University of London
MTH6128
Number Theory

Solutions to 2020 May exam

1 Question:

(a) Define the terms algebraic integer and quadratic integer. State the Fundamental Theorem of Arithmetic. [bookwork]
(b) Determine which of the following numbers are quadratic integers. Explicitly state any results from the lectures that you use. [similar to coursework/examples]
(i) $\frac{2+\sqrt{52}}{4}$;
(ii) $\frac{\sqrt{43}}{2}-\frac{7}{2}$.
(c) Show that $\sqrt{3+\sqrt{11}}$ is an algebraic integer. [similar to coursework]
(d) Find all integer solutions to the equation [similar to coursework/examples]

$$
17 x \equiv 4 \quad(\bmod 71)
$$

Solution:

(a) We had the following definitions from the lectures

Definition Let α be a complex number. Then:

- α is an algebraic number if there is a non-zero polynomial $f(x)$ with rational coefficients such that $f(\alpha)=0$;
- α is a transcendental number if α is not an algebraic number. Moreover,
- α is an algebraic integer if there is a non-zero monic polynomial $f(x)$ with integer coefficients such that $f(\alpha)=0$. (2 marks)

Definition An algebraic number is a quadratic number if its minimal polynomial is of degree 2 .
An algebraic number is a quadratic integer if its minimal polynomial is of degree 2 and has integer coefficients. (2 marks)
Remark. The extra definitions are included for the convenience of the checker.
(The Fundamental Theorem of Arithmetic) Any natural number greater than 1 can be written as a product of prime numbers, and this product expression is unique apart from re-ordering the factors. (2 marks)
(b) We had the following theorems in the lectures:

Theorem: $\alpha \in \mathbb{C}$ is a quadratic number if and only if $\alpha=u+v \sqrt{d}$ for some $u, v \in \mathbb{Q}$ and $1 \neq d \in \mathbb{Z}$ squarefree.
Theorem: A quadratic number α is a quadratic integer if and only if $\alpha=u+v \sqrt{d}$ for some $1 \neq d \in \mathbb{Z}$ squarefree and for u, v satisfying

$$
\text { - } u \in \mathbb{Z} \text { and } v \in \mathbb{Z}
$$

or

- $u-\frac{1}{2} \in \mathbb{Z}, v-\frac{1}{2} \in \mathbb{Z}$ and $d \equiv 1(\bmod 4)$.

So all in all, $\alpha \in \mathbb{C}$ is a quadratic integer if and only if $\alpha=u+v \sqrt{d}$ for some $1 \neq d \in \mathbb{Z}$ squarefree and for u, v satisfying

$$
\text { - } u \in \mathbb{Z} \text { and } v \in \mathbb{Z}
$$

or

- $u-\frac{1}{2} \in \mathbb{Z}, v-\frac{1}{2} \in \mathbb{Z}$ and $d \equiv 1(\bmod 4)$.
(i) $\frac{2+\sqrt{52}}{4}=\frac{1}{2}+\frac{1}{2} \sqrt{13}$. So in this case, $u=\frac{1}{2}, v=\frac{1}{2}$ and $d=13$. As $u-\frac{1}{2}, v-\frac{1}{2} \in \mathbb{Z}$ and $d=13 \equiv 1(\bmod 4)$, we conclude that $\frac{2+\sqrt{52}}{4}$ is a quadratic integer $(2$ marks $)$.
(ii) $\frac{\sqrt{43}}{2}-\frac{7}{2}$. So in this case, $u=-\frac{7}{2} \notin \mathbb{Z}$ and $d=43 \not \equiv 1(\bmod 4)$. We conclude that $\frac{\sqrt{43}}{2}-\frac{7}{2}$ is not a quadratic integer (2 marks).

