
MTH6128 Number Theory

Solutions to exam

1 Question:

(a) Define the terms algebraic integer, quadratic integer, and transcen-
dental. [Bookwork]

(b) Determine which of the following are quadratic integers. Explain which
theorems you have used.

(i) 1+
√
49

2
;

(ii)
√
3
2
− 7

2
;

(iii)
√
5
2

+
√
−3
2

;

(iv) 7
2

+
√
65
2

.

[similar to coursework]

(c) Let D be a natural number which is not a square. Using minimal polynomi-

als, show that 1+
√
D

2
is an algebraic integer if and only if D ≡ 1 (mod 4).

[coursework]

Solution:

(a) The definitions are:

• α ∈ C is an algebraic integer if there exists a monic polynomial f(x)
with integer coefficients such that f(α) = 0.

• A quadratic integer is an algebraic integer whose minimal polynomial
has degree 2 (our convention in the lectures is that the minimal poly-
nomial is monic).

• α ∈ C is a transcendental number if α is not an algebraic number.

(b) We had the following propositions in the lectures:

Proposition: α ∈ C is a quadratic number if and only if α = u + v
√
d for

some u, v ∈ Q and 1 6= d ∈ Z squarefree.

Proposition: A quadratic number α is a quadratic integer if and only if
α = u + v

√
d for some 1 6= d ∈ Z squarefree and for u, v satisfying u ∈ Z
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and v ∈ Z or u − 1
2
∈ Z, v − 1

2
∈ Z and d ≡ 1 (mod 4). So all in all,

α ∈ C is a quadratic integer if and only if α = u+ v
√
d for some 1 6= d ∈ Z

squarefree and for u, v satisfying u ∈ Z and v ∈ Z or u− 1
2
∈ Z, v− 1

2
∈ Z

and d ≡ 1 (mod 4).

(i) 1+
√
49

2
= 4. So it’s an integer and not a quadratic integer.

(ii) We have
√
3
2
− 7

2
= u + v

√
d. Here u = −7

2
and v = 1

2
. Since d ≡ 3

(mod 4) and u, v /∈ Z, we know
√
3
2
− 7

2
is not a quadratic integer .

(iii) This is not of the form u + v
√
d so it’s not a quadratic number (and

so isn’t a quadratic integer).

(iv) This is of the form u + v
√
d with u = 7

2
, v = 1

2
and d = 65 ≡ 1

(mod 4). Since u − 1
2
, v − 1

2
∈ Z we can conclude that 7

2
−
√
65
2

is a
quadratic integer.

(c) Consider the polynomial f(x) = x2 − x− D−1
4

. We have

f

(
1 +
√
D

2

)
=

1 + 2
√
D +D

4
− 1 +

√
D

2
−D − 1

4
=
D − 1

4
−D − 1

4
= 0.

This shows that f must be the minimal polynomial of 1+
√
D

2
because if

1+
√
D

2
were the root of a polynomial with degree 1, then it would have to

be a rational number, which it is not.

We know that 1+
√
D

2
is an algebraic integer if and only if all coefficients of f

are integers. This, in turn, happens if and only if D−1
4

is an integer, which
is equivalent to saying that 4 divides D − 1, i.e., D ≡ 1 (mod 4).

2 Question:

(a) What is a periodic continued fraction? Give an example of an irrational
number whose continued fraction expansion is not periodic. [Bookwork]

(b) Use the Euclidean algorithm to find a continued fraction expansion for
241

113
.

[Similar to coursework/examples]

(c) Determine the value of the infinite continued fraction

[1; 2, 1].

Write your answer in the form u+v
√
d, where u, v ∈ Q and d ∈ Z. [Similar

to coursework/examples]
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(d) Find the continued fraction expansion of
√

7. [Similar to coursework/examples]

Solution:

(a) Definition from the notes: The infinite continued fraction

[a0; a1, a2, . . .]

is periodic if there exist integers k, l with k > 0 such that

an+k = an for all n ≥ l.

We proved that a periodic continued fraction is a quadratic number. So
the continued fraction of 21/3 is not periodic. (Students will get full marks
for writing down a correct answer without justification).

(b) Notice

[1; 2] = 1 +
1

2 + 1
[1;2]

Let x = [1; 2] > 0. The above equation implies

2x2 − 2x− 1 = 0⇒ x =
1

2
+

√
3

2
.

(c) Apply the Euclidean algorithm to 241, 113

241 = 2 · 113 + 15

113 = 7 · 15 + 8

15 = 1 · 8 + 7

8 = 1 · 7 + 1

7 = 7 · 1 + 0

So the continued fraction is [2; 7, 1, 1, 7]. Note that [2; 7, 1, 1, 6, 1] is also
correct.

