
MTH5130 2021-2022 Semester A Exam

Dr Shu Sasaki

7th February 2022

Q1 (a) Find an integer 1 ≤ z ≤ 143 satisfying z ≡ 3143 mod 143. Show your working. (Hint:
143 = 27 + 23 + 22 + 21 + 1 and 316 ≡ 3 mod 143) [6]

(b) Use (a) to show that 143 is not a prime number. State clearly any result you are using from
lectures. [3]

(c) Let p be a prime number and let z be a primitive root mod p. Prove that

1, z, z2, . . . , zp−2

are all distinct mod p. [9]

A1. (a) [Similar to examples seen in lectures] Since

32
2

= 81, 32
3

= (81)2 ≡ (−17), 32
4 ≡ (−17)2 ≡ 3, 32

5 ≡ 32 = 9, 32
6 ≡ 92 = 81, 32

7 ≡ (−17)

it follows that

3143 = 32
7+23+22+2+1 ≡ (−17) · (−17) · 81 · 9 · 3 ≡ 3 · 81 · 9 · 3 ≡ (81)2 ≡ (−17) ≡ 126.

Hence z = 126 is what we are looking for.

[+2 for spotting z = 126; +4 for explaining how]

(b) [Similar to examples seen in lectures] If 143 was a prime number, then it would have fol-
lowed form the Fermat’s Little Theorem that 3143 ≡ 3 mod 143. However, 3 is evidently not
congruent to 126 mod 143. Hence 143 is NOT a prime number.

[+2 for reference to Fermat’s Little Theorem]

(c) [Seen in lectures] If zi ≡ zj for 0 ≤ i ≤ j ≤ p− 2, then zj−i ≡ 1mod p (since z is a primitive
root mod p, z has multiplicative inverse mod p). However, j − i ≤ p − 2 and the order of z by
definition is p− 1. It therefore follows that i = j.

[+3 for establishing that z has multiplicative inverse (remarking that z is coprime to p is not
enough, while deducing from zp−1 ≡ 1 mod p qualifies for +3), and +3 for arguing why the argu-
ment leads to contradiction (the order of z is p− 1)]
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Q2 Let p > 3 be a prime number. State clearly any results you are using from lectures and
prove the following:

(a) ( p

3

)
=

{
+1 if p ≡ 1 mod 3,
−1 if p ≡ 2 mod 3.

[3]

(b)

(
3

p

)
=

 +
( p

3

)
if p ≡ 1 mod 4,

−
( p

3

)
if p ≡ 3 mod 4.

[3]

(c) (
3

p

)
=

{
+1 if p ≡ 1 or 11 mod 12,
−1 if p ≡ 5 or 7 mod 12.

[9]

A2 (a) [Seen in lectures] The only prime p divisible by 3 is p = 3 and this is excluded. Modulo
3, we have

z 1 2
z2 1 1,

i.e. 1 is a square mod 3 while 2 is not. The statement paraphrases this.

[Since I did not prove the Rules, I’d have to allow students to prove
( p

3

)
= −1 if p ≡ 2mod

p, by arguing that
( p

3

)
R0
=

(
2

3

)
R3
= (−1)(3

2−1)/8 = −1 ]

(b) [Seen in lectures] This follows from quadratic reciprocity (Rule 4):(
3

p

)
= (−1)

p−1
2

3−1
2

( p

3

)
= (−1)

p−1
2

( p

3

)
where

p− 1

2
is even (resp. odd) if and only if p ≡ 1 (resp. p ≡ 3) mod 4.

(c) [Partly seen in lectures] Combining (a) and (b),

(
3

p

)
=


+
( p

3

)
if p ≡ 1 mod 4, which yields

{
+1 if p ≡ 1 mod 3,
−1 if p ≡ 2 mod 3,

−
( p

3

)
if p ≡ 3 mod 4, which yields

{
−1 if p ≡ 1 mod 3,
+1 if p ≡ 2 mod 3,

hence(
3

p

)
=

{
+1 if (1) p ≡ 1 mod 4 & p ≡ 1 mod 3 or (2) p ≡ 3 mod 4 & p ≡ 2 mod 3,
−1 if (3) p ≡ 1 mod 4 & p ≡ 2 mod 3 or (4) p ≡ 3 mod 4 & p ≡ 1 mod 3.

