MTHG6128 Number Theory

Solutions to exam

1 Question:

(a) Define the terms algebraic integer, quadratic integer, and transcen-
dental. [Bookwork]

(b) Determine which of the following are quadratic integers. Explain which
theorems you have used.

[similar to coursework]

(¢) Let D be a natural number which is not a square. Using minimal polynomi-

1+vD
t =5

als, show tha is an algebraic integer if and only if D =1 (mod 4).

[coursework]

Solution:
(a) The definitions are:
e o € C is an algebraic integer if there exists a monic polynomial f(x)

with integer coefficients such that f(a) = 0.

e A quadratic integer is an algebraic integer whose minimal polynomial
has degree 2 (our convention in the lectures is that the minimal poly-
nomial is monic).

e o € C is a transcendental number if « is not an algebraic number.

(b) We had the following propositions in the lectures:

Proposition: a € C is a quadratic number if and only if o = u + vV/d for
some u,v € Q and 1 # d € Z squarefree.

Proposition: A quadratic number « is a quadratic integer if and only if
o = u+ vVd for some 1 # d € Z squarefree and for u, v satisfying u € Z
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andv € Zoru—3% €Z v—3 € Zand d = 1(mod4). So all in all,

o € C is a quadratic integer if and only if & = u+ vv/d for some 1 £ d € Z
squarefree and for u, v satisfying u € Z and v € Z or u — % €, v— % €7
and d = 1 (mod4).

(i) %E = 4. So it’s an integer and not a quadratic integer.

(ii) We have ¥2 — I — 4 + vv/d. Here u = —1 and v = 3. Since d = 3

2 2 2
(mod 4) and u,v ¢ Z, we know ‘/75 — 1 is not a quadratic integer .

(iii) This is not of the form u + vv/d so it’s not a quadratic number (and
so isn’t a quadratic integer).

(iv) This is of the form u + vvd with u = ILbv=1andd=065=1

(mod 4). Since u — 3,v — 3 € Z we can conclude that I — @ is a
quadratic integer.
(¢) Consider the polynomial f(z) = 2? — 2 — 2. We have
0.

f 1+vD\ 1+2VD+D 1+vD D-1 D-1 D-1
2 B 4 2 4 4 4

This shows that f must be the minimal polynomial of 1%5 because if
%ﬁ were the root of a polynomial with degree 1, then it would have to

be a rational number, which it is not.

We know that %ﬁ is an algebraic integer if and only if all coefficients of f
are integers. This, in turn, happens if and only if % is an integer, which
is equivalent to saying that 4 divides D — 1, i.e., D = 1 (mod 4).

2 Question:

(a) What is a periodic continued fraction? Give an example of an irrational
number whose continued fraction expansion is not periodic. [Bookwork]

241
(b) Use the Euclidean algorithm to find a continued fraction expansion for 13

[Similar to coursework /examples|
(c¢) Determine the value of the infinite continued fraction
1:3,1]

Write your answer in the form u+vv/d, where u,v € Q and d € Z. [Similar
to coursework /examples|



(d) Find the continued fraction expansion of v/7. [Similar to coursework /examples]

Solution:

(a) Definition from the notes: The infinite continued fraction

lag; a, az, .. .|
is periodic if there exist integers k, [ with k > 0 such that

Qpar = ay for all n > 1.

We proved that a periodic continued fraction is a quadratic number. So
the continued fraction of 2!/3 is not periodic. (Students will get full marks
for writing down a correct answer without justification).

(b) Notice
I 1
;2] =1+ T
2+ 9]

Let x = [1;2] > 0. The above equation implies

1
2x2—2w—1:0:>x:—+£.
2 2
C pply the Euclidean algorithm to ,
Apply the Euclid lgorith 241,113
241 2-113+15
113 = 7-15+8
15 = 1-847
8 1-74+1
7 7-140

So the continued fraction is [2;7,1,1,7]. Note that [2;7,1,1,6,1] is also
correct.

