MTH5130 Exam

Dr Shu Sasaki

7th December 2020

Q1 (a) State Fermat's Little Theorem, and use it to prove that 15 is a composite number.
(b) Let ϕ be Euler's totient function. What is the parity of $\phi(15841)$? Justify your answer. State clearly any results you use from the lecture material without proofs.
(c) Find all the primitive roots mod 11 in $\{1,2, \ldots, 10\}$. Justify your answers.

A1 (a) [Bookwork+ Examples seen in lectures] Fermat's Little Theorem (Theorem 7) asserts that, if p is a prime number, $a^{p} \equiv a \bmod p$ holds for any natural number (or any integer) a.

We simply spot an integer a such that a^{15} is not congruent to $a \bmod 15$. For example, $a=2$ does the job. Indeed, Since $2^{4} \equiv 1 \bmod 15$,

$$
2^{15}=2^{1+2+4+8} \equiv 2 \cdot 2^{2} \cdot 1 \cdot 1=8
$$

$\bmod 15$.
(b) [Examples seen in Example Sheets] $\phi(n)$ is even for any integer $n>2$ (Example Sheet 2, Q1-a). The 9-th Carmichael number certainly is >2.
(c) [Examples seen in lectures] According to Theorem 22, there are $\phi(11-1)=$ $\phi(10)=\phi(5) \phi(2)=4 \cdot 1=4$ primitive roots mod 11 between 1 and 10 . By Theorem 15 (a generalisation of Fermat's Little Theorem) and Lemma 19, the order d of an integer $1 \leq z \leq 11$ divides $\phi(11)=10$, so it is either 2,5 or 10 :

$$
\begin{array}{c|cccccccccc}
z & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline d & 1 & 10 & 5 & 5 & 5 & 10 & 10 & 10 & 5 & 2
\end{array}
$$

Hence $\{2,6,7,8\}$ is the set of primitive roots $\bmod 11$ in $\{1, \ldots, 10\}$.
Q2 Using the Chinese Remainder Theorem, solve the following simultaneous congruence equations in x. Show all your working.

$$
\begin{aligned}
& 9 x \equiv 3 \bmod 15, \\
& 5 x \equiv 7 \bmod 21, \\
& 7 x \equiv 4 \bmod 13 .
\end{aligned}
$$

A2 [Unseen + Examples seen in Coursework] Firstly, observe that $9 x \equiv 3 \bmod 15$ is equivalent to $3 x \equiv 1 \bmod 5$, which is equivalent to $x \equiv 2 \bmod 5 \operatorname{since} 2 \cdot 3-1 \cdot 5=1$.

Since $(-4) \cdot 5+1 \cdot 21=\operatorname{gcd}(5,21)=1$, it follows that $x \equiv(-4) \cdot 7 \equiv 14 \bmod 21$. Lastly, since $2 \cdot 7+(-1) \cdot 13=\operatorname{gcd}(7,13)=1$, it follows that $x \equiv 8 \bmod 13$. To sum up, solving the simultaneous equations above is equivalent to solving

$$
\begin{array}{rlcl}
x & \equiv & \bmod 5 \\
x & \equiv 14 & \bmod 21 \\
x & \equiv & \bmod 13
\end{array}
$$

We make appeal to the Chinese Remainder Theorem twice. As (-4) $\cdot 5+1 \cdot 21=$ $\operatorname{gcd}(5,21)=1$,

$$
x \equiv 5 \cdot(-4) \cdot 14+21 \cdot 1 \cdot 2=-238 \equiv 77
$$

$\bmod 105$ solves the first equation. We are reduced to solving

$$
\begin{array}{rll}
x & \equiv 77 & \bmod 105 \\
x & \equiv 8 \quad \bmod 13
\end{array}
$$

As $1 \cdot 105+(-8) \cdot 13=\operatorname{gcd}(105,13)=1$,

$$
x \equiv 105 \cdot 1 \cdot 8+(-8) \cdot 13 \cdot 77=-7168 \equiv 1022
$$

$\bmod 1365$.
Q3 (a) Assume that 3083 and 3911 are prime numbers. Using properties of Legendre symbols, compute the Legendre symbol $\left(\frac{3083}{3911}\right)$. Justify your answer.
(b) Which of the following congruences are soluble? If soluble, find a positive solution less than 79; if insoluble, explain why.

- $x^{2} \equiv 41 \bmod 79$.
- $41 x^{2} \equiv 43 \bmod 79$.
(c) Using Hensel's Lemma, find an integer $1 \leq z \leq 125$ satisfying $z^{3} \equiv 2 \bmod 125$. Explain your answer.

