MTH5130 Exam

Dr Shu Sasaki

7th December 2020

Q1 (a) State Fermat’s Little Theorem, and use it to prove that 15 is a composite
number.

(b) Let ¢ be Euler’s totient function. What is the parity of ¢(15841)? Justify your
answer. State clearly any results you use from the lecture material without proofs.

(c) Find all the primitive roots mod 11 in {1, 2, ..., 10}. Justify your answers.

A1l (a) [Bookwork+ Examples seen in lectures] Fermat’s Little Theorem (Theorem
7) asserts that, if p is a prime number, a” = a mod p holds for any natural number (or
any integer) a.

We simply spot an integer a such that a'® is not congruent to @ mod 15. For example,
a = 2 does the job. Indeed, Since 2* = 1 mod 15,

215:21+2+4+852'22'1’1:8
mod 15.

(b) [Examples seen in Example Sheets] ¢(n) is even for any integer n > 2 (Example
Sheet 2, Ql1-a). The 9-th Carmichael number certainly is > 2.

(c) [Examples seen in lectures] According to Theorem 22, there are ¢(11 — 1) =
#(10) = ¢(5)¢p(2) = 4 -1 = 4 primitive roots mod 11 between 1 and 10. By Theorem
15 (a generalisation of Fermat’s Little Theorem) and Lemma 19, the order d of an in-
teger 1 < z < 11 divides ¢(11) = 10, so it is either 2, 5 or 10:

z|1 2 345 6 7 8 910
d|1 10 555 10 10 10 5 2

Hence {2, 6,7, 8} is the set of primitive roots mod 11 in {1, ..., 10}.

Q2 Using the Chinese Remainder Theorem, solve the following simultaneous con-
gruence equations in x. Show all your working.

9x = 3 mod15,
5 = 7 mod?21,
7Tx = 4 mod13.

A2 [Unseen+ Examples seen in Coursework] Firstly, observe that 9x = 3 mod 15 is
equivalent to 3x = 1 mod 5, which is equivalent to x = 2 mod 5 since2-3-1-5 = 1.
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Since (—4) - 5+ 121 = ged(5,21) = 1, it follows that x = (-4) - 7 = 14 mod 21. Lastly,
since 2- 7+ (-1) - 13 = ged(7,13) = 1, it follows that x = 8 mod 13. To sum up, solving
the simultaneous equations above is equivalent to solving

x = 2 modb
x = 14 mod?21
x = 8 modl13

We make appeal to the Chinese Remainder Theorem twice. As (-4) -5+ 1-21 =
ged(5,21) = 1,
x=5-(-4)-14+21-1-2=-238=77

mod 105 solves the first equation. We are reduced to solving

77 mod 105

X
X 8 mod 13

As1-105+ (—8) - 13 = ged (105, 13) = 1,
x=105-1-8+ (=8)-13-77 = -7168 = 1022
mod 1365.

Q3 (a) Assume that 3083 and 3911 are prime numbers. Using properties of Legendre

symbols, compute the Legendre symbol (%
(b) Which of the following congruences are soluble? If soluble, find a positive solu-

tion less than 79; if insoluble, explain why.

) . Justify your answer.

x2 =41 mod 79.

. 41x2 = 43 mod T79.

(c) Using Hensel’s Lemma, find an integer 1 < z < 125 satisfying z3 = 2 mod 125.
Explain your answer.



A3 (a) [Examples seen in lectures]

3083
3911
3911

3083
828

3083
207

3083
_ 32 23

3083/ 13083
23

3083
3083)

23

_ (L
23

=1

(b) [Examples seen in lectures] The first congruence is insoluble. Indeed,

AN () (3B (A (2 o () o (M) 2 (2 ) =
79) \41) \41) \41)\41) \41) \19) {19/
The second congruence is soluble. Firstly, by the Euclid’s algorithm, we find 27 -
41+ (-14) - 79 =1, hence

x?=1-x*=27-41=27-43=1161 =55
mod 79. Since 79 = 3 mod 4, we make appeal to Proposition 28 to solve the equation.

. 95 : . :
Firstly, we check (%) = 1. Hence 55(™*D/4 = 5520 i5 3 solution mod 79. It remains to

calculate the residue of 552° when divided by 79. Note that 55? = 3025 = 23 mod 79,
hence 55% = 232 = 529 = 55 mod 79. Therefore,

55 = 55° = 55% = 23
mod 79. Hence x = 23 is the solution we are looking for.

(c) [Examples seen in lectures] Of course, trial-and-error is one way of doing this.

Let P(x) = x3~2. We use Hensel’s lemma to find a solution mod 125. Firstly, z; = 3is
the solution mod 5 to P(x) = 0 mod 5. Since the derivative P’(x) of P(x) with respect to
x is 3x2, we have P’(z1) = 3 - 32 = 27, which is evidently not divisible by 5. The inverse
0’(z1) of P'(z1) mod 51is 3 (as 3-27 = 81 = 1 mod 5). It then follows from Hensel’s
lemma (Theorem 30) that

z29=721-P(z1)0'(z1) =3-25-3=-72=3
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mod 5% defines a solution to P(x) = 0 mod 25. Since P’(z2) = P’(z1) = 27 is prime to 5
and the inverse Q’(z2) of P’(z2) mod 5 again is 3,

723 =22 — P(22)0Q'(z2) = =72 = 53

mod 125. In conclusion, 53 does the job.

Q4 (a) Compute the continued fraction expression of V11.

