
MTH6128 Number Theory

Solutions to 2020 May exam

1 Question:

(a) Define the terms algebraic integer and quadratic integer. State the Fundamental
Theorem of Arithmetic. [bookwork]

(b) Determine which of the following numbers are quadratic integers. Explicitly state any
results from the lectures that you use. [similar to coursework/examples]

(i)
2 +
√

52

4
;

(ii)

√
43

2
− 7

2
.

(c) Show that
√

3 +
√

11 is an algebraic integer. [similar to coursework]

(d) Find all integer solutions to the equation [similar to coursework/examples]

17x ≡ 4 (mod 71).

Solution:

(a) We had the following definitions from the lectures

Definition Let α be a complex number. Then:

• α is an algebraic number if there is a non-zero polynomial f(x) with rational
coefficients such that f(α) = 0;

• α is a transcendental number if α is not an algebraic number. Moreover,

• α is an algebraic integer if there is a non-zero monic polynomial f(x) with integer
coefficients such that f(α) = 0. (2 marks)
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Definition An algebraic number is a quadratic number if its minimal polynomial is
of degree 2.

An algebraic number is a quadratic integer if its minimal polynomial is of degree 2 and
has integer coefficients. (2 marks)

Remark. The extra definitions are included for the convenience of the checker.

(The Fundamental Theorem of Arithmetic) Any natural number greater than 1 can be
written as a product of prime numbers, and this product expression is unique apart
from re-ordering the factors. (2 marks)

(b) We had the following theorems in the lectures:

Theorem: α ∈ C is a quadratic number if and only if α = u + v
√
d for some u, v ∈ Q

and 1 6= d ∈ Z squarefree.

Theorem: A quadratic number α is a quadratic integer if and only if α = u+ v
√
d for

some 1 6= d ∈ Z squarefree and for u, v satisfying

• u ∈ Z and v ∈ Z

or

• u− 1
2 ∈ Z, v − 1

2 ∈ Z and d ≡ 1 (mod 4).

So all in all, α ∈ C is a quadratic integer if and only if α = u+v
√
d for some 1 6= d ∈ Z

squarefree and for u, v satisfying

• u ∈ Z and v ∈ Z

or

• u− 1
2 ∈ Z, v − 1

2 ∈ Z and d ≡ 1 (mod 4).

(i) 2+
√
52

4 = 1
2 + 1

2

√
13. So in this case, u = 1

2 , v = 1
2 and d = 13. As u− 1

2 , v−
1
2 ∈ Z

and d = 13 ≡ 1 (mod 4), we conclude that 2+
√
52

4 is a quadratic integer (2 marks).

(ii)
√
43
2 −

7
2 . So in this case, u = −7

2 /∈ Z and d = 43 6≡ 1(mod4). We conclude that
√
43
2 −

7
2 is not a quadratic integer (2 marks).

Remark: The long explanation in (b) is only included for the convenience of the checker.
Students are not required to give this explanation for full marks; it is enough to cite the
relevant results from the lectures. It’s also possible to just find the minimal polynomials
and this would receive full marks.

(c) Let α =
√

3 +
√

11. Then
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α2 = 3 +
√

11

(α2 − 3) =
√

11

(α2 − 3)2 = 11

α4 − 6α2 + 9 = 11

α4 − 6α2 − 2 = 0.

(3 marks) Hence α is a root of f(x) = x4 − 6x2 − 2 (1 mark). Since f(x) is a monic
polynomial with integer coefficients, α is an algebraic integer (1 mark).

(d) Apply the extended Euclidean algorithm to get that

71 = 17 · 4 + 3

17 = 3 · 5 + 2

3 = 2 · 1 + 1

so that

1 = 3− 2

= 3− (17− 3 · 5) = 6 · 3− 17

= 6(71− 17 · 4)− 17 = 6 · 71− 25 · 17.

