\frac{4}{3}\right\rfloor=1 & \longrightarrow & \rho_{6}=\frac{1}{\frac{4}{3}-1}=3 \in \mathbb{N} \\
\alpha_{6}=\lfloor 3\rfloor=3, & \swarrow
\end{array}
$$

we see that $\frac{37}{137}=\left[\alpha ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right]=[0 ; 3,1,2,2,1,3]$. It therefore follows that

$$
\frac{s_{1}}{t_{1}}=[0 ; 3]=\frac{1}{3}, \frac{s_{2}}{t_{2}}=[0 ; 3,1]=\frac{1}{4}, \frac{s_{3}}{t_{3}}=[0 ; 3,1,2]=\frac{3}{11}, \frac{s_{4}}{t_{4}}=[0 ; 3,1,2,2]=\frac{7}{26}, \ldots
$$

Since

$$
t_{3}<\sqrt{137}<t_{4},
$$

the pair $(x, y)=\left(t_{3}, 137 \cdot s_{3}-37 t_{3}\right)=(11,137 \cdot 3-37 \cdot 11)=(11,4)$ satisfies $x^{2}+y^{2}=137$.
$\mathbf{~}+2$ for correctly working out convergents; $+\mathbf{4}$ for observing via Hermite that $(x, y)=\left(t_{3}, 137\right.$. $\left.s_{3}-37 t_{3}\right)$ is a solution; +3 to spot the solution]

Q6 What are the units of $\mathbb{Z}[\sqrt{15}]$? Describe them all. Justify your answer. [10]
A6. [Similar to examples seen in lectures] Since $15 \equiv 3 \bmod 4$, the units are of the form $s+t \sqrt{15}$ such that $s^{2}-15 t^{2}= \pm 1$. Since the continued fraction for $\sqrt{15}$ is $\left[\alpha ; \overline{\alpha_{1}, \alpha_{2}}\right]=[3 ; \overline{1,6}]$:

\[

\]

with convergents:

$$
\begin{aligned}
\frac{s_{-1}}{t_{-1}} & =\frac{1}{0} \\
\frac{s_{0}}{t_{0}} & =\frac{\alpha}{1}=\frac{3}{1} \\
\frac{s_{1}}{t_{1}} & =\frac{\alpha_{1} s_{0}+s_{-1}}{\alpha_{1} t_{0}+t_{-1}}=\frac{1 \cdot 3+1}{1 \cdot 1+0}=\frac{4}{1}, \\
\frac{s_{2}}{t_{2}} & =\frac{\alpha_{2} s_{1}+s_{0}}{\alpha_{2} t_{1}+t_{0}}=\frac{6 \cdot 4+3}{6 \cdot 1+1}=\frac{27}{7},
\end{aligned}
$$

the fundamental solution is $\left(s_{1}, t_{1}\right)=(4,1)$. The units are of the form $s_{n}+t_{n} \sqrt{15}, s_{n}-t_{n} \sqrt{15},-s_{n}+$ $t_{n} \sqrt{15},-s_{n}-t_{n} \sqrt{15}$ where s_{n} and t_{n} are defined by $s_{n}+t_{n} \sqrt{15}=(4+\sqrt{15})^{n}$.

I +3 for observing that it suffices to solve the equation $x^{2}-15 y^{2}= \pm 1 ;+2$ for finding the fundamental solution; +1 for observing that $s_{n}+t_{n} \sqrt{15}$ is a solution; +4 for spotting the rest]

