
MTH5130 Exam

Dr Shu Sasaki

7th December 2020

Q1 (a) State Fermat’s Little Theorem, and use it to prove that 15 is a composite
number.

(b) Let q be Euler’s totient function. What is the parity of q(15841)? Justify your
answer. State clearly any results you use from the lecture material without proofs.

(c) Find all the primitive roots mod 11 in {1, 2, . . . , 10}. Justify your answers.

A1 (a) [Bookwork+ Examples seen in lectures] Fermat’s Little Theorem (Theorem
7) asserts that, if ? is a prime number, 0? ≡ 0 mod ? holds for any natural number (or
any integer) 0.

We simply spot an integer 0 such that 015 is not congruent to 0mod 15. For example,
0 = 2 does the job. Indeed, Since 24 ≡ 1mod 15,

215 = 21+2+4+8 ≡ 2 · 22 · 1 · 1 = 8

mod 15.

(b) [Examples seen in Example Sheets] q(=) is even for any integer = > 2 (Example
Sheet 2, Q1-a). The 9-th Carmichael number certainly is > 2.

(c) [Examples seen in lectures] According to Theorem 22, there are q(11 − 1) =

q(10) = q(5)q(2) = 4 · 1 = 4 primitive roots mod 11 between 1 and 10. By Theorem
15 (a generalisation of Fermat’s Little Theorem) and Lemma 19, the order 3 of an in-
teger 1 ≤ I ≤ 11 divides q(11) = 10, so it is either 2, 5 or 10:

I 1 2 3 4 5 6 7 8 9 10
3 1 10 5 5 5 10 10 10 5 2

Hence {2, 6, 7, 8} is the set of primitive roots mod 11 in {1, . . . , 10}.

Q2Using the Chinese Remainder Theorem, solve the following simultaneous con-
gruence equations in G. Show all your working.

9G ≡ 3 mod 15,
5G ≡ 7 mod 21,
7G ≡ 4 mod 13.

A2 [Unseen+ Examples seen in Coursework] Firstly, observe that 9G ≡ 3mod 15 is
equivalent to 3G ≡ 1 mod 5, which is equivalent to G ≡ 2 mod 5 since 2 · 3 − 1 · 5 = 1.
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Since (−4) · 5 + 1 · 21 = gcd(5, 21) = 1, it follows that G ≡ (−4) · 7 ≡ 14 mod 21. Lastly,
since 2 · 7 + (−1) · 13 = gcd(7, 13) = 1, it follows that G ≡ 8mod 13. To sum up, solving
the simultaneous equations above is equivalent to solving

G ≡ 2 mod 5
G ≡ 14 mod 21
G ≡ 8 mod 13

We make appeal to the Chinese Remainder Theorem twice. As (−4) · 5 + 1 · 21 =

gcd(5, 21) = 1,
G ≡ 5 · (−4) · 14 + 21 · 1 · 2 = −238 ≡ 77

mod 105 solves the �rst equation. We are reduced to solving

G ≡ 77 mod 105
G ≡ 8 mod 13

As 1 · 105 + (−8) · 13 = gcd(105, 13) = 1,

G ≡ 105 · 1 · 8 + (−8) · 13 · 77 = −7168 ≡ 1022

mod 1365.

Q3 (a) Assume that 3083 and 3911 are primenumbers. Using properties of Legendre
symbols, compute the Legendre symbol

(
3083

3911

)
. Justify your answer.

(b) Which of the following congruences are soluble? If soluble, �nd a positive solu-
tion less than 79; if insoluble, explain why.

• G2 ≡ 41mod 79.

• 41G2 ≡ 43mod 79.

(c) Using Hensel’s Lemma, �nd an integer 1 ≤ I ≤ 125 satisfying I3 ≡ 2 mod 125.
Explain your answer.
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A3 (a) [Examples seen in lectures](
3083

3911

)
= −

(
3911

3083

)
= −

(
828

3083

)
= −

(
207

3083

)
= −

(
32

3083

) (
23

3083

)
= −

(
23

3083

)
=

(
3083

23

)
=

(
1

23

)
= 1

(b) [Examples seen in lectures] The �rst congruence is insoluble. Indeed,(
41

79

)
=

(
79

41

)
=

(
38

41

)
=

(
2

41

) (
19

41

)
=

(
19

41

)
=

(
41

19

)
=

(
3

19

)
= −1.