(3 marks). Hence −25 · 17 ≡ 1 (mod 71) (1 mark). So that

x ≡ −100 ≡ 42 (mod 71)

(1 mark).

2 Question:

(a) Use the Euclidean algorithm to find a continued fraction expansion of
1723

505
. [similar

to coursework/examples]

(b) Let a0, a1, . . . , an be positive integers. Let ck = pk/qk be the kth convergent of the
continued fraction [a0; a1, . . . , an]. [similar to coursework/examples]

(i) Prove for each 1 ≤ k ≤ n that

pk
pk−1

= ak +
pk−1
pk−2

.

(ii) Use part (i) to prove for each 1 ≤ k ≤ n that

pk
pk−1

= [ak; ak−1, . . . , a1, a0].
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Solution:

(a) We apply the Euclidean algorithm and get

1723 = 505 · 3 + 208

505 = 208 · 2 + 89

208 = 89 · 2 + 30

89 = 30 · 2 + 29

30 = 29 · 1 + 1

29 = 1 · 29 + 0

So we get that
1723

505
= [3; 2, 2, 2, 1, 29]

(b) Given real numbers a0, a1, . . . , an, we defined the numbers pk, qk in the lectures as
follows

p0 = 1, p0 = a0

q−1 = 0, q0 = 1

and for 1 ≤ k ≤ n
pk = akpk−1 + pk−2, qk = akqk−1 + qk−2.

(i) Using the definition of pk above we get that for each 1 ≤ k ≤ n

pk
pk−1

=
akpk−1 + pk−2

pk−1
= ak +

pk−2
pk−1

.

(2 marks).

(ii) The proof is by induction on k. The base case is k = 1 which is

p1
p0

=
a1a0 + 1

a0
= a1 +

1

a0
= [a1; a0].

(2 marks) To complete the induction step we use part (i) and the induction
hypothesis to see that

pk+1

pk
= ak+1 +

pk−1
pk−2

= ak+1 +
1

[ak; ak−1, . . . , a0]
= [ak+1; ak, . . . , a0]

(3 marks).

3 Question:

(a) Find the continued fraction expansion of
1 +
√

37

2
.[similar to coursework]
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(b) You are given that √
53 = [7; 3, 1, 1, 3, 14].

Find all solutions in positive integers x, y to the following equation

x2 − 53y2 = −1.

Explain why you have found ALL solutions. [similar to coursework]

Solution:

(a) We run the algorithm from the lectures: Starting with x0 = 1+
√
37

2 , we get

a0 = bx0c = 3, x1 =
1

x0 − a0
=

5 +
√

37

6

a1 = bx1c = 1, x2 =
1

x1 − a1
=

1 +
√

37

6

a2 = bx2c = 1, x3 =
1

x2 − a2
=

5 +
√

37

2

a3 = bx3c = 5, x4 =
1

x3 − a3
=

5 +
√

37

6
= x1.

So the continued fraction for 1+
√
37

2 is [3; 1, 1, 5].

Remark: 5 points for correct algorithm, 1 points for reading off the continued fraction
expansion correctly.

(b) In the lectures we saw that the the positive integer solutions (x, y) to the equation
x2 − dy2 = ±1 are (p`h−1, q`h−1), ` = 1, 2, 3, . . . where h is the period of the continued
fraction of

√
d where pn/qn is the nth convergent of the continued fraction of

√
d. Since

the period is 5 the smallest solution to the Pell’s equations will be (p4, q4) (1 mark).
Computing we get that

c0 = [7] =
7

1

c1 = [7; 3] =
22

3

c2 =
p3
q3

=
1 · 22 + 7

1 · 3 + 1
=

29

4

c3 =
p3
q3

=
1 · 29 + 22

1 · 4 + 3
=

51

7

c4 =
p4
q4

=
3 · 51 + 29

3 · 7 + 4
=

182

25

So the fundamental solution is (182, 25) (3 marks).
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In the lectures we proved that if (x1, y1) is the fundamental solution of x2 − dy2 = ±1
then all the positive integer solutions to x2 − dy2 = ±1 are the integers xk, yk, k =
1, 2, . . . defined by

xk + yk
√
d = (x1 + y1

√
d)k.

