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MTHG6128 Number Theory

Solutions to exam

1 (a) Define the terms algebraic number and minimal polynomial. State
the Chinese Remainder Theorem. [bookwork]

(b) Give an example of an algebraic integer, which is not an integer. Explain
why the number you gave has the desired properties. [similar to examples|

(¢) Find all integer solutions to the system of congruences [similar to course-
work /examples]

Il
N

(mod 7)
(mod 30).

T
T

(d) Determine the minimal polynomial of 4 — g. Explain why the polynomial
you gave has the desired properties. [similar to coursework/examples]
Solution:

(a) (i) a € C is an algebraic number if there exists a non-zero polynomial
f(z) with rational coefficients such that f(a) = 0. (2 marks)

(ii) Let o be an algebraic number. The minimal polynomial of « is the
non-zero, monic polynomial f(z) of smallest possible degree with ra-
tional coefficients such that f(a) = 0. (2 marks)

(iii) The Chinese Remainder Theorem Let m and n be coprime nat-
ural numbers, and let a and b be arbitrary integers. Then there is a
solution to the simultaneous congruences

r = a(modm),

z = b(modn).

Moreover, the solution is unique modulo mn; that is, if z; and x5 are
two solutions, then z; = 25 (mod mn). (2 marks)
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(b)

()

(d)

An example is v/2, which is a root of the monic polynomial f(x) = 22 — 2,
which has integer coefficients (2 marks). Note v/2 is irrational so it’s not
an integer (1 mark)

Using the Euclidean algorithm we can find multiplicative inverses for 7
(mod 30) and 30 (mod 7) as follows

30 =7-4+42
7T =2-3+1.

So rewriting these equations we get that

so that

7-13 = 1mod 30
30-(=3)=1mod7

(2 marks for the calculation, full marks for guessing the solution with jus-
tification).

Hence,

z = 1(30)(—3) + 2(13)(7) = 92

is the unique solution  (mod 210) (3 marks). We can write all solutions

as
92 4+ 210n nezs

or equivalently [92]519 (1 mark).

Let o = @ — %. Consider

fo= (o= (7 -3)) (o (7 -3))



(2 marks) Clearly f(«) = 0 and f is a monic polynomial (1 mark). We also
know that a cannot be the root of a degree one polynomial with rational
coefficients since it is irrational, so the degree of f is minimal (2 marks).

2 Question:
(a) Find the value of the continued fraction
[4;1,6].

Your answer should be a number of the form u + vv/d, where u,v € Q,
d € N. [similar to coursework/examples]

(b) Let z be an irrational number and n be a positive integer. Let ¢, = p,/qn
be the nth convergent of the continued fraction of x. [unseen]

(i) Prove that
1

qngn+1

Pn+1 Pn
Qn+1 qn

Pn+t1 Pn
x — ——.
dn
State precisely all results from the lectures you use in the proof.

. 1 1 1
i1) Prove that < =5 + =—.
( ) qndn+1 2¢2 + 2q721+1

+ |z

Gn+1

(iii) Use parts (i) and (ii) to prove

’x—& <L ‘x—p”“ «
Gl 2, i1l 2050
Solution:
(a) First we find '
u:[1;6]:1+6+%.
This implies that
6u® — 6u—1=0.
(2 marks) This equation has solutions
3+V15
6
since u > 0 we know that we should take the + solution (1 mark).
We now find
— 1 6
[4:1,6] = [4;u] :4+E:4+m:1+\/1_5'
(2 marks)



(b) (i) In the lectures we proved that

(="

Cnt1 — Cp =
Andn+1
so that
pn+1 . ]ﬁ _ 1
qn+1 dn Gndn+1

(2 mark) Also we proved that the even indexed convergents are an
increasing sequence which converges to x, the odd indexed convergents
are a decreasing sequence which converges to x and each odd indexed
convergent is greater than each even convergent. (1 mark)

So if n is even

|ehi1 —Cnl =1 —Cn =Cp1 — T+ 2 —Cy = T — Cppa| + |2 — ¢
(1 mark). Similarly, if n is odd

|Chi1 —Cnl =Cn— o1 = — T+ — Cpy1 = | — Cppa| + |2 — ¢
(1 mark). Combining everything we get

1

qndn+1

Pn+1 Pn
Qn+1 Qn

‘ Prn+1
= |T —

+’m——.