It then follows from the CRT that (1) is equivalent to p ≡ 1mod 12, (2) is equivalent to p ≡ 11
mod 12, (3) is equivalent to p ≡ 5 mod 12 and (4) is equivalent to p ≡ 7 mod 12.
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To show (1) for example, we look for solutions (in prime numbers) to the following system of
congruence equations:

x ≡ 1 mod 4
x ≡ 1 mod 3

As gcd(4, 3) = 1, we use Euclidean algorithm to find r and s such that 4r+3s = gcd(4, 3) = 1;
in this case it is simple to spot (r, s) = (1,−1) works and the proof of the CRT (Theorem 9) then
shows that

4 · 1 · 1 + 3 · (−1) · 1 = 1

defines a unique solution mod 4 · 3 = 12. Similar for (2), (3) and (4).

[+3 for reducing the problem into (1)-(4); +6 for the CRT or any valid argument for the punch-
line (+1 out of +6 for reference to CRT, +2 in total for proving the case I demonstrated); though it is
not how I intended, I’d allow the full +9 for the case-by-case analysis: if p ≡ 1mod 12, then... etc.]

Q3 (a) Which of the following congruences are soluble? If soluble, find a positive integer solu-
tion less than 47; if insoluble, explain why.

(i) x2 ≡ 41 mod 47. [4]

(ii) 3x2 ≡ 32 mod 47. [8]

(b) Using Hensel’s lemma, find all integers 1 ≤ z ≤ 125 satisfying z2 + z ≡ −3 mod 125. [9]

A3 (a-i) [Similar to examples seen in lectures] Since(
41

47

)
R4
= (−1)

47−1
2

41−1
2

(
47

41

)
=

(
47

41

)
R0
=

(
6

41

)
R1
=

(
2

41

)(
3

41

)
R3,Cor26

= 1 · (−1) = −1,

this is insoluble.

[+1 for simply pointing out that it is insoluble; +3 for reference to the Legendre symbol (i.e.
calculating it); get only +1 for merely pointing out 41 is a quadratic non-residue mod 47; -1 for no
reference to Rules]

(a-ii) [Partly unseen] Since gcd(3, 47) = 1, we run the Euclid’s algorithm, if necessary, to find
16 · 3 + (−1) · 47 = 1. It therefore follows that

16 · 3x2 ≡ 16 · 32

mod 47, i.e.
x2 ≡ 512 ≡ 42
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mod 47. Since (
42

47

)
R1
=

(
2

47

)(
3

47

)(
7

47

)
R3,Cor26

= 1 · (−1)

(
7

47

)
R4
= (−1)(−1)

47−1
2

7−1
2

(
47

7

)
R0
= −

(
5

7

)
R4
= (−1)(−1)

5−1
2

7−1
2

(
7

5

)
R0
=

(
2

5

)
R3
= (−1)(−1)
= 1

,

this latter congruence equation is soluble. To find a solution, either you do trial and error (I’ll allow
it), or make appeal to Proposition 28 which shows that

42
47+1

4 = 4212

defines a solution mod 47. It remains to simply 4212 mod 47. Since 12 = 23 + 22 and

422 ≡ (−5)2 = 25, 422
2 ≡ 252 = 625 ≡ 14, 422

3 ≡ 142 = 196 ≡ 8

mod 47

4212 = 22
3+22 ≡ 8 · 14 = 112 ≡ 18

mod 47. So x = 18 does the job.

[+4 for simplifying the equation; +2 for reference to Proposition 28; +2 for simplifying 4212

mod 47]

(b) [Similar to examples seen in lectures] Let P(x) = x2 + x + 3. The P′(x) = 2x + 1.
Step 1 Find all solutions to P(x) ≡ 0 mod 5. By trial and error, z1 ≡ 1 or 3 mod 5 works.

Step 2 Let z1 = 1. Since P′(z1) = 2z1 + 1 = 3, the multiplicative inverse Q′(z1) of P
′(z1)

mod 5 is 2. To find Q′(z1), we need to solve the congruence equation 3x ≡ 1 mod 5 by either
using Euclid’s algorithm to find a pair of integers r, s such that 3r + 5s = 1 (and reduce mod 5) or
computing the mod 5 table

r 0 1 2 3 4
3r 0 3 1 4 2

It now follows from Hensel’s lemma that

z1 − P(z1)Q
′(z1) = 1− 5 · 2 = −9 ≡ 16
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defines a solution to P(x) ≡ 0 mod 52.
Step 3 Let z2 = 16. Since Q′(z1) = Q′(z2) = 2, it follows from Hensel’s lemma that

z2 − P(z2)Q
′(z2) = 16− 275 · 2 = −534 ≡ 91

defines a solution mod 53 = 125.