We also proved that if h is the period of the continued fraction then

x2k − dy2k = (−1)hk.

so since h is odd the solutions to x2 − 53y2 = −1 are given by xk, yk defined by the
formula

xk + yk
√

53 = (182 + 25
√

53)k k is odd

(3 marks). As we proved in the lectures all the solutions to both Pell’s equations are
generated by the fundamental solution in this way so only the numbers x2k+1, y2k+1,
k = 0, 1, . . . are solutions to the negative Pell equation. (2 marks).

4 Question:

(a) Given a positive integer n define the order of x (mod n). State Euler’s Theorem.
[bookwork]

(b) Find the last two digits of 340845. Explain your working. [similar to examples/coursework]

(c) Let m and n be positive integers. Prove that φ(m)φ(n) ≤ φ(mn). [unseen]

(d) Find a primitive root (mod 17). Explain why the integer you gave has the desired
properties. [similar to examples/coursework]

Solution:

(a) Let n be a positive integer. The order of x (mod n) is the smallest positive integer d
such that xd ≡ 1 (mod n). (2 marks)

(Euler’s Theorem) Let n be a positive integer, and x an integer such that gcd(x, n) = 1.
Then xφ(n) ≡ 1 (mod n). (2 marks)

(b) We need to compute 340845(mod 100) (1 mark). Since φ(100) = φ(22) · φ(52) = (4 −
2)(25− 5) = 40 (2 marks) we get by Euler’s theorem

340 ≡ 1(mod 100).

Also 40845 = 40 · 1021 + 5 so

340845 = (340)1021 · 35 ≡ 1 · 35(mod 100)

Since 35 = 243 we get that the last two digits of 340845 are 4, 3 (2 marks).
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(c) In the lectures we proved (2 marks)

φ(m) = m
∏
p|m

(
1− 1

p

)
.

Observe that∏
p|m

(
1− 1

p

)∏
p|n

(
1− 1

p

)
=
∏
p|mn

(
1− 1

p

) ∏
p| gcd(m,n)

(
1− 1

p

)
.

(2 marks) Since for each p, 1− 1/p ≤ 1 it follows that∏
p|m

(
1− 1

p

)∏
p|n

(
1− 1

p

)
≤
∏
p|mn

(
1− 1

p

)

Hence
φ(m)φ(n) ≤ φ(mn).

(1 mark)

(d) Using the primitive root test, to determine if a (mod p) is a primitive root we must
check if a(p−1)/d ≡ 1 (mod p) for some (proper) divisor d|p − 1 (2 marks for the
explanation). We will check if 2 is a primitive root. Since 17 − 1 = 16 has divisors
2, 4, 8 we need to check 22, 24, 28 modulo 17.

24 ≡ 16 (mod 17)

so 2 is not a primitive root since 28 ≡ 1 (mod 17). Next try 3,

34 = 81 ≡ −4(17)

So
38 ≡ 16(17).

Hence we can conclude by the primitive root test that 3 is a primitive root (mod 17)
(3 marks for the calculation).

5 Question:

(a) Define the term quadratic non-residue. Define the Legendre symbol

(
a

p

)
. State

the Law of Quadratic Reciprocity. [bookwork]

(b) Calculate the value of

(
99

101

)
. You should clearly state any rules you use for calculating

the Legendre symbol. [similar to coursework]

(c) State and prove Euler’s Criterion. [bookwork]
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Solution:

(a) An integer a is a quadratic non-residue (mod p) if there does not exist an integer x
with x2 ≡ a (mod p). (2 marks)

Let p be an odd prime. The Legendre symbol

(
a

p

)
is defined by

(
a

p

)
=


0 if p | a,
+1 if p 6 | a and a is a quadratic residue (mod p),
−1 if p 6 | a and a is a quadratic non-residue (mod p).