A3 (a) [Examples seen in lectures]

$$
\begin{aligned}
& \left(\frac{3083}{3911}\right) \\
= & -\left(\frac{3911}{3083}\right) \\
= & -\left(\frac{828}{3083}\right) \\
= & -\left(\frac{207}{3083}\right) \\
= & -\left(\frac{3^{2}}{3083}\right)\left(\frac{23}{3083}\right) \\
= & -\left(\frac{23}{3083}\right) \\
= & \left(\frac{3083}{23}\right) \\
= & \left(\frac{1}{23}\right) \\
= & 1
\end{aligned}
$$

(b) [Examples seen in lectures] The first congruence is insoluble. Indeed,

$$
\left(\frac{41}{79}\right)=\left(\frac{79}{41}\right)=\left(\frac{38}{41}\right)=\left(\frac{2}{41}\right)\left(\frac{19}{41}\right)=\left(\frac{19}{41}\right)=\left(\frac{41}{19}\right)=\left(\frac{3}{19}\right)=-1 .
$$

The second congruence is soluble. Firstly, by the Euclid's algorithm, we find 27 . $41+(-14) \cdot 79=1$, hence

$$
x^{2}=1 \cdot x^{2} \equiv 27 \cdot 41 \equiv 27 \cdot 43=1161 \equiv 55
$$

$\bmod 79$. Since $79 \equiv 3 \bmod 4$, we make appeal to Proposition 28 to solve the equation. Firstly, we check $\left(\frac{55}{79}\right)=1$. Hence $55^{(79+1) / 4}=55^{20}$ is a solution mod 79. It remains to calculate the residue of 55^{20} when divided by 79 . Note that $55^{2}=3025 \equiv 23 \bmod 79$, hence $55^{4} \equiv 23^{2}=529 \equiv 55 \bmod 79$. Therefore,

$$
55^{20} \equiv 55^{5} \equiv 55^{2} \equiv 23
$$

$\bmod 79$. Hence $x=23$ is the solution we are looking for.
(c) [Examples seen in lectures] Of course, trial-and-error is one way of doing this.

Let $P(x)=x^{3}-2$. We use Hensel's lemma to find a solution $\bmod 125$. Firstly, $z_{1}=3$ is the solution $\bmod 5$ to $P(x) \equiv 0 \bmod 5$. Since the derivative $P^{\prime}(x)$ of $P(x)$ with respect to x is $3 x^{2}$, we have $P^{\prime}\left(z_{1}\right)=3 \cdot 3^{2}=27$, which is evidently not divisible by 5 . The inverse $Q^{\prime}\left(z_{1}\right)$ of $P^{\prime}\left(z_{1}\right) \bmod 5$ is 3 (as $3 \cdot 27=81 \equiv 1 \bmod 5$). It then follows from Hensel's lemma (Theorem 30) that

$$
z_{2}=z_{1}-P\left(z_{1}\right) Q^{\prime}\left(z_{1}\right)=3-25 \cdot 3=-72 \equiv 3
$$

$\bmod 5^{2}$ defines a solution to $P(x) \equiv 0 \bmod 25$. Since $P^{\prime}\left(z_{2}\right)=P^{\prime}\left(z_{1}\right)=27$ is prime to 5 and the inverse $Q^{\prime}\left(z_{2}\right)$ of $P^{\prime}\left(z_{2}\right) \bmod 5$ again is 3,

$$
z_{3}=z_{2}-P\left(z_{2}\right) Q^{\prime}\left(z_{2}\right)=-72 \equiv 53
$$

mod 125. In conclusion, 53 does the job.
Q4 (a) Compute the continued fraction expression of $\sqrt{11}$.
(b) Compute the convergents $\frac{s_{0}}{t_{0}}, \frac{s_{1}}{t_{1}}, \frac{s_{2}}{t_{2}}, \frac{s_{3}}{t_{3}}$ to $\sqrt{11}$.
(c) Find the smallest and the fourth smallest positive integer solutions to the equation

$$
x^{2}-11 y^{2}= \pm 1
$$

(d) Compute the convergent $\frac{s_{7}}{t_{7}}$.