(d) Using the algorithm from the lectures

VT = 2+ (V7-2)

1 742 -1
Vi+2 VT

VT =2 3 3




3 V7i+1 o VT-1
VT—1 2 2

2 Vi+1l VT2
VT—1 3 3

= VT42=4+(T7-2
r—2 ( )
At this point notice that the fractional part in the last step equals the

fractional part in the first step, hence this process will now repeat. This
implies

V7 =1[21,1,1,4].
3 Question:

(a) Given that
V29 = [5;2,1, 1,2, 10]

find the fundamental solution to the equation
2 — 29y = +1.

Use your answer to write down all positive integer solutions to the equation
x? — 29y* = +1. Explain why you have found ALL solutions. [Similar to
coursework]

(b) Given that 372 = —1 (mod 137) find integers z,y such that
o +y? = 137.
[Similar to coursework]

(c) Suppose that n = 3 (mod 4). Show that z*> + y?> = n has no integer
solutions. [Bookwork]

Solution:

(a) From the notes: We define the fundamental solution to be the smallest
solution of 22 — dy? = %1 in positive integers.

(b) In the lectures we saw that the the positive integer solutions (x,y) to the
equation z? — dy? = +1 are (pen_1,qem-1), £ = 1,2,3,... where h is the
period of v/d where p, /qn is the nth convergent of the continued fraction of



Vd. Since the period is 5 the smallest solution will be (p4, ¢4). Computing
we get that

b}
Cy = [5]:I
11
pp 1-1145 16
02 = _—— — = —
@ 1-2+1 3
ps  1-16+11 27
CS = _—— — = —
¢ 1-3+2 5
pa 2:27+16 70
o, = 2= =

@ 2543 13
So the fundamental solution is (70, 13).

In the lectures we proved that if (z1,y;) is the fundamental solutions of
22 — dy? = %1 then all the positive integer solutions to 2% — dy? = £1 are
the integers xy, yr, k = 1,2, ... defined by

T+ V29 = (21 + y1Vd)".
So the solutions are given by xy, yx defined by the formula
Tr+ V29 = (70 +13v29)F £k =1,2,3,4,. ..
Note that since the period of the continued fraction of V29 is odd

x%k—&-l - 299§k+1 =-1
and
w5, — 293, = +1
for k=0,1,....

We run Hermite’s algorithm from the lectures. Apply the Euclidean algo-
rithm to 137 and 37

137 = 37-3+26
37 = 26-1+4+11
26 = 11-2+44
11 = 4-2+3
4 = 3-1+1
3 = 1-3+0



So the continued fraction of 37/137 = [0;3,1,2,2,1,3]. We now compute
convergent C,, = p,,/q, until we find m s.t. ¢, < V137 < ¢+1. We then
know that ¢2, + (37 - ¢,, — 137 - p,,)? = 13T7.

The convergents are:

Co=0/1,Cy =1/3,Cy = —1/4,C =" == ¢,

1-3+1 T 2.443 11
and we now stop since 26> > 137. So m = 3 and
37-q3—137-p3=37-11—-137-3 = —4.

So we conclude
4% +11% = 137.

(Note: Finding the correct answer by brute force/guessing receives 2 points).

(d) Note that 22 =0,1 (mod 4) and y* =0,1 (mod 4) so
2 +y*=0,1,2 (mod 4)

Hence if n =3 (mod 4) then no solution exists.

Alternatively, suppose n = f?(2? + y?) with ged(z1,y1) = 1 if n = 3
(mod 4) then f2 = 1 (mod 4) so one of n’s prime divisors p must be
equivalent to 3 mod 4 and also divide 27 + y?. Also either z; or y; is
co-prime to p (say z; is co-prime). So that

(1177) = —1  (mod p)

where 177 = 1 (mod p), but this is impossible, since —1 a quadratic
non-residue  (mod p).

