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MTH6128 Number Theory

Solutions to 2020 May exam

1 Question:

(a) Define the terms algebraic integer and quadratic integer. State the Fundamental
Theorem of Arithmetic. [bookwork]

(b) Determine which of the following numbers are quadratic integers. Explicitly state any
results from the lectures that you use. [similar to coursework/examples]
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(c) Show that v/3 + v/11 is an algebraic integer. [similar to coursework]

(d) Find all integer solutions to the equation [similar to coursework/examples]

17 =4 (mod 71).

Solution:

(a) We had the following definitions from the lectures

Definition Let a be a complex number. Then:
e « is an algebraic number if there is a non-zero polynomial f(z) with rational
coefficients such that f(«) = 0;
e « is a transcendental number if « is not an algebraic number. Moreover,

e « is an algebraic integer if there is a non-zero monic polynomial f(x) with integer
coefficients such that f(a) = 0. (2 marks)



(¢)

Definition An algebraic number is a quadratic number if its minimal polynomial is
of degree 2.

An algebraic number is a quadratic integer if its minimal polynomial is of degree 2 and
has integer coefficients. (2 marks)

Remark. The extra definitions are included for the convenience of the checker.

(The Fundamental Theorem of Arithmetic) Any natural number greater than 1 can be
written as a product of prime numbers, and this product expression is unique apart
from re-ordering the factors. (2 marks)

We had the following theorems in the lectures:

Theorem: « € C is a quadratic number if and only if & = u + vv/d for some u,v € Q
and 1 # d € Z squarefree.

Theorem: A quadratic number « is a quadratic integer if and only if o = u + vv/d for
some 1 # d € Z squarefree and for u, v satisfying

e ucZandveZ
or
e u—1€Z v—1€Zandd=1(mod4).

So all in all, & € C is a quadratic integer if and only if o = u~+vv/d for some 1 # d € Z
squarefree and for u, v satisfying

e ucZandveZ
or

eu—3€Z v—3€Zandd=1(mod4).

[\

(i) +v/52 %+%\/13. Sointhiscase,u:%,vz%anddzl?). Asu—%,v—% e

4

and d = 13 = 1 (mod 4), we conclude that 2+}1/§ is a quadratic integer (2 marks).

(i) @ — I. So in this case, u = —% ¢ Z and d = 43 # 1(mod4). We conclude that
@ — I'is not a quadratic integer (2 marks).

Remark: The long explanation in (b) is only included for the convenience of the checker.
Students are not required to give this explanation for full marks; it is enough to cite the
relevant results from the lectures. It’s also possible to just find the minimal polynomials
and this would receive full marks.

Let « = v/3+ +/11. Then



o> = 3+V11

(0> =3) = Vi1
(@®* =32 = 11
ot —6a24+9 = 11
ot —6a®2-2 = 0.

(3 marks) Hence « is a root of f(x) = z* — 622 — 2 (1 mark). Since f(x) is a monic
polynomial with integer coefficients, « is an algebraic integer (1 mark).

(d) Apply the extended Euclidean algorithm to get that
71 = 17-4+3

17 = 3-542
3 = 2-1+41

so that

1 = 3-2
3-(17-3-5)=6-3—17
6(71 —17-4)—17=6-71—25-17.

(3 marks). Hence —25-17=1 (mod 71) (1 mark). So that

(1 mark).

2 Question:

(a) Use the Euclidean algorithm to find a continued fraction expansion of [similar

723
505
to coursework/examples]

(b) Let ag,aq,...,a, be positive integers. Let ¢ = pr/qr be the kth convergent of the
continued fraction [ag; a1, ..., ay,]. [similar to coursework/examples]

(i) Prove for each 1 < k < n that

Pk —ap + pk—1.
Pr—1 Pr—2

(ii) Use part (i) to prove for each 1 < k < n that

Pk

Dbt = [ak;ak—h"'aaluao]'



Solution:
(a) We apply the Euclidean algorithm and get

1723 = 505-3 4 208

505 = 208-2489
208 = 89-2+430
89 = 30-2+29
30 = 29-1+1

29 = 1-2940

So we get that

1723
— =13;2,2,2,1,29
505 [ g Ay Ly Ly Ly ]
(b) Given real numbers ag,ay,...,a,, we defined the numbers pg, g in the lectures as
follows
po = l,po=ao
qg-1 = 07 qo = 1

and for 1 <k <n
Pk = OkPk—1 + Pk—2,qk = Qkqr—1 + qr—2.