A4 (a) [Examples seen in lectures] We run the algorithm:

$$
\begin{aligned}
& \alpha=\lfloor\sqrt{11}\rfloor=3 \quad \Rightarrow \quad \rho_{1}=\frac{1}{\sqrt{11}-3}=\frac{\sqrt{11}+3}{2} \\
& \alpha_{1}=\left\lfloor\frac{\sqrt{11}+3}{2}\right\rfloor=3 \Rightarrow \rho_{2}=\frac{1}{\left(\frac{\sqrt{11}+3}{2}\right)-3}=\sqrt{11}+3 \\
& \alpha_{2}=\lfloor\sqrt{11}+3\rfloor=6 \quad \Rightarrow \quad \rho_{3}=\frac{1}{(\sqrt{11}+3)-6}=\frac{1}{\sqrt{11}-3}=\rho_{1} \\
& \alpha_{3}=\alpha_{1} \quad \Rightarrow \quad \rho_{4}=\rho_{2} \\
& \alpha_{4}=\alpha_{2} \quad \Rightarrow \quad \rho_{5}=\rho_{3}=\rho_{1} \\
& \begin{array}{c}
\ell \\
\vdots
\end{array}
\end{aligned}
$$

Hence $\sqrt{11}=[3 ; 3,6,3,6, \ldots]=[3 ; \overline{3,6}]$.
(b) [Examples seen in lectures] Simply follows from the definition:

$$
\begin{aligned}
s_{-1} & =1 \\
s_{0} & =3 \\
s_{1} & =\alpha_{1} s_{0}+s_{-1}=3 \cdot 3+1=10 \\
s_{2} & =\alpha_{2} s_{1}+s_{0}=6 \cdot 10+3=63 \\
s_{3} & =\alpha_{3} s_{2}+s_{1}=3 \cdot 63+10=199 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
t_{-1} & =0 \\
t_{0} & =1 \\
t_{1} & =\alpha_{1} t_{0}+t_{-1}=3 \cdot 1+0=3 \\
t_{2} & =\alpha_{2} t_{1}+t_{0}=6 \cdot 3+1=19 \\
t_{3} & =\alpha_{3} t_{2}+t_{1}=3 \cdot 19+3=60 .
\end{aligned}
$$

(c) [Examples seen in lectures] It follows from Theorem 48 that the $(x, y)=\left(s_{2 N-1}, t_{2 N-1}\right)$, $N=1,2, \ldots$, are the solutions for

$$
x^{2}-11 y^{2}=(-1)^{2 N}=1
$$

The fundamental solution, therefore, is $(x, y)=\left(s_{1}, t_{1}\right)=(10,3)$. It follows from Theorem 51 that the 4 -th solution to the Pell equation is given by $(x, y)=(s, t)$ where

$$
s+t \sqrt{11}=(10+3 \sqrt{11})^{4}
$$

i.e. $(s, t)=\left(199^{2}+11 \cdot 60^{2}, 2 \cdot 199 \cdot 60\right)=(79201,23880)$.
(d) [Examples seen in lectures] The pair (s, t) in (c) is nothing other than $\left(s_{2 \cdot 4-1}, t_{2 \cdot 4-1}\right)=$ $\left(s_{7}, t_{7}\right)$. It is certainly possible to do this by following the definitions.

Q5 Use $67^{2} \equiv-1 \bmod 449$ and Hermite's algorithm to find a pair of positive integers s and t such that

$$
s^{2}+t^{2}=449
$$

A5 [Examples seen in lectures] Use Hermite's algorithm to solve the equation $x^{2}+$ $y^{2}=449$ in x, y. To this end, we find the continued fraction for $\frac{67}{449}$:

$$
\frac{67}{449}=[0 ; 6,1,2,2,1,6]
$$

and the first few convergent are

$$
\begin{aligned}
s_{-1} & =1 \\
s_{0} & =0 \\
s_{1} & =\alpha_{1} s_{0}+s_{-1}=6 \cdot 0+1=1 \\
s_{2} & =\alpha_{2} s_{1}+s_{0}=1 \cdot 1+0=1 \\
s_{3} & =\alpha_{3} s_{2}+s_{1}=2 \cdot 1+1=3 \\
s_{4} & =\alpha_{4} s_{3}+s_{2}=2 \cdot 3+1=7
\end{aligned}
$$

while

$$
\begin{aligned}
t_{-1} & =0 \\
t_{0} & =1 \\
t_{1} & =\alpha_{1} t_{0}+t_{-1}=6 \cdot 1+0=6 \\
t_{2} & =\alpha_{2} t_{1}+t_{0}=1 \cdot 6+1=7 \\
t_{3} & =\alpha_{3} t_{2}+t_{1}=2 \cdot 7+6=20 \\
t_{4} & =\alpha_{4} t_{3}+t_{2}=2 \cdot 20+7=47 .
\end{aligned}
$$

Since $t_{3}=20<\sqrt{449}<47=t_{4}$, it follows from Hermite's algorithm that $(s, t)=$ $(20,449 \cdot 3-67 \cdot 20)=(20,7)$.