Gn+1

(ii) Since for any positive real numbers a,b with a # b, (a — b)? > 0 it
follows that 2ab < a? + b so ab < 3(a* + b%) (1 mark), note that
Gn 7 Qni1 since the sequence gy strictly increases with & (1 mark)

(iii) For sake of contradiction suppose that

n 1 n 1
e A [y e

g 243 Gni1 22,

(1 mark) By (i) and (é¢) this implies that

1 . 1 <| 4] < 1 1 1
—+—<l|x—0c, T — Cpr1| < — 4+ ——
q? 26]721+1 " nGns1 242 2q,%+1

which is a contradiction. (2 marks)

3 Question:



(a) Given that
V19 = [4;2,1,3,1,2,8],

find the fundamental solution to
r? — 19y = 1.

Use your answer to write down all positive integer solutions to the equation
22 — 19y* = 1. Explain why you have found ALL solutions. [Similar to
coursework /examples]

(b) Given that 252 = —1 (mod 313) use Hermite’s algorithm to find integers
x,y such that
2?4y = 313.

[Similar to coursework/examples|

Solution:

(a) In the lectures we saw that the the positive integer solutions (z,y) to the
equation x? — dy? = +1 are (pen_1,qen-1), £ = 1,2,3,... where h is the
period of v/d where p, /qn is the nth convergent of the continued fraction of
V/d. Since the period is 6 the smallest solution will be (ps, q5). Computing

we get that
4
9
= [4;2]25
Cp = — = = —

¢ 1-24+41 3
ps  3-13+9 48

@ T 5T 3312 11

e 1-48413 61
“ T LT 11113 14
) ps 2-61448 170
T

g1 2-144+11 39
So the fundamental solution is (170, 39).

In the lectures we proved that if (z1,y;) is the fundamental solutions of
22 — dy? = %1 then all the positive integer solutions to 2% — dy? = £1 are
the integers xx, yr, k = 1,2, ... defined by

T+ yeVd = (z1 + y1Vd)".
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We also proved that if A is the period of the continued fraction then

so since h is even

So the solutions to 22 — 19y? = 1 are given by xy,, yx defined by the formula
zn 4+ V19 = (170 + 39V19)F  k=1,2,3,4,...

We proved in the lectures that the fundamental solution generates all the
solutions in this way.

Remark The computation of the fundamental solution is worth (3 marks).
Writing down all the solutions to both equations 22 — 19y* = 1 is worth (1
mark) and (2 marks) for explaining why each k corresponds to a solution.
Explaining why these are all the solutions is worth (2 marks).

(b) We run Hermite’s algorithm from the lectures. First run the Euclidean
algorithm on 313 and 25

313 = 25-12+13
25 = 13-1+12
13 = 12-1+41
12 = 1-1240
SO o5
313

Applying the algorithm we compute convergents until the denominator is
larger than /313

= [0:12,1,1,12]

COII
1
T 1
1
“ = 13
2
@ = 55

since 25 > /313 we stop. The algorithm now outputs

r=q =13 y="(q2-25—313-py) = (13-25—-313-1) =12
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SO
2% +y* = 313.

Remark The computation of the continued fraction is worth (3 marks).
Correctly using the algorithm is worth (1 mark) and the explanation is
worth (2 marks). Guessing the answer is worth (0 marks). (Note there is a
slightly more efficient algorithm not covered during the lectures, students
get full marks for using it).

4 Question:

(a) Define Euler’s ¢-function. Define the term primitive root (mod p),
where p is prime. [bookwork]

(b) Find a primitive root (mod 29). [similar to coursework/examples]
(¢) Find the number of primitive roots (mod 29). [similar to coursework /examples]

Solution:

(a) We had the following definitions from the lectures.
(i)

Definition FEuler’s totient function, or Fuler’s ¢-function, is the function
¢ defined on the positive integers by the rule that ¢(n) is the number of
elements [z], in Z, which satisfy ged(x,n) = 1. (2 marks)

(i)

Definition Let p be a prime number. An integer x is said to be a prim-
itive root mod p if z has order p — 1 (mod p). (2 marks)

(b) Using the primitive root test, to determine if @ (mod p) is a primitive
root we must check if a?~9/¢ =1 (mod p) for some d|p — 1 (3 marks for
the explanation). We will check if 3 is a primitive root. Since 29 — 1 = 28
has divisors 2,7 we need to check 3* and 3'* modulo 7.