(d) Using the algorithm from the lectures

√
7 = 2 + (

√
7− 2)

1√
7− 2

=

√
7 + 2

3
= 1 +

√
7− 1

3
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3√
7− 1

=

√
7 + 1

2
= 1 +

√
7− 1

2

2√
7− 1

=

√
7 + 1

3
= 1 +

√
7− 2

3
3√

7− 2
=
√

7 + 2 = 4 + (
√

7− 2)

At this point notice that the fractional part in the last step equals the
fractional part in the first step, hence this process will now repeat. This
implies √

7 = [2; 1, 1, 1, 4].

3 Question:

(a) Given that √
29 = [5; 2, 1, 1, 2, 10]

find the fundamental solution to the equation

x2 − 29y2 = ±1.

Use your answer to write down all positive integer solutions to the equation
x2 − 29y2 = ±1. Explain why you have found ALL solutions. [Similar to
coursework]

(b) Given that 372 ≡ −1 (mod 137) find integers x, y such that

x2 + y2 = 137.

[Similar to coursework]

(c) Suppose that n ≡ 3 (mod 4). Show that x2 + y2 = n has no integer
solutions. [Bookwork]

Solution:

(a) From the notes: We define the fundamental solution to be the smallest
solution of x2 − dy2 = ±1 in positive integers.

(b) In the lectures we saw that the the positive integer solutions (x, y) to the
equation x2 − dy2 = ±1 are (p`h−1, q`h−1), ` = 1, 2, 3, . . . where h is the
period of

√
d where pn/qn is the nth convergent of the continued fraction of
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√
d. Since the period is 5 the smallest solution will be (p4, q4). Computing

we get that

C0 = [5] =
5

1

C1 = [5; 2] =
11

2

C2 =
p2
q2

=
1 · 11 + 5

1 · 2 + 1
=

16

3

C3 =
p3
q3

=
1 · 16 + 11

1 · 3 + 2
=

27

5

C4 =
p4
q4

=
2 · 27 + 16

2 · 5 + 3
=

70

13

So the fundamental solution is (70, 13).

In the lectures we proved that if (x1, y1) is the fundamental solutions of
x2 − dy2 = ±1 then all the positive integer solutions to x2 − dy2 = ±1 are
the integers xk, yk, k = 1, 2, . . . defined by

xk + yk
√

29 = (x1 + y1
√
d)k.

So the solutions are given by xk, yk defined by the formula

xk + yk
√

29 = (70 + 13
√

29)k k = 1, 2, 3, 4, . . .

Note that since the period of the continued fraction of
√

29 is odd

x22k+1 − 29y22k+1 = −1

and
x22k − 29y22k = +1

for k = 0, 1, . . . .

(c) We run Hermite’s algorithm from the lectures. Apply the Euclidean algo-
rithm to 137 and 37

137 = 37 · 3 + 26

37 = 26 · 1 + 11

26 = 11 · 2 + 4

11 = 4 · 2 + 3

4 = 3 · 1 + 1

3 = 1 · 3 + 0
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So the continued fraction of 37/137 = [0; 3, 1, 2, 2, 1, 3]. We now compute
convergent Cn = pn/qn until we find m s.t. qm <

√
137 < qm+1. We then

know that q2m + (37 · qm − 137 · pm)2 = 137.

The convergents are:

C0 = 0/1, C1 = 1/3, C2 =
1 · 1 + 0

1 · 3 + 1
= 1/4, C3 =

2 · 1 + 1

2 · 4 + 3
=

3

11
, C4 =

2 · 3 + 1

2 · 11 + 4
= 7/26

and we now stop since 262 > 137. So m = 3 and

37 · q3 − 137 · p3 = 37 · 11− 137 · 3 = −4.

So we conclude
42 + 112 = 137.

(Note: Finding the correct answer by brute force/guessing receives 2 points).

(d) Note that x2 ≡ 0, 1 (mod 4) and y2 ≡ 0, 1 (mod 4) so

x2 + y2 ≡ 0, 1, 2 (mod 4)

Hence if n ≡ 3 (mod 4) then no solution exists.

Alternatively, suppose n = f 2(x21 + y21) with gcd(x1, y1) = 1 if n ≡ 3
(mod 4) then f 2 ≡ 1 (mod 4) so one of n’s prime divisors p must be
equivalent to 3 mod 4 and also divide x21 + y21. Also either x1 or y1 is
co-prime to p (say x1 is co-prime). So that

(y1x1)
2 ≡ −1 (mod p)

where x1x1 ≡ 1 (mod p), but this is impossible, since −1 a quadratic
non-residue (mod p).