(2 marks)

(Law of Quadratic Reciprocity) For any two distinct odd primes p and q,(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4 =

{
−1 if p ≡ q ≡ 3 (mod 4),
+1 otherwise.

(2 marks).

(b) We will now repeatedly use quadratic reciprocity along with other properties of the
Legendre symbol.(

99

101

)
=

(
3

101

)2

·
(

11

101

)
Multiplicativity (R1)

= 1 ·
(

101

11

)
Quad. Recip. (R4)

=

(
2

11

)
Periodicity (R0)

= −1 Rule for 2 (R1)

(5 marks) in the last step we used that 11 ≡ 3(mod8), so

(
2

11

)
= −1. (1 mark)

(c) (Euler’s Criterion) Statement: Let a be an integer not divisible by p. Then(
a

p

)
≡ a(p−1)/2 (mod p).

(2 marks)

Proof: Let g be a primitive root of p, and a ≡ gi (mod p) (2 marks). Consider
z = g(p−1)/2. We have z2 = gp−1 ≡ 1 (mod p), but z is not congruent to 1 (mod p)
since g is a primitive root. Hence, that g(p−1)/2 ≡ −1 (mod p) (2 marks).

Therefore, since gp−1 ≡ 1 (mod p), we have modulo p:

a(p−1)/2 ≡
{

1 if i is even,
g(p−1)/2 if i is odd.

(2 marks) Since

(
a

p

)
= (−1)i the result follows.
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6 Question:

(a) For each of the equations, determine whether there exists a solution x, y in positive inte-
gers. If there is a solution explain why. If no solution exists explain why not. Explicitly
state any results from the lectures that you use. [similar to coursework/examples]

(i) x2 + y2 = 5850;

(ii) x2 + y2 = 9450.

(b) Use Hensel’s Lemma to find all integer solutions to the equation [similar to course-
work/examples]

x2 ≡ 3 (mod 112).

Explain your working.

Solution:

(a) In the lectures we proved the following result:

The positive integer n is the sum of two squares of integers if and only if the squarefree
part of n has no prime factors congruent to 3 (mod 4).

(i) Factor 5850 = 50 · 117 = 50 · 13 · 9 = 225232 · 13 (1 mark). Hence it can be written
as a sum of two squares since its square free part is 13 ≡ 1 (mod 4) (2 marks).

(ii) Factor 9450 = 10 ·945 = 10 ·5 ·189 = 2 ·52327 ·3 Since the square free part of 9450
is 2 · 7 · 3 and 3 ≡ 3 mod 4 the result above implies that 9450 cannot be written
as a sum of two squares.

(b) First we check if 3 is a quadratic residue (mod 11)(
3

11

)
= −

(
11

3

)
= −

(
2

3

)
= 1.

Since 3 is a quadratic residue and 11 ≡ 3 (mod 4) we know from the lectures that
3(11+1)/4 is a solution to

x2 ≡ 3 (mod 11).

So 33 ≡ 5 (mod 11). So all the solutions to the above equation are x = 5, 6, (mod11)
(2 marks). (Remark: Computing the solution by inspection is fine here)

We need to compute the lift of this solution to a solution (mod 112). Since f ′(x) = 2x
we know that f(x0) 6≡ 0 (mod 112) (with x0 = 5, 6) so we can apply Hensel’s Lemma.
The unique solution corresponding to x0 = 5 is given by the formula

x1 = x0 − f(x0)/f
′(x0)

where 1/f ′(x0) is the inverse of f ′(x0) (mod 11) (3 marks). Note f ′(x0) ≡ 10
(mod 11). By inspection 11 · 1− 1 · 10 = 1 so 1/f ′(x0) = −1 (1 mark)

x1 = 5− (25− 3) · (−1) = 27

(1 mark) The other solution is −27 ≡ 94 (mod 112) (2 marks).
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