Remark: The long explanation in (b) is only included for the convenience of the checker. Students are not required to give this explanation for full marks; it is enough to cite the relevant results from the lectures. It's also possible to just find the minimal polynomials and this would receive full marks.
(c) Let $\alpha=\sqrt{3+\sqrt{11}}$. Then

$$
\begin{aligned}
\alpha^{2} & =3+\sqrt{11} \\
\left(\alpha^{2}-3\right) & =\sqrt{11} \\
\left(\alpha^{2}-3\right)^{2} & =11 \\
\alpha^{4}-6 \alpha^{2}+9 & =11 \\
\alpha^{4}-6 \alpha^{2}-2 & =0
\end{aligned}
$$

(3 marks) Hence α is a root of $f(x)=x^{4}-6 x^{2}-2(1$ mark). Since $f(x)$ is a monic polynomial with integer coefficients, α is an algebraic integer (1 mark).
(d) Apply the extended Euclidean algorithm to get that

$$
\begin{aligned}
71 & =17 \cdot 4+3 \\
17 & =3 \cdot 5+2 \\
3 & =2 \cdot 1+1
\end{aligned}
$$

so that

$$
\begin{aligned}
1 & =3-2 \\
& =3-(17-3 \cdot 5)=6 \cdot 3-17 \\
& =6(71-17 \cdot 4)-17=6 \cdot 71-25 \cdot 17
\end{aligned}
$$

(3 marks). Hence $-25 \cdot 17 \equiv 1(\bmod 71)(1 \mathrm{mark})$. So that

$$
x \equiv-100 \equiv 42 \quad(\bmod 71)
$$

(1 mark).

2 Question:

(a) Use the Euclidean algorithm to find a continued fraction expansion of $\frac{1723}{505}$. [similar to coursework/examples]
(b) Let $a_{0}, a_{1}, \ldots, a_{n}$ be positive integers. Let $c_{k}=p_{k} / q_{k}$ be the $k t h$ convergent of the continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$. [similar to coursework/examples]
(i) Prove for each $1 \leq k \leq n$ that

$$
\frac{p_{k}}{p_{k-1}}=a_{k}+\frac{p_{k-1}}{p_{k-2}} .
$$

(ii) Use part (i) to prove for each $1 \leq k \leq n$ that

$$
\frac{p_{k}}{p_{k-1}}=\left[a_{k} ; a_{k-1}, \ldots, a_{1}, a_{0}\right]
$$

Solution:

(a) We apply the Euclidean algorithm and get

$$
\begin{aligned}
1723 & =505 \cdot 3+208 \\
505 & =208 \cdot 2+89 \\
208 & =89 \cdot 2+30 \\
89 & =30 \cdot 2+29 \\
30 & =29 \cdot 1+1 \\
29 & =1 \cdot 29+0
\end{aligned}
$$

So we get that

$$
\frac{1723}{505}=[3 ; 2,2,2,1,29]
$$

(b) Given real numbers $a_{0}, a_{1}, \ldots, a_{n}$, we defined the numbers p_{k}, q_{k} in the lectures as follows

$$
\begin{aligned}
p_{0} & =1, p_{0}=a_{0} \\
q_{-1} & =0, q_{0}=1
\end{aligned}
$$

and for $1 \leq k \leq n$

$$
p_{k}=a_{k} p_{k-1}+p_{k-2}, q_{k}=a_{k} q_{k-1}+q_{k-2}
$$

(i) Using the definition of p_{k} above we get that for each $1 \leq k \leq n$

$$
\frac{p_{k}}{p_{k-1}}=\frac{a_{k} p_{k-1}+p_{k-2}}{p_{k-1}}=a_{k}+\frac{p_{k-2}}{p_{k-1}}
$$

(2 marks).
(ii) The proof is by induction on k. The base case is $k=1$ which is

$$
\frac{p_{1}}{p_{0}}=\frac{a_{1} a_{0}+1}{a_{0}}=a_{1}+\frac{1}{a_{0}}=\left[a_{1} ; a_{0}\right] .
$$

(2 marks) To complete the induction step we use part (i) and the induction hypothesis to see that

$$
\frac{p_{k+1}}{p_{k}}=a_{k+1}+\frac{p_{k-1}}{p_{k-2}}=a_{k+1}+\frac{1}{\left[a_{k} ; a_{k-1}, \ldots, a_{0}\right]}=\left[a_{k+1} ; a_{k}, \ldots, a_{0}\right]
$$

(3 marks).