The second congruence is soluble. Firstly, by the Euclid’s algorithm, we �nd 27 ·
41 + (−14) · 79 = 1, hence

G2 = 1 · G2 ≡ 27 · 41 ≡ 27 · 43 = 1161 ≡ 55

mod 79. Since 79 ≡ 3mod 4, we make appeal to Proposition 28 to solve the equation.

Firstly, we check
(
55

79

)
= 1. Hence 55(79+1)/4 = 5520 is a solution mod 79. It remains to

calculate the residue of 5520 when divided by 79. Note that 552 = 3025 ≡ 23 mod 79,
hence 554 ≡ 232 = 529 ≡ 55mod 79. Therefore,

5520 ≡ 555 ≡ 552 ≡ 23

mod 79. Hence G = 23 is the solution we are looking for.

(c) [Examples seen in lectures] Of course, trial-and-error is one way of doing this.
Let %(G) = G3−2. We useHensel’s lemma to �nd a solutionmod 125. Firstly, I1 = 3 is

the solution mod 5 to %(G) ≡ 0mod 5. Since the derivative %′(G) of %(G) with respect to
G is 3G2, we have %′(I1) = 3 · 32 = 27, which is evidently not divisible by 5. The inverse
&′(I1) of %′(I1) mod 5 is 3 (as 3 · 27 = 81 ≡ 1 mod 5). It then follows from Hensel’s
lemma (Theorem 30) that

I2 = I1 − %(I1)&′(I1) = 3 − 25 · 3 = −72 ≡ 3

3



mod 52 de�nes a solution to %(G) ≡ 0mod 25. Since %′(I2) = %′(I1) = 27 is prime to 5
and the inverse &′(I2) of %′(I2) mod 5 again is 3,

I3 = I2 − %(I2)&′(I2) = −72 ≡ 53

mod 125. In conclusion, 53 does the job.

Q4 (a) Compute the continued fraction expression of
√
11.

(b) Compute the convergents
B0

C0
,
B1

C1
,
B2

C2
,
B3

C3
to
√
11.

(c) Find the smallest and the fourth smallest positive integer solutions to the equa-
tion

G2 − 11H2 = ±1.
(d) Compute the convergent

B7

C7
.

A4 (a) [Examples seen in lectures] We run the algorithm:

U = b
√
11c = 3 ⇒ d1 =

1
√
11 − 3

=

√
11 + 3
2

w

U1 = b
√
11 + 3
2
c = 3 ⇒ d2 =

1

(
√
11+3
2 ) − 3

=
√
11 + 3

w

U2 = b
√
11 + 3c = 6 ⇒ d3 =

1

(
√
11 + 3) − 6

=
1

√
11 − 3

= d1

w
U3 = U1 ⇒ d4 = d2

w
U4 = U2 ⇒ d5 = d3 = d1

w
...

Hence
√
11 = [3; 3, 6, 3, 6, . . . ] = [3; 3, 6].

(b) [Examples seen in lectures] Simply follows from the de�nition:

B−1 = 1
B0 = 3
B1 = U1B0 + B−1 = 3 · 3 + 1 = 10
B2 = U2B1 + B0 = 6 · 10 + 3 = 63
B3 = U3B2 + B1 = 3 · 63 + 10 = 199.

On the other hand,

C−1 = 0
C0 = 1
C1 = U1C0 + C−1 = 3 · 1 + 0 = 3
C2 = U2C1 + C0 = 6 · 3 + 1 = 19
C3 = U3C2 + C1 = 3 · 19 + 3 = 60.
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(c) [Examples seen in lectures] It follows fromTheorem48 that the (G, H) = (B2#−1, C2#−1),
# = 1, 2, . . . , are the solutions for

G2 − 11H2 = (−1)2# = 1.

The fundamental solution, therefore, is (G, H) = (B1, C1) = (10, 3). It follows from The-
orem 51 that the 4-th solution to the Pell equation is given by (G, H) = (B, C) where

B + C
√
11 = (10 + 3

√
11)4,

i.e. (B, C) = (1992 + 11 · 602, 2 · 199 · 60) = (79201, 23880).

(d) [Examples seen in lectures] Thepair (B, C) in (c) is nothing other than (B2·4−1, C2·4−1) =
(B7, C7). It is certainly possible to do this by following the de�nitions.