Q6 (a) What is the definition of a unit in a ring R ?
(b) How many units are there in the following rings? If finitely many, list them all; if infinitely many, describe them all.

- $\mathbb{Z}[\sqrt{-1}]$,
- $\mathbb{Z}[\sqrt{11}]$.

A6 (a) [Bookwork] An element r in a ring R is said to be a unit if there exists s such that $r s=1=s r$.
(b) [Examples seen in lectures] The units in $\mathbb{Z}[\sqrt{-1}]$ are $\pm 1, \pm \sqrt{-1}$. On the other hand, we know from $\mathbf{Q 4}$, or otherwise that the fundamental solution to the Pell's equation $x^{2}-11 y^{2}= \pm 1$ is $(x, y)=(10,3)$; and Proposition 66 therefore shows that $s_{n}+t_{n} \sqrt{11}=$ $(10+3 \sqrt{11})^{n}$ is a unit for any $n \geq 1$. These are the infinitely many units in $\mathbb{Z}[\sqrt{11}]$.

Appendix: key assertions from lectures mentioned above

A1(c)
Theorem 22 Let p be a prime. For every number d dividing $p-1$, let S_{d} denote the elements in $\{1, \ldots, p-1\}$ of order $d \bmod p$. Then $\left|S_{d}\right|=\phi(d)$.

Theorem 15 Let n be a positive integer and z be an integer such that $\operatorname{gcd}(z, n)=1$. Then $z^{\phi(n)} \equiv 1 \bmod n$.

A3(b)
Proposition 28 Let p be a prime congruent to $3 \bmod 4$. Suppose that $\left(\frac{a}{p}\right)=1$. Then $z=a^{(p+1) / 4}$ is a solution to the equation $x^{2} \equiv a \bmod p$.

A3(c)

Hensel's lemma (Theorem 30) Let p be a prime and $N \geq 1$ be an integer. Suppose that there exists $z \in \mathbb{Z}$ such that $P(z) \equiv 0 \bmod p^{N}$. If $P^{\prime}(z)$ is not congruent to $0 \bmod$ p, then there exists an integer r (congruent to $-\frac{P(z)}{p^{N}} Q^{\prime}(z) \bmod p$, where $Q^{\prime}(z)$ is the inverse of $P^{\prime}(z) \bmod p$, unique $\bmod p$, such that $z+r p^{N}=z-P(z) Q^{\prime}(z)$ defines a solution to the equation $P(x) \equiv 0 \bmod p^{N+1}$.

A4(c)
Theorem 48 Suppose that $d \in \mathbb{N}$ is not a square. Suppose that $\sqrt{d}=\left[\alpha ; \overline{\alpha_{1}, \ldots, \alpha_{l}}\right]$. Let $\frac{s_{n}}{t_{n}}$ be the n-th convergent of the continued fraction of \sqrt{d}. Then $s_{n}^{2}-d t_{n}^{2}= \pm 1$ if and only if $n=N l-1$ for some $N=1,2,3, \ldots$. Moreover, $s_{N l-1}^{2}-d t_{N l-1}^{2}=(-1)^{N l}$.

Theorem 51 Let $(s, t)=\left(s_{1}, t_{1}\right)$ be the fundamental solution to the equation $x^{2}-d y^{2}=$ ± 1 and let $\epsilon=s^{2}-d t^{2} \in\{ \pm 1\}$. For $n=1,2, \ldots$, define $\left(s_{n}, t_{n}\right) \in \mathbb{N} \times \mathbb{N}$ by the equation $s_{n}+t_{n} \sqrt{d}=(s+t \sqrt{d})^{n}$. Then $s_{n}^{2}-d t_{n}^{2}=\epsilon^{n}$.

A6(b)

Proposition 66 Suppose that d is a square-free integer and $d \equiv 2,3 \bmod 4$. An integer $\alpha=s+t \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ is a unit if and only if $|\alpha \bar{\alpha}|=1$, or equivalently, $s^{2}-d t^{2}= \pm 1$, i.e., (s, t) is a solution of Pell's equation $x^{2}-d y^{2}= \pm 1$.