4 Question:

(a) Given a positive integer n define the order of x (mod n). Define the
term primitive root (mod p). [Bookwork]

(b) Find a primitive root (mod 13). How many primitive roots (mod 13)
are there? [Similar examples seen]

(c) Does there exist an integer n such that n4 6≡ 1 (mod 17) and n5 ≡ 1
(mod 17) ? Justify your answer by stating explicitly which theorems you
use in the proof. [Unseen, similar to questions in previous exams]
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(d) Compute ϕ(280). (Hint: 280 = 23 · 5 · 7.) [Similar examples seen]

(e) Show that ϕ(n) is even for n > 2. [Coursework]

Solution:

(a) From the notes

(i) Let n be a positive integer. If there exists a positive integer d such
that xd ≡ 1 (mod n), then the order of x (mod n) is the smallest
positive integer d such that xd ≡ 1 (mod n).

(ii) Let p be a prime number. An integer x is said to be a primitive root
mod p if x has order p− 1 (mod p).

(b) By direct computation one can see that the order of each 2, 6, 7, 11 is 12.
To compute the order of 2, first note that the order of 2 divides 12. We
need to check if any of 22, 23, 24, 26 is 1 (mod 13). We get that

22 ≡ 4 (mod 13), 23 ≡ 8 (mod 13), 24 ≡ 3 (mod 13), 26 ≡ 12 (mod 13).

Since none of these is 1 (mod 13) 2 has order 12. There are ϕ(13−1) = 4
primitive roots.

(c) In the lectures we proved: For an integer x, there exists a positive integer
d such that xd ≡ 1 (mod n) if and only if gcd(x, n) = 1. If so, then the
order of x divides φ(n).

Hence, the order of n must divide ϕ(17) = 16 so its order must be one
of 1, 2, 4, 8, 16. If its order is either 1, 2, 4 then n4 ≡ 1 (mod 17), the
remaining options are 8, 16, but in this case n5 6≡ 1 (mod 17). So no such
integer exists.

(d) ϕ(280) = ϕ(8)ϕ(5)ϕ(7) = 4 · 4 · 6 = 96.

(e) We saw that ϕ(n) =
∏

pa||n (pa − pa−1), where the notation pa||n means

that pa|n and pa+1 does not divide n. Notice that if p > 2 then pa − pa−1
is even so if n 6= 2b then ϕ(n) is even. If n = 2b and b = 0 then ϕ(n) = 1 if
b 6= 0 then ϕ(n) = 2b − 2b−1 = 2b−1 which is even unless b = 1.

5 Question:

(a) Define the term quadratic residue. Define the Legendre symbol

(
a

p

)
.

State the Law of Quadratic Reciprocity. [Bookwork]
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(b) Both 227 and 137 are primes. Compute

(
137

227

)
. You should clearly state

any rules you use for calculating the Legendre symbol. [Similar to course-
work/examples]

(c) Let p be an odd prime. Suppose that p+ 2 is also prime. Show that p is a
quadratic residue (mod (p+ 2)) if and only if

p ≡ ±1 (mod 8).

[Unseen]

Solution

(a) From the coursenotes: An integer a is a quadratic residue (mod p) if there
exists an integer x with x2 ≡ a (mod p).

The Legendre symbol

(
a

p

)
is defined by

(
a

p

)
=

 0 if p | a,
+1 if p 6 | a and a is a quadratic residue (mod p),
−1 if p 6 | a and a is a quadratic non-residue (mod p)

Quadratic reciprocity is: For any two distinct odd primes p and q,(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4

(b) We will now repeatedly use quadratic reciprocity along with other proper-
ties of the Legendre symbol.(

137

227

)
=

(
227

137

)
Quad. Recip.

=

(
−47

137

)
Periodicity

=

(
−1

137

)(
47

137

)
Multiplicativity

= 1 ·
(

137

47

)
Quad. Recip.

=

(
−4

47

)
Periodicity

=

(
−1

47

)
·
(

2

47

)2

Mult.

= −1 · 1 = −1.
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(c) Observe (
p

p+ 2

)
=

(
p+ 2

p

)
since either p or p+ 2 must be ≡ 1 (mod 4).

Also (
p+ 2

p

)
=

(
2

p

)
= 1

where the last equality holds if and only if p ≡ ±1 (mod 8).
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