(i) Using the definition of p; above we get that for each 1 <k <n

Dk QgDk—1 + Pk—2 Di—2
= = ap + ——=2.
Pk—1 Pk—1 Dk—1
(2 marks).
(ii) The proof is by induction on k. The base case is kK = 1 which is
p1_ aiap+1 1
—=———=a1+ — = [a1;a0].
Po ap ap

(2 marks) To complete the induction step we use part (i) and the induction
hypothesis to see that

Ph+1 Pr—1 1
= Gk+1 + = a1+ = ags1; Qs - .., a0
Pk T pra T ok ak—, -+ al (ks ]
(3 marks).
3 Question:
1+ /37
(a) Find the continued fraction expansion of %.[similar to coursework]



(b) You are given that
V53 = [7;3,1,1, 3, 14].

Find all solutions in positive integers x,y to the following equation
2 —53y% = —1.

Explain why you have found ALL solutions. [similar to coursework|

Solution:
(a) We run the algorithm from the lectures: Starting with xo = 1+§/§, we get
1 5+ V37
ao = LﬁOJ = 3’ {L‘l = =
o — ag 6
o1 = [21] =1, s = T 1+V37
1=mf=5Lzm=-= 6
(23] = 1 1 5+ V37
as? = | = Tra = =
2 2 y 43 T — ao )
1 5+ V37
as = L(E3J :5, Ty = = = I.
T3 — as 6

So the continued fraction for H‘ﬁ is [3;1,1,5].

Remark: 5 points for correct algorithm, 1 points for reading off the continued fraction
expansion correctly.

(b) In the lectures we saw that the the positive integer solutions (x,y) to the equation
x? — dy? = £1 are (pon_1,qen—1), £ = 1,2,3,... where h is the period of the continued
fraction of v/d where p,, /qn is the nth convergent of the continued fraction of Vd. Since
the period is 5 the smallest solution to the Pell’s equations will be (p4,q4) (1 mark).
Computing we get that

22
ps  1:22+47 29

2T LT 1341 4
ps 1-29422 51
G T e 14+3 7
ps 3-514+29 182
cy = — = =

@ 3-7+4 25

So the fundamental solution is (182,25) (3 marks).



In the lectures we proved that if (x1,%) is the fundamental solution of 2 — dy? = +1
then all the positive integer solutions to 2% — dy? = +1 are the integers xy, yi, k =
1,2, ... defined by

), + ypVd = (21 + 1 Vd)*.

We also proved that if A is the period of the continued fraction then
xp — dyp = (-1)".

so since h is odd the solutions to 22 — 53y? = —1 are given by x,y; defined by the
formula

), + ypV53 = (182 + 25v53)F Kk is odd

(3 marks). As we proved in the lectures all the solutions to both Pell’s equations are
generated by the fundamental solution in this way so only the numbers xog 1, Yort1,
k=0,1,... are solutions to the negative Pell equation. (2 marks).

4 Question:

(a) Given a positive integer n define the order of x (mod n). State Euler’s Theorem.
[bookwork]

(b) Find the last two digits of 349845, Explain your working. [similar to examples/coursework]
(c) Let m and n be positive integers. Prove that ¢(m)p(n) < ¢(mn). [unseen]

(d) Find a primitive root (mod 17). Explain why the integer you gave has the desired
properties. [similar to examples/coursework]

Solution:

(a) Let n be a positive integer. The order of x (mod n) is the smallest positive integer d
such that 2% = 1 (mod n). (2 marks)

(Euler’s Theorem) Let n be a positive integer, and x an integer such that ged(x,n) = 1.
Then z¢™ =1 (mod n). (2 marks)

(b) We need to compute 34%¥4%(mod 100) (1 mark). Since #(100) = ¢(22) - ¢(5%) = (4 —
2)(25 — 5) = 40 (2 marks) we get by Euler’s theorem

3% = 1(mod 100).
Also 40845 = 40 - 1021 + 5 so
340845 _ (340)1021 . 35 =1. 35(mod 100)

Since 3% = 243 we get that the last two digits of 34845 are 4,3 (2 marks).



()

In the lectures we proved (2 marks)
1
p(m)=m H 1-— )
plm
Observe that
1 1 1 1
1- = 1--) = 1- = 1->).
(-)I0-5)-100-5) I (=)
plm pln plmn plged(m,n)
(2 marks) Since for each p, 1 —1/p <1 it follows that
1 1 1
1= 1-2) < 1-=
H( p>H( p)_ H( p>
plm pln plmn

Hence
¢(m)¢(n) < ¢(mn).
(1 mark)

Using the primitive root test, to determine if @ (mod p) is a primitive root we must
check if a®~V/4 = 1 (mod p) for some (proper) divisor d|p — 1 (2 marks for the
explanation). We will check if 2 is a primitive root. Since 17 — 1 = 16 has divisors
2,4, 8 we need to check 22,2% 28 modulo 17.