To find the other solution, we repeat run the same algorithm:

Step 2’ Let z1 = 3. Since P′(z1) = 2z1 + 1 = 2 · 3 + 1 = 7 ≡ 2 mod 5, the multiplicative

inverse Q′(z1) of P
′(z1) mod 5 is 3. It then follows from Hensel’s lemma that

z1 − P(z1)Q
′(z1) = 3− 15 · 3 = −42 ≡ 8

defines a solution to P(x) ≡ 0 mod 52.
Step 3’ Let z2 = 8. Since Q′(z1) = Q′(z2) = 2, it follows from Hensel’s lemma that

z2 − P(z2)Q
′(z2) = 8− 75 · 3 = −217 ≡ 33

defines a solution mod 53 = 125.
Since P(x) is quadratic, there are at most two solutions mod 125. They are {91, 33}.

[+1 for spotting the solutions correctly; +2 for spotting the mod 5 solutions; +2 for Step 2 with
z1 = 1; +1 for Step 3 with z1 = 1; +2 for Step 2 with z1 = 3; +1 for Step 3 with z1 = 3]

Q4 (a) Compute the continued fraction expression for
√
23. Show your working. [4]

(b) Compute the convergents
s1
t1
,
s2
t2
,
s3
t3

to
√
23. Show your working. [4]

(c) By working out the second smallest positive solution to the equation x2 − 23y2 = 1, com-

pute the convergent
s7
t7
. [10]

A4 (a) [Similar to examples seen in lectures] By the algorithm:
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α = b
√
23c = 4 −! ρ1 =

1√
23− 4

=

√
23 + 4

7
↙

α1 = b
√
23 + 4

7
c = 1 −! ρ2 =

1
√
23+4
7

− 1
=

√
23 + 3

2

↙

α2 = b
√
23 + 3

2
c = 3 −! ρ3 =

1
√
23+3
2

− 3
=

√
23 + 3

7

↙

α3 = b
√
23 + 3

7
c = 1 −! ρ4 =

1
√
23+3
7

− 1
=

√
23 + 4

↙

α4 = b
√
23 + 4c = 8 −! ρ5 =

1

(
√
23 + 4)− 8

=
1√

23− 4
= ρ1

↙
α5 = α1 . . .

we find
√
23 = [α; α1, α2, α3, α4] = [4; 1, 3, 1, 8].

[+1 for simply answering the question; +3 for explaining calculations]

(b) [Similar to examples seen in lectures] The convergents are calculated as

s−1

t−1

=
1

0
,

s0
t0

=
α
1
=

4

1
,

s1
t1

=
α1s0 + s−1

α1t0 + t−1

=
1 · 4 + 1

1 · 1 + 0
=

5

1
,

s2
t2

=
α2s1 + s0
α2t1 + t0

=
3 · 5 + 4

3 · 1 + 1
=

19

4
,

s3
t3

=
α3s2 + s1
α3t2 + t1

=
1 · 19 + 5

1 · 4 + 1
=

24

5
.

[+1 each]

(c) [Similar to examples seen in lectures] Since the cycle is of length l = 4, the fundamental
solution to x2 − 23y2 = ±1 is (s3, t3) = (24, 5). By Theorem 48, for every N = 1, 2, . . . , the
pair (s4N−1, t4N−1) is a solution to x2 − 23y2 = (−1)4N = 1, hence the second smallest solution to
x2 − 23y2 = ±1 is defined to be (s7, t7). On the other hand, s7 + t7

√
23 can be computed by

(24 + 5
√
23)2 = 1151 + 240

√
23,

hence (s7, t7) = (1151, 240).

