Solutions to exam

1 Question:

(a) Define the terms algebraic integer, quadratic integer, and transcendental. [Bookwork]
(b) Determine which of the following are quadratic integers. Explain which theorems you have used.
(i) $\frac{1+\sqrt{49}}{2}$;
(ii) $\frac{\sqrt{3}}{2}-\frac{7}{2}$;
(iii) $\frac{\sqrt{5}}{2}+\frac{\sqrt{-3}}{2}$;
(iv) $\frac{7}{2}+\frac{\sqrt{65}}{2}$.
[similar to coursework]
(c) Let D be a natural number which is not a square. Using minimal polynomials, show that $\frac{1+\sqrt{D}}{2}$ is an algebraic integer if and only if $D \equiv 1(\bmod 4)$. [coursework]

Solution:

(a) The definitions are:

- $\alpha \in \mathbb{C}$ is an algebraic integer if there exists a monic polynomial $f(x)$ with integer coefficients such that $f(\alpha)=0$.
- A quadratic integer is an algebraic integer whose minimal polynomial has degree 2 (our convention in the lectures is that the minimal polynomial is monic).
- $\alpha \in \mathbb{C}$ is a transcendental number if α is not an algebraic number.
(b) We had the following propositions in the lectures:

Proposition: $\alpha \in \mathbb{C}$ is a quadratic number if and only if $\alpha=u+v \sqrt{d}$ for some $u, v \in \mathbb{Q}$ and $1 \neq d \in \mathbb{Z}$ squarefree.
Proposition: A quadratic number α is a quadratic integer if and only if $\alpha=u+v \sqrt{d}$ for some $1 \neq d \in \mathbb{Z}$ squarefree and for u, v satisfying $u \in \mathbb{Z}$
and $v \in \mathbb{Z}$ or $u-\frac{1}{2} \in \mathbb{Z}, v-\frac{1}{2} \in \mathbb{Z}$ and $d \equiv 1(\bmod 4)$. So all in all, $\alpha \in \mathbb{C}$ is a quadratic integer if and only if $\alpha=u+v \sqrt{d}$ for some $1 \neq d \in \mathbb{Z}$ squarefree and for u, v satisfying $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$ or $u-\frac{1}{2} \in \mathbb{Z}, v-\frac{1}{2} \in \mathbb{Z}$ and $d \equiv 1(\bmod 4)$.
(i) $\frac{1+\sqrt{49}}{2}=4$. So it's an integer and not a quadratic integer.
(ii) We have $\frac{\sqrt{3}}{2}-\frac{7}{2}=u+v \sqrt{d}$. Here $u=-\frac{7}{2}$ and $v=\frac{1}{2}$. Since $d \equiv 3$ $(\bmod 4)$ and $u, v \notin Z$, we know $\frac{\sqrt{3}}{2}-\frac{7}{2}$ is not a quadratic integer .
(iii) This is not of the form $u+v \sqrt{d}$ so it's not a quadratic number (and so isn't a quadratic integer).
(iv) This is of the form $u+v \sqrt{d}$ with $u=\frac{7}{2}, v=\frac{1}{2}$ and $d=65 \equiv 1$ $(\bmod 4)$. Since $u-\frac{1}{2}, v-\frac{1}{2} \in \mathbb{Z}$ we can conclude that $\frac{7}{2}-\frac{\sqrt{65}}{2}$ is a quadratic integer.
(c) Consider the polynomial $f(x)=x^{2}-x-\frac{D-1}{4}$. We have
$f\left(\frac{1+\sqrt{D}}{2}\right)=\frac{1+2 \sqrt{D}+D}{4}-\frac{1+\sqrt{D}}{2}-\frac{D-1}{4}=\frac{D-1}{4}-\frac{D-1}{4}=0$.
This shows that f must be the minimal polynomial of $\frac{1+\sqrt{D}}{2}$ because if $\frac{1+\sqrt{D}}{2}$ were the root of a polynomial with degree 1 , then it would have to be a rational number, which it is not.
We know that $\frac{1+\sqrt{D}}{2}$ is an algebraic integer if and only if all coefficients of f are integers. This, in turn, happens if and only if $\frac{D-1}{4}$ is an integer, which is equivalent to saying that 4 divides $D-1$, i.e., $D \equiv 1(\bmod 4)$.