4 Question:

(a) Given a positive integer n define the order of x (mod n). Define the
term primitive root (mod p). [Bookwork]

(b) Find a primitive root  (mod 13). How many primitive roots  (mod 13)
are there? [Similar examples seen]

(c) Does there exist an integer n such that n* £ 1 (mod 17) and n°® = 1
(mod 17) 7 Justify your answer by stating explicitly which theorems you
use in the proof. [Unseen, similar to questions in previous exams|
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(d) Compute p(280). (Hint: 280 = 23 -5-7.) [Similar examples seen]
(e) Show that ¢(n) is even for n > 2. [Coursework]

Solution:
(a) From the notes

(i) Let n be a positive integer. If there exists a positive integer d such
that ¥ = 1 (mod n), then the order of z (mod n) is the smallest
positive integer d such that 2% = 1 (mod n).

(ii) Let p be a prime number. An integer x is said to be a primitive root

mod p if x has order p — 1 (mod p).

(b) By direct computation one can see that the order of each 2,6,7,11 is 12.
To compute the order of 2, first note that the order of 2 divides 12. We
need to check if any of 22,23, 24 26is 1 (mod 13). We get that

22=4 (mod 13),2° =8 (mod 13),2* =3 (mod 13),2° =12 (mod 13).

Since none of these is 1 (mod 13) 2 has order 12. There are ¢(13—1) =4
primitive roots.

(c) In the lectures we proved: For an integer z, there exists a positive integer
d such that ¢ = 1 (mod n) if and only if ged(z,n) = 1. If so, then the
order of z divides ¢(n).

Hence, the order of n must divide ¢(17) = 16 so its order must be one
of 1,2,4,8,16. If its order is either 1,2,4 then n* = 1 (mod 17), the
remaining options are 8, 16, but in this case n® # 1 (mod 17). So no such
integer exists.

(d) (280) = ¢(8)9p(5)p(7) = 4-4-6 = 96.

(e) We saw that ¢(n) = [[., (»° —p® 1), where the notation p?||n means
that p?|n and p*™! does not divide n. Notice that if p > 2 then p® — p®~!
is even so if n # 2° then op(n) is even. If n = 2° and b = 0 then ¢(n) = 1 if
b # 0 then p(n) = 2° — 2°=1 = 2°=! which is even unless b = 1.

5 Question:

(a) Define the term quadratic residue. Define the Legendre symbol <E) .
p
State the Law of Quadratic Reciprocity. [Bookwork]
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137
(b) Both 227 and 137 are primes. Compute (E) You should clearly state

any rules you use for calculating the Legendre symbol. [Similar to course-
work /examples]

(c) Let p be an odd prime. Suppose that p+ 2 is also prime. Show that p is a
quadratic residue  (mod (p + 2)) if and only if

p=+1 (mod 8).
[Unseen)]
Solution
(a) From the coursenotes: An integer a is a quadratic residue (mod p) if there

exists an integer x with 22 = a (mod p).

The Legendre symbol (g) is defined by

a 0 ifp|a,
(—) =< 41 if p fa and a is a quadratic residue (mod p),

p —1 if p fa and a is a quadratic non-residue (mod p)

Quadratic reciprocity is: For any two distinct odd primes p and ¢,

()

(b) We will now repeatedly use quadratic reciprocity along with other proper-
ties of the Legendre symbol.

137 227 .
<E) = (E) Quad. ReClp.

—47
= (ﬁ) Periodicity

-1 47 e e
= (E) (ﬁ) Multiplicativity

1
= 1- ( 37) Quad. Recip.

a7
(Y periodicit
= 17 eriodicity
~1 2\ 2
- _1-1=—

oo



(¢) Observe

()= (%)

since either p or p 4+ 2 must be =1 (mod 4).

(5)-(2)-

where the last equality holds if and only if p = £+1 (mod 8).

Also