[+1 for spotting the fundamental solution; +3 for pointing out (s3, t3) is the fundamental solu-
tion; +3 for pointing out that the second smallest positive solution is (s7, t7); +3 for correctly

6



calculating (s7, t7)]

Q5 (a) [Similar to examples seen in lectures] Using that 137 is a prime number, find all solutions
to

x2 ≡ −1 mod 137

satisfying 1 ≤ x ≤ 137. Show your working. [9]

(b) [Similar to examples seen in lectures] Using (a), write 137 as a sum of two squares. Show
your working. State clearly any results you are using from lectures. [9]

A5 (a) Since 137 ≡ 1 mod 4, we may use Proposition 29. To this end, we firstly find a such

that
( a

137

)
= −1. For example a = 3 does the job. It then follows from Proposition 29 that

3
137−1

4 = 334 is a solution mod 137. Since

32
2

= 81, 32
3

= 812 ≡ 122, 32
4 ≡ 88, 32

5 ≡ 72,

we see that
334 = 32

5+2 = 32
5

32 ≡ 72 · 9 = 648 ≡ 100

mod 137. Since 100 is a solution mod 137, so is −100 ≡ 37 mod 137.

[+2 for reference to Proposition 29 (in particular, +1 for asserting that 137 ≡ 1mod 4); +2 for
finding a; +3 for simplifying 334 mod 137 to get one solution; +2 for spotting the solutions]

(b) We make appeal to Hermite’s algorithm with z = 37 as its first step. Convergents to
37

137
are calculated as follows: by the algorithm,

α = b 37

137
c = 0 −! ρ1 =

1
37
137

− 0
=

137

37
↙

α1 = b137
37

c = 3 −! ρ2 =
1

137
37

− 3
=

37

26
↙

α2 = b37
26

c = 1 −! ρ3 =
1

37
26

− 1
=

26

11
↙

α3 = b26
11

c = 2 −! ρ4 =
1

26
11

− 2
=

11

4
↙

α4 = b11
4
c = 2 −! ρ5 =

1
11
4
− 2

=
4

3
↙

α5 = b4
3
c = 1 −! ρ6 =

1
4
3
− 1

= 3 ∈ N

↙
α6 = b3c = 3,
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we see that
37

137
= [α; α1, α2, α3, α4, α5, α6] = [0; 3, 1, 2, 2, 1, 3]. It therefore follows that

s1
t1

= [0; 3] =
1

3
,

s2
t2

= [0; 3, 1] =
1

4
,

s3
t3

= [0; 3, 1, 2] =
3

11
,

s4
t4

= [0; 3, 1, 2, 2] =
7

26
, . . .

Since
t3 <

√
137 < t4,

the pair (x, y) = (t3, 137 · s3 − 37t3) = (11, 137 · 3− 37 · 11) = (11, 4) satisfies x2 + y2 = 137.

[+2 for correctly working out convergents; +4 for observing via Hermite that (x, y) = (t3, 137·
s3 − 37t3) is a solution; +3 to spot the solution]

Q6What are the units of Z[
√
15]? Describe them all. Justify your answer. [10]

A6. [Similar to examples seen in lectures] Since 15 ≡ 3 mod 4, the units are of the form
s+ t

√
15 such that s2 − 15t2 = ±1. Since the continued fraction for

√
15 is [α; α1, α2] = [3; 1, 6]:

α = b
√
15c = 3 −! ρ1 =

1√
15− 3

=

√
15 + 3

6
↙

α1 = b
√
15 + 3

6
c = 1 −! ρ2 =

1
√
15+3
6

− 1
=

√
15 + 3

↙

α2 = b
√
15 + 3c = 6 −! ρ3 =

1

(
√
15 + 3)− 6

=
1√

15− 3
= ρ1

↙
α3 = α1 · · ·

with convergents:

s−1

t−1

=
1

0
,

s0
t0

=
α
1
=

3

1
,

s1
t1

=
α1s0 + s−1

α1t0 + t−1

=
1 · 3 + 1

1 · 1 + 0
=

4

1
,

s2
t2

=
α2s1 + s0
α2t1 + t0

=
6 · 4 + 3

6 · 1 + 1
=

27

7
,

· · ·

the fundamental solution is (s1, t1) = (4, 1). The units are of the form sn+tn
√
15, sn−tn

√
15,−sn+

tn
√
15,−sn − tn

√
15 where sn and tn are defined by sn + tn

√
15 = (4 +

√
15)n.

[+3 for observing that it suffices to solve the equation x2 − 15y2 = ±1; +2 for finding the
fundamental solution; +1 for observing that sn + tn

√
15 is a solution; +4 for spotting the rest]
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