3 Question:

(a) Find the continued fraction expansion of $\frac{1+\sqrt{37}}{2}$.[similar to coursework]
(b) You are given that

$$
\sqrt{53}=[7 ; \overline{3,1,1,3,14}] .
$$

Find all solutions in positive integers x, y to the following equation

$$
x^{2}-53 y^{2}=-1
$$

Explain why you have found ALL solutions. [similar to coursework]

Solution:

(a) We run the algorithm from the lectures: Starting with $x_{0}=\frac{1+\sqrt{37}}{2}$, we get

$$
\begin{aligned}
& a_{0}=\left\lfloor x_{0}\right\rfloor=3, x_{1}=\frac{1}{x_{0}-a_{0}}=\frac{5+\sqrt{37}}{6} \\
& a_{1}=\left\lfloor x_{1}\right\rfloor=1, x_{2}=\frac{1}{x_{1}-a_{1}}=\frac{1+\sqrt{37}}{6} \\
& a_{2}=\left\lfloor x_{2}\right\rfloor=1, x_{3}=\frac{1}{x_{2}-a_{2}}=\frac{5+\sqrt{37}}{2} \\
& a_{3}=\left\lfloor x_{3}\right\rfloor=5, x_{4}=\frac{1}{x_{3}-a_{3}}=\frac{5+\sqrt{37}}{6}=x_{1} .
\end{aligned}
$$

So the continued fraction for $\frac{1+\sqrt{37}}{2}$ is $[3 ; \overline{1,1,5}]$.
Remark: 5 points for correct algorithm, 1 points for reading off the continued fraction expansion correctly.
(b) In the lectures we saw that the the positive integer solutions (x, y) to the equation $x^{2}-d y^{2}= \pm 1$ are $\left(p_{\ell h-1}, q_{\ell h-1}\right), \ell=1,2,3, \ldots$ where h is the period of the continued fraction of \sqrt{d} where p_{n} / q_{n} is the nth convergent of the continued fraction of \sqrt{d}. Since the period is 5 the smallest solution to the Pell's equations will be (p_{4}, q_{4}) (1 mark). Computing we get that

$$
\begin{aligned}
& c_{0}=[7]=\frac{7}{1} \\
& c_{1}=[7 ; 3]=\frac{22}{3} \\
& c_{2}=\frac{p_{3}}{q_{3}}=\frac{1 \cdot 22+7}{1 \cdot 3+1}=\frac{29}{4} \\
& c_{3}=\frac{p_{3}}{q_{3}}=\frac{1 \cdot 29+22}{1 \cdot 4+3}=\frac{51}{7} \\
& c_{4}=\frac{p_{4}}{q_{4}}=\frac{3 \cdot 51+29}{3 \cdot 7+4}=\frac{182}{25}
\end{aligned}
$$

So the fundamental solution is $(182,25)$ (3 marks).

In the lectures we proved that if $\left(x_{1}, y_{1}\right)$ is the fundamental solution of $x^{2}-d y^{2}= \pm 1$ then all the positive integer solutions to $x^{2}-d y^{2}= \pm 1$ are the integers $x_{k}, y_{k}, k=$ $1,2, \ldots$ defined by

$$
x_{k}+y_{k} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{k}
$$

We also proved that if h is the period of the continued fraction then

$$
x_{k}^{2}-d y_{k}^{2}=(-1)^{h k}
$$

so since h is odd the solutions to $x^{2}-53 y^{2}=-1$ are given by x_{k}, y_{k} defined by the formula

$$
x_{k}+y_{k} \sqrt{53}=(182+25 \sqrt{53})^{k} \quad k \text { is odd }
$$

(3 marks). As we proved in the lectures all the solutions to both Pell's equations are generated by the fundamental solution in this way so only the numbers $x_{2 k+1}, y_{2 k+1}$, $k=0,1, \ldots$ are solutions to the negative Pell equation. (2 marks).

4 Question:

(a) Given a positive integer n define the order of $x(\bmod n)$. State Euler's Theorem. [bookwork]
(b) Find the last two digits of 3^{40845}. Explain your working. [similar to examples/coursework]
(c) Let m and n be positive integers. Prove that $\phi(m) \phi(n) \leq \phi(m n)$. [unseen]
(d) Find a primitive root (mod 17). Explain why the integer you gave has the desired properties. [similar to examples/coursework]

Solution:

(a) Let n be a positive integer. The order of $x(\bmod n)$ is the smallest positive integer d such that $x^{d} \equiv 1(\bmod n) .(2 \operatorname{marks})$
(Euler's Theorem) Let n be a positive integer, and x an integer such that $\operatorname{gcd}(x, n)=1$. Then $x^{\phi(n)} \equiv 1(\bmod n) .(2 \operatorname{marks})$
(b) We need to compute $3^{40845}(\bmod 100)(1$ mark $)$. Since $\phi(100)=\phi\left(2^{2}\right) \cdot \phi\left(5^{2}\right)=(4-$ $2)(25-5)=40(2$ marks $)$ we get by Euler's theorem

$$
3^{40} \equiv 1(\bmod 100)
$$

Also $40845=40 \cdot 1021+5$ so

$$
3^{40845}=\left(3^{40}\right)^{1021} \cdot 3^{5} \equiv 1 \cdot 3^{5}(\bmod 100)
$$

Since $3^{5}=243$ we get that the last two digits of 3^{40845} are 4,3 (2 marks).
(c) In the lectures we proved (2 marks)

$$
\phi(m)=m \prod_{p \mid m}\left(1-\frac{1}{p}\right)
$$

Observe that

$$
\prod_{p \mid m}\left(1-\frac{1}{p}\right) \prod_{p \mid n}\left(1-\frac{1}{p}\right)=\prod_{p \mid m n}\left(1-\frac{1}{p}\right) \prod_{p \mid \operatorname{gcd}(m, n)}\left(1-\frac{1}{p}\right)
$$

(2 marks) Since for each $p, 1-1 / p \leq 1$ it follows that

$$
\prod_{p \mid m}\left(1-\frac{1}{p}\right) \prod_{p \mid n}\left(1-\frac{1}{p}\right) \leq \prod_{p \mid m n}\left(1-\frac{1}{p}\right)
$$

Hence

$$
\phi(m) \phi(n) \leq \phi(m n)
$$

(1 mark)
(d) Using the primitive root test, to determine if $a(\bmod p)$ is a primitive root we must check if $a^{(p-1) / d} \equiv 1(\bmod p)$ for some (proper) divisor $d \mid p-1(2$ marks for the explanation). We will check if 2 is a primitive root. Since $17-1=16$ has divisors $2,4,8$ we need to check $2^{2}, 2^{4}, 2^{8}$ modulo 17 .

$$
2^{4} \equiv 16 \quad(\bmod 17)
$$

so 2 is not a primitive root since $2^{8} \equiv 1 \quad(\bmod 17)$. Next try 3 ,

$$
3^{4}=81 \equiv-4(17)
$$

So

$$
3^{8} \equiv 16(17)
$$

Hence we can conclude by the primitive root test that 3 is a primitive root $(\bmod 17)$ (3 marks for the calculation).

5 Question:

(a) Define the term quadratic non-residue. Define the Legendre symbol $\left(\frac{a}{p}\right)$. State the Law of Quadratic Reciprocity. [bookwork]
(b) Calculate the value of $\left(\frac{99}{101}\right)$. You should clearly state any rules you use for calculating the Legendre symbol. [similar to coursework]
(c) State and prove Euler's Criterion. [bookwork]

Solution:

(a) An integer a is a quadratic non-residue $(\bmod p)$ if there does not exist an integer x with $x^{2} \equiv a(\bmod p) .(2$ marks $)$

Let p be an odd prime. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a, \\ +1 & \text { if } p \nmid a \text { and } a \text { is a quadratic residue }(\bmod p), \\ -1 & \text { if } p \nmid a \text { and } a \text { is a quadratic non-residue }(\bmod p) .\end{cases}
$$

(2 marks)
(Law of Quadratic Reciprocity) For any two distinct odd primes p and q,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}= \begin{cases}-1 & \text { if } p \equiv q \equiv 3(\bmod 4) \\ +1 & \text { otherwise }\end{cases}
$$

(2 marks).
(b) We will now repeatedly use quadratic reciprocity along with other properties of the Legendre symbol.

$$
\begin{aligned}
\left(\frac{99}{101}\right) & =\left(\frac{3}{101}\right)^{2} \cdot\left(\frac{11}{101}\right) \quad \text { Multiplicativity (R1) } \\
& =1 \cdot\left(\frac{101}{11}\right) \quad \text { Quad. Recip. (R4) } \\
& =\left(\frac{2}{11}\right) \text { Periodicity (R0) } \\
& =-1 \quad \text { Rule for } 2(\mathrm{R} 1)
\end{aligned}
$$