3'=81=23 (mod 29)
so it remains to check 3. Also, using the above calculation
3% =(23)>=62=7 (mod 29)
Hence 3' = 38319 = 7(—6)9 = 28 (mod 29). Hence 3 is a primitive root
(mod 29) (3 marks for the calculation)
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(c) There are ¢(p — 1) primitive roots  (mod p) (1 mark). So the answer is
»(28) =28(6/7)(1/2) = 12 (2 marks).

5 Question:
(a) Define the term quadratic residue. State Euler’s criterion. [bookwork]

(b) Find all integers between 1 and 53 which are solutions to the following equa-
tions. If no solutions exist explain why. [similar to coursework/examples]

(i) 2> =39 (mod 53)
(ii) 2> = -1 (mod 53)

(c¢) Prove there are infinitely many prime numbers congruent to 1 (mod 4).
[proved in the lectures]

Solution:

(a) ()

Definition An integer a is a quadratic residue (mod p) if there exists an
integer z with 22 = a (mod p)

(i)

Euler’s criterion Let a be an integer not divisible by p. Then

(ﬂ) = aP"Y/2 (mod p).
p

(b) (i) First we check whether 35 is a quadratic residue mod 53 by computing

the Legendre symbol.
l 5 mult
53 53 '

B
(5) -
E) (E) Quad. Recip.

I
AN TN N

5 7
4
= g) <?> Period.
- _1-1



(2 marks). We know that

(5)--

since only 1,4 are quadratic residues  (mod 5) (by direct computa-

4 2\°
tion) (1 mark). Also <?) = <?> = 1. (1 marks) for the computa-

tion with explanations.
Since 35 is a quadratic non-residue  (mod 53) there are no solutions
(2 marks).

(ii) Since 53 =1 (mod 4) we know there will be two solutions (1 mark).
To find the solutions we follow the procedure from the lectures. We
first need to find a quadratic non-residue  (mod 53), we could take
35, but let’s find a number that is more suitable for computations.

Notice
2
. f— _1

since 53 = —3 (mod 8) (1 mark). So that by Euler’s criterion b =
9(p—1)/4

y— (9) =1 (mod p)

p
(explanation not required).

So we have b = 2°%/4 = 213 (1 mark) is a solution we now compute
28 =256 = -9 (mod 53)
and 2° =32 = —21 (mod 53)
213 = 292° = (—9)(—-21) =30 (mod 53)

(2 marks)

The other solution is —30 = 23 (mod 53) (1 mark). The answer is
z = 23, 30.

(c) We argue by contradiction. Suppose that pi,...,p, were all the primes
congruent to 1 (mod 4). Now let

T =2p1ps- - pr, N =a%+1.



Let ¢ be a prime divisor of N. Then ¢ is odd. We have
7? = —1 (mod q),

so —1 is a quadratic residue mod ¢. By R2, ¢ = 1 (mod 4). Hence by
assumption, ¢ must be one of the primes pq,...,p,. But this is a contra-
diction, since N leaves remainder 1 when divided by each of these primes.

6 Question:

(a) State Hensel’s Lemma. [Bookwork]

(b) Find all integer solutions to the following equation
7> —5=0 (mod 19%).
[Similar to coursework/examples]
Solution:

(a) Hensel’s Lemma. Let f(X) € Z[X]. Suppose there exists an integer
xo such that f(xzg) =0 (mod p¢) and f'(x¢) #0 (mod p). Then there
exists an integer ¢ which is unique  (mod p) such that zq+¢p® is a solution
to f(z) =0 (mod p*tt).

(b) First we check if 5 is a quadratic residue  (mod 19) (1 mark)

(5)-()-()-

Since it is a quadratic residue and 19 = 3 (mod 4) we know from the
lectures that 519+1/4 is a solution to
r*=5 (mod 19).

So52=6 (mod 19)so5’>=-2-5=9 (mod 19). So all the solutions to
the above equation are z = 9,10, (mod19) (2 marks). We need to compute
the lift of this solution to a solution  (mod 19?).

Since f'(z) = 2z we know that f(zg) Z 0 (mod 19%) so we can apply
Hensel’s lemma. The unique solution corresponding to xqg = 9 is given by
the formula

xy = x0 — f(20)/f'(0)
where 1/f'(xg) is the inverse of f/(x¢) (mod 19). By inspection 19 -1 —
18- 1=1s01/f'(z9) = —1

21 =9—(81—5)-(~1)=9+76 =85
(3 marks) The other solution is —85 (mod 19?) (1 mark).
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