2Y =16 (mod 17)
so 2 is not a primitive root since 28 =1 (mod 17). Next try 3,
31 =81 = —4(17)

So
3% = 16(17).

Hence we can conclude by the primitive root test that 3 is a primitive root  (mod 17)
(3 marks for the calculation).

5 Question:

(a)

(b)

()

Define the term quadratic non-residue. Define the Legendre symbol (a) . State
p
the Law of Quadratic Reciprocity. [bookwork]

99
Calculate the value of (101> . You should clearly state any rules you use for calculating

the Legendre symbol. [similar to coursework]

State and prove Euler’s Criterion. [bookwork]



Solution:
a) An integer a is a quadratic non-residue (mod p) i ere does not exist an integer x
An int i drati d d if th d t ist int

with 22 = a (mod p). (2 marks)

a

Let p be an odd prime. The Legendre symbol <> is defined by
p

a 0 ifp]a,
<> =< +1 if p fa and a is a quadratic residue (mod p),

—1 if p fa and a is a quadratic non-residue (mod p).
(2 marks)

(Law of Quadratic Reciprocity) For any two distinct odd primes p and g,
P\(4) _ (_1)(p—1)(q—1)/4 _J -1 ifp=qg=3(mod4),
q) \p +1 otherwise.

(2 marks).

(b) We will now repeatedly use quadratic reciprocity along with other properties of the
Legendre symbol.

99 3 ? 11 . . « .
<101> = (101) (101> Multiplicativity (R1)
101
= 1 (101> Quad. Recip. (R4)

11
= -1 Rule for 2 (R1)

2
= ()Periodicity (RO)

2

11) = —1. (1 mark)

(5 marks) in the last step we used that 11 = 3(mod8), so (

(c¢) (Euler’s Criterion) Statement: Let a be an integer not divisible by p. Then
(a> = aP"V/2 (mod p).
p
(2 marks)

Proof: Let g be a primitive root of p, and a = ¢° (mod p) (2 marks). Consider
z = gP=D/2. We have 22 = ¢! = 1 (mod p), but z is not congruent to 1 (mod p)
since ¢ is a primitive root. Hence, that ¢?"~1)/2 = —1 (mod p) (2 marks).

Therefore, since g?~! = 1 (mod p), we have modulo p:

wp-1)/2 _ J 1 if 7 is even,
¢ = {g(p—U/? if 7 is odd.

(2 marks) Since <a> = (—1) the result follows.
p

8



6 Question:

(a) For each of the equations, determine whether there exists a solution x, y in positive inte-
gers. If there is a solution explain why. If no solution exists explain why not. Explicitly
state any results from the lectures that you use. [similar to coursework/examples]

(i) 22+ y? = 5850;
(i) 22 + y? = 9450.
(b) Use Hensel’s Lemma to find all integer solutions to the equation [similar to course-

work /examples]
z2=3 (mod 11?%).

Explain your working.

Solution:

(a) In the lectures we proved the following result:
The positive integer n is the sum of two squares of integers if and only if the squarefree
part of n has no prime factors congruent to 3 (mod 4).

(i) Factor 5850 = 50-117 = 50-13-9 = 225232.13 (1 mark). Hence it can be written
as a sum of two squares since its square free part is 13 =1 (mod 4) (2 marks).

(ii) Factor 9450 = 10-945 = 10-5-189 = 2-52327-3 Since the square free part of 9450
is 2-7-3 and 3 = 3 mod 4 the result above implies that 9450 cannot be written
as a sum of two squares.

(b) First we check if 3 is a quadratic residue  (mod 11)

(3

Since 3 is a quadratic residue and 11 = 3 (mod 4) we know from the lectures that
3(1+D/4 s a solution to
22 =3 (mod 11).

So 3% =5 (mod 11). So all the solutions to the above equation are x = 5,6, (mod11)
(2 marks). (Remark: Computing the solution by inspection is fine here)

We need to compute the lift of this solution to a solution  (mod 11%). Since f/(z) = 2z
we know that f(z¢) Z0 (mod 112) (with 29 = 5,6) so we can apply Hensel’s Lemma.
The unique solution corresponding to xg = 5 is given by the formula

x1 =0 — f(x0)/f (x0)

where 1/f’(x¢) is the inverse of f’(z¢) (mod 11) (3 marks). Note f'(z9) = 10
(mod 11). By inspection 11-1—1-10=1so0 1/f () = —1 (1 mark)

21=5—(25—3)-(—1) =27
(1 mark) The other solution is —27 =94 (mod 112) (2 marks).