(b) Compute the convergents :_0’ i—l i—Q j—?’ to V11.
0o f1 2 13
(c) Find the smallest and the fourth smallest positive integer solutions to the equa-

tion
x? —11y? = +1.
s
(d) Compute the convergent t—7
7

A4 (a) [Examples seen in lectures] We run the algorithm:

1 Vil+3
a=|Vil]=3 = Pl—\/l__?)— 5
- 7
11+3 1
a = | 5 1=3 = 92:m:m+3
2
4 1 1
@ =|VI1+3]=6 = p3 (VII+3) -6 Vi3 p1
7
a3 =ai = P4 = p2
a
a4 = @2 = P5 = pP3 = P1
7

Hence V11 = [3:3,6,3,6,...] = [3;3,6].

(b) [Examples seen in lectures] Simply follows from the definition:

S_1 = 1
so = 3
s1 = aiso+s5s_1=3-3+1=10
S = a9s1+5p=6-10+3 =063
s3 = agso+s51=3-63+10=199.
On the other hand,
t-1 = 0
to = 1
11 = aitp+t.1=3-1+0=3
tg = aot1+tp=6-3+1=19
t3 = asta+t1 =3-19+3 =060.
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(c) [Examples seen in lectures] It follows from Theorem 48 that the (x, y) = (san-1, fan-1),
N =1,2,..., are the solutions for

2 -11y? = (- =1.

The fundamental solution, therefore, is (x,y) = (s1,#1) = (10, 3). It follows from The-
orem 51 that the 4-th solution to the Pell equation is given by (x, y) = (s, ) where

s +1V11 = (10 + 3V11)*4,
ie. (s,1) = (1992 + 11 - 602,2 - 199 - 60) = (79201, 23880).

(d) [Examples seen in lectures] The pair (s, ¢) in (c) isnothing other than (s2.4-1,#2.4-1) =
(s7, 7). Tt is certainly possible to do this by following the definitions.

Q5 Use 672 = —1 mod 449 and Hermite’s algorithm to find a pair of positive integers
s and 7 such that
52+ 17 = 449.

A5 [Examples seen in lectures] Use Hermite’s algorithm to solve the equation x? +

. . . . 6
y? =449 in x, y. To this end, we find the continued fraction for —:

449
67
— =10;6,1,2,2,1,6
449 [0: ]
and the first few convergent are
s =1
so = 0
s1 = aiso+s_1=6-0+1=1
S2 = CY2S1+S()=1-1+O:1
s3 = asso+s1=2-1+1=3
sS4 = CL’4S3+S2:2'3+1=7
while
t.1 = 0
to = 1
11 = aytp+t.1=6-1+0=6

tg = aot1+1p=1-6+1=7
t3 = asgte+11=2-7T+6=20
ty = ayts3+ta=2-20+7=47.

Since t3 = 20 < V449 < 47 = 14, it follows from Hermite’s algorithm that (s,z) =
(20,449 - 3 — 67 - 20) = (20, 7).

Q6 (a) What is the definition of a unit in a ring R?
(b) How many units are there in the following rings? If finitely many, list them all;
if infinitely many, describe them all.



- Z[V1),
- Z[V11].

A6 (a) [Bookwork] An element r in a ring R is said to be a unit if there exists s such
thatrs =1 =sr.

(b) [Examples seen in lectures] The units in Z[V-1] are +1,+V—1. On the other
hand, we know from Q4, or otherwise that the fundamental solution to the Pell’s equa-
tion x2—11y? = +1is (x, y) = (10, 3); and Proposition 66 therefore shows that s,+1, V11 =
(10 + 3V11)" is a unit for any n > 1. These are the infinitely many units in Z[V11].



Appendix: key assertions from lectures mentioned above
Al(c)

Theorem 22 Let p be a prime. For every number d dividing p — 1, let §; denote the
elementsin {1,...,p — 1} of order d mod p. Then |Sy| = ¢(d).

Theorem 15 Let n be a positive integer and z be an integer such that ged(z,n) = 1.
Then z™ =1 mod n.

A3(b)

Proposition 28 Let p be a prime congruent to 3 mod 4. Suppose that (ﬁ) =1. Then
P

2=

z = aP*PY/* is a solution to the equation x> = a mod p.

A3(c)

Hensel’s lemma (Theorem 30) Let p be a prime and N > 1 be an integer. Suppose
that there exists z € Z such that P(z) = 0 mod p". If P’(z) is not congruent to 0 mod

. . P .

p, then there exists an integer r (congruent to —%Q’(z) mod p, where Q’(z) is the
p
inverse of P’(z) mod p), unique mod p, such that z + rp¥ = z — P(2)Q’(z) defines a

solution to the equation P(x) = 0 mod p*!.
A4(c)

Theorem 48 Suppose that d € N is not a square. Suppose that Vd = [a; a1, ..., a;].
Let jl be the n-th convergent of the continued fraction of Vd. Then s2 —dt2 = +1 if and

only if n = NI — 1 for some N = 1,2,3,.... Moreover, sy, | —dix, | = (=D
Theorem 51 Let (s, 1) = (s1,#1) be the fundamental solution to the equation x>~dy? =
+] and let € = s> — dt? € {+1}. Forn = 1,2, ..., define (s,,t,) € N x N by the equation

sp+1,Vd = (s +1Vd)". Then s2 — dr? = €".
A6(D)
Proposition 66 Suppose that d is a square-free integer and d = 2,3 mod 4. An integer

a = s +1tVd € Z[Vd] is a unit if and only if |a@| = 1, or equivalently, s? — d®> = +1, i.e.,
(s,1) is a solution of Pell’s equation x? — dy? = +1.