Q5Use 672 ≡ −1mod 449 andHermite’s algorithm to �nd a pair of positive integers
B and C such that

B2 + C2 = 449.

A5 [Examples seen in lectures] Use Hermite’s algorithm to solve the equation G2 +
H2 = 449 in G, H. To this end, we �nd the continued fraction for

67

449
:

67

449
= [0; 6, 1, 2, 2, 1, 6]

and the �rst few convergent are

B−1 = 1
B0 = 0
B1 = U1B0 + B−1 = 6 · 0 + 1 = 1
B2 = U2B1 + B0 = 1 · 1 + 0 = 1
B3 = U3B2 + B1 = 2 · 1 + 1 = 3
B4 = U4B3 + B2 = 2 · 3 + 1 = 7

while

C−1 = 0
C0 = 1
C1 = U1C0 + C−1 = 6 · 1 + 0 = 6
C2 = U2C1 + C0 = 1 · 6 + 1 = 7
C3 = U3C2 + C1 = 2 · 7 + 6 = 20
C4 = U4C3 + C2 = 2 · 20 + 7 = 47.

Since C3 = 20 <
√
449 < 47 = C4, it follows from Hermite’s algorithm that (B, C) =

(20, 449 · 3 − 67 · 20) = (20, 7).

Q6 (a) What is the de�nition of a unit in a ring '?
(b) How many units are there in the following rings? If �nitely many, list them all;

if in�nitely many, describe them all.
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• ℤ[
√
−1],

• ℤ[
√
11].

A6 (a) [Bookwork] An element A in a ring ' is said to be a unit if there exists B such
that AB = 1 = BA.

(b) [Examples seen in lectures] The units in ℤ[
√
−1] are ±1,±

√
−1. On the other

hand, we know fromQ4, or otherwise that the fundamental solution to the Pell’s equa-
tion G2−11H2 = ±1 is (G, H) = (10, 3); and Proposition 66 therefore shows that B=+C=

√
11 =

(10 + 3
√
11)= is a unit for any = ≥ 1. These are the in�nitely many units in ℤ[

√
11].
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Appendix: key assertions from lectures mentioned above

A1(c)

Theorem 22 Let ? be a prime. For every number 3 dividing ? − 1, let (3 denote the
elements in {1, . . . , ? − 1} of order 3 mod ?. Then |(3 | = q(3).

Theorem 15 Let = be a positive integer and I be an integer such that gcd(I, =) = 1.
Then Iq(=) ≡ 1mod =.

A3(b)

Proposition 28 Let ? be a prime congruent to 3mod 4. Suppose that
(
0

?

)
= 1. Then

I = 0 (?+1)/4 is a solution to the equation G2 ≡ 0 mod ?.

A3(c)

Hensel’s lemma (Theorem 30) Let ? be a prime and # ≥ 1 be an integer. Suppose
that there exists I ∈ ℤ such that %(I) ≡ 0 mod ?# . If %′(I) is not congruent to 0 mod

?, then there exists an integer A (congruent to −%(I)
?#

&′(I) mod ?, where &′(I) is the

inverse of %′(I) mod ?), unique mod ?, such that I + A ?# = I − %(I)&′(I) de�nes a
solution to the equation %(G) ≡ 0mod ?#+1.

A4(c)

Theorem 48 Suppose that 3 ∈ ℕ is not a square. Suppose that
√
3 = [U;U1, . . . , U;].

Let
B=

C=
be the =-th convergent of the continued fraction of

√
3. Then B2= − 3C2= = ±1 if and

only if = = #; − 1 for some # = 1, 2, 3, . . . . Moreover, B2
#;−1 − 3C2

#;−1 = (−1)
#;.

Theorem51Let (B, C) = (B1, C1) be the fundamental solution to the equation G2−3H2 =
±1 and let n = B2 − 3C2 ∈ {±1}. For = = 1, 2, . . . , de�ne (B=, C=) ∈ ℕ × ℕ by the equation
B= + C=

√
3 = (B + C

√
3)=. Then B2= − 3C2= = n=.

A6(b)

Proposition66 Suppose that 3 is a square-free integer and 3 ≡ 2, 3mod 4. An integer
U = B + C

√
3 ∈ ℤ[

√
3] is a unit if and only if |UU | = 1, or equivalently, B2 − 3C2 = ±1, i.e.,

(B, C) is a solution of Pell’s equation G2 − 3H2 = ±1.
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