(5 marks) in the last step we used that $11 \equiv 3(\bmod 8)$, so $\left(\frac{2}{11}\right)=-1$. (1 mark)
(c) (Euler's Criterion) Statement: Let a be an integer not divisible by p. Then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

(2 marks)
Proof: Let g be a primitive root of p, and $a \equiv g^{i}(\bmod p)(2 \operatorname{marks})$. Consider $z=g^{(p-1) / 2}$. We have $z^{2}=g^{p-1} \equiv 1(\bmod p)$, but z is not congruent to $1(\bmod p)$ since g is a primitive root. Hence, that $g^{(p-1) / 2} \equiv-1(\bmod p)(2$ marks $)$.
Therefore, since $g^{p-1} \equiv 1(\bmod p)$, we have modulo p :

$$
a^{(p-1) / 2} \equiv \begin{cases}1 & \text { if } i \text { is even } \\ g^{(p-1) / 2} & \text { if } i \text { is odd }\end{cases}
$$

(2 marks) Since $\left(\frac{a}{p}\right)=(-1)^{i}$ the result follows.

6 Question:

(a) For each of the equations, determine whether there exists a solution x, y in positive integers. If there is a solution explain why. If no solution exists explain why not. Explicitly state any results from the lectures that you use. [similar to coursework/examples]
(i) $x^{2}+y^{2}=5850$;
(ii) $x^{2}+y^{2}=9450$.
(b) Use Hensel's Lemma to find all integer solutions to the equation [similar to coursework/examples]

$$
x^{2} \equiv 3 \quad\left(\bmod 11^{2}\right)
$$

Explain your working.

Solution:

(a) In the lectures we proved the following result:

The positive integer n is the sum of two squares of integers if and only if the squarefree part of n has no prime factors congruent to $3(\bmod 4)$.
(i) Factor $5850=50 \cdot 117=50 \cdot 13 \cdot 9=2^{2} 5^{2} 3^{2} \cdot 13$ (1 mark). Hence it can be written as a sum of two squares since its square free part is $13 \equiv 1(\bmod 4)(2$ marks).
(ii) Factor $9450=10 \cdot 945=10 \cdot 5 \cdot 189=2 \cdot 5^{2} 3^{2} 7 \cdot 3$ Since the square free part of 9450 is $2 \cdot 7 \cdot 3$ and $3 \equiv 3 \bmod 4$ the result above implies that 9450 cannot be written as a sum of two squares.
(b) First we check if 3 is a quadratic residue $(\bmod 11)$

$$
\left(\frac{3}{11}\right)=-\left(\frac{11}{3}\right)=-\left(\frac{2}{3}\right)=1 .
$$

Since 3 is a quadratic residue and $11 \equiv 3(\bmod 4)$ we know from the lectures that $3^{(11+1) / 4}$ is a solution to

$$
x^{2} \equiv 3 \quad(\bmod 11) .
$$

So $3^{3} \equiv 5(\bmod 11)$. So all the solutions to the above equation are $x=5,6,(\bmod 11)$ (2 marks). (Remark: Computing the solution by inspection is fine here)
We need to compute the lift of this solution to a solution $\left(\bmod 11^{2}\right)$. Since $f^{\prime}(x)=2 x$ we know that $f\left(x_{0}\right) \not \equiv 0\left(\bmod 11^{2}\right)\left(\right.$ with $\left.x_{0}=5,6\right)$ so we can apply Hensel's Lemma. The unique solution corresponding to $x_{0}=5$ is given by the formula

$$
x_{1}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)
$$

where $1 / f^{\prime}\left(x_{0}\right)$ is the inverse of $f^{\prime}\left(x_{0}\right)(\bmod 11)(3$ marks $)$. Note $f^{\prime}\left(x_{0}\right) \equiv 10$ $(\bmod 11)$. By inspection $11 \cdot 1-1 \cdot 10=1$ so $1 / f^{\prime}\left(x_{0}\right)=-1(1$ mark $)$

$$
x_{1}=5-(25-3) \cdot(-1)=27
$$

(1 mark) The other solution is $-27 \equiv 94\left(\bmod 11^{2}\right)(2$ marks $)$.