2 Question:

(a) What is a periodic continued fraction? Give an example of an irrational number whose continued fraction expansion is not periodic. [Bookwork]
(b) Use the Euclidean algorithm to find a continued fraction expansion for $\frac{241}{113}$. [Similar to coursework/examples]
(c) Determine the value of the infinite continued fraction

$$
[1 ; \overline{2,1}] .
$$

Write your answer in the form $u+v \sqrt{d}$, where $u, v \in \mathbb{Q}$ and $d \in \mathbb{Z}$. [Similar to coursework/examples]
(d) Find the continued fraction expansion of $\sqrt{7}$. [Similar to coursework/examples]

Solution:

(a) Definition from the notes: The infinite continued fraction

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots\right]
$$

is periodic if there exist integers k, l with $k>0$ such that

$$
a_{n+k}=a_{n} \text { for all } n \geq l .
$$

We proved that a periodic continued fraction is a quadratic number. So the continued fraction of $2^{1 / 3}$ is not periodic. (Students will get full marks for writing down a correct answer without justification).
(b) Notice

$$
[\overline{1 ; 2}]=1+\frac{1}{2+\frac{1}{[1 ; 2]}}
$$

Let $x=[\overline{1 ; 2}]>0$. The above equation implies

$$
2 x^{2}-2 x-1=0 \Rightarrow x=\frac{1}{2}+\frac{\sqrt{3}}{2}
$$

(c) Apply the Euclidean algorithm to 241, 113

$$
\begin{aligned}
241 & =2 \cdot 113+15 \\
113 & =7 \cdot 15+8 \\
15 & =1 \cdot 8+7 \\
8 & =1 \cdot 7+1 \\
7 & =7 \cdot 1+0
\end{aligned}
$$

So the continued fraction is $[2 ; 7,1,1,7]$. Note that $[2 ; 7,1,1,6,1]$ is also correct.
(d) Using the algorithm from the lectures

$$
\begin{aligned}
\sqrt{7} & =2+(\sqrt{7}-2) \\
\frac{1}{\sqrt{7}-2} & =\frac{\sqrt{7}+2}{3}=1+\frac{\sqrt{7}-1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{\sqrt{7}-1}=\frac{\sqrt{7}+1}{2}=1+\frac{\sqrt{7}-1}{2} \\
& \frac{2}{\sqrt{7}-1}=\frac{\sqrt{7}+1}{3}=1+\frac{\sqrt{7}-2}{3} \\
& \frac{3}{\sqrt{7}-2}=\sqrt{7}+2=4+(\sqrt{7}-2)
\end{aligned}
$$

At this point notice that the fractional part in the last step equals the fractional part in the first step, hence this process will now repeat. This implies

$$
\sqrt{7}=[2 ; \overline{1,1,1,4}] .
$$

3 Question:

(a) Given that

$$
\sqrt{29}=[5 ; \overline{2,1,1,2,10}]
$$

find the fundamental solution to the equation

$$
x^{2}-29 y^{2}= \pm 1
$$

Use your answer to write down all positive integer solutions to the equation $x^{2}-29 y^{2}= \pm 1$. Explain why you have found ALL solutions. [Similar to coursework]
(b) Given that $37^{2} \equiv-1 \quad(\bmod 137)$ find integers x, y such that

$$
x^{2}+y^{2}=137 .
$$

[Similar to coursework]
(c) Suppose that $n \equiv 3(\bmod 4)$. Show that $x^{2}+y^{2}=n$ has no integer solutions. [Bookwork]

Solution:

(a) From the notes: We define the fundamental solution to be the smallest solution of $x^{2}-d y^{2}= \pm 1$ in positive integers.
(b) In the lectures we saw that the the positive integer solutions (x, y) to the equation $x^{2}-d y^{2}= \pm 1$ are $\left(p_{\ell h-1}, q_{\ell h-1}\right), \ell=1,2,3, \ldots$ where h is the period of \sqrt{d} where p_{n} / q_{n} is the nth convergent of the continued fraction of
\sqrt{d}. Since the period is 5 the smallest solution will be $\left(p_{4}, q_{4}\right)$. Computing we get that

$$
\begin{aligned}
C_{0} & =[5]=\frac{5}{1} \\
C_{1} & =[5 ; 2]=\frac{11}{2} \\
C_{2} & =\frac{p_{2}}{q_{2}}=\frac{1 \cdot 11+5}{1 \cdot 2+1}=\frac{16}{3} \\
C_{3} & =\frac{p_{3}}{q_{3}}=\frac{1 \cdot 16+11}{1 \cdot 3+2}=\frac{27}{5} \\
C_{4} & =\frac{p_{4}}{q_{4}}=\frac{2 \cdot 27+16}{2 \cdot 5+3}=\frac{70}{13}
\end{aligned}
$$

So the fundamental solution is $(70,13)$.
In the lectures we proved that if $\left(x_{1}, y_{1}\right)$ is the fundamental solutions of $x^{2}-d y^{2}= \pm 1$ then all the positive integer solutions to $x^{2}-d y^{2}= \pm 1$ are the integers $x_{k}, y_{k}, k=1,2, \ldots$ defined by

$$
x_{k}+y_{k} \sqrt{29}=\left(x_{1}+y_{1} \sqrt{d}\right)^{k} .
$$

So the solutions are given by x_{k}, y_{k} defined by the formula

$$
x_{k}+y_{k} \sqrt{29}=(70+13 \sqrt{29})^{k} \quad k=1,2,3,4, \ldots
$$

Note that since the period of the continued fraction of $\sqrt{29}$ is odd

$$
x_{2 k+1}^{2}-29 y_{2 k+1}^{2}=-1
$$

and

$$
x_{2 k}^{2}-29 y_{2 k}^{2}=+1
$$

for $k=0,1, \ldots$.
(c) We run Hermite's algorithm from the lectures. Apply the Euclidean algorithm to 137 and 37

$$
\begin{aligned}
137 & =37 \cdot 3+26 \\
37 & =26 \cdot 1+11 \\
26 & =11 \cdot 2+4 \\
11 & =4 \cdot 2+3 \\
4 & =3 \cdot 1+1 \\
3 & =1 \cdot 3+0
\end{aligned}
$$

So the continued fraction of $37 / 137=[0 ; 3,1,2,2,1,3]$. We now compute convergent $C_{n}=p_{n} / q_{n}$ until we find m s.t. $q_{m}<\sqrt{137}<q_{m+1}$. We then know that $q_{m}^{2}+\left(37 \cdot q_{m}-137 \cdot p_{m}\right)^{2}=137$.
The convergents are:
$C_{0}=0 / 1, C_{1}=1 / 3, C_{2}=\frac{1 \cdot 1+0}{1 \cdot 3+1}=1 / 4, C_{3}=\frac{2 \cdot 1+1}{2 \cdot 4+3}=\frac{3}{11}, C_{4}=\frac{2 \cdot 3+1}{2 \cdot 11+4}=7 / 26$
and we now stop since $26^{2}>137$. So $m=3$ and

$$
37 \cdot q_{3}-137 \cdot p_{3}=37 \cdot 11-137 \cdot 3=-4
$$

So we conclude

$$
4^{2}+11^{2}=137
$$

(Note: Finding the correct answer by brute force/guessing receives 2 points).
(d) Note that $x^{2} \equiv 0,1 \quad(\bmod 4)$ and $y^{2} \equiv 0,1 \quad(\bmod 4)$ so

$$
x^{2}+y^{2} \equiv 0,1,2 \quad(\bmod 4)
$$

Hence if $n \equiv 3 \quad(\bmod 4)$ then no solution exists.
Alternatively, suppose $n=f^{2}\left(x_{1}^{2}+y_{1}^{2}\right)$ with $\operatorname{gcd}\left(x_{1}, y_{1}\right)=1$ if $n \equiv 3$ $(\bmod 4)$ then $f^{2} \equiv 1(\bmod 4)$ so one of n 's prime divisors p must be equivalent to $3 \bmod 4$ and also divide $x_{1}^{2}+y_{1}^{2}$. Also either x_{1} or y_{1} is co-prime to p (say x_{1} is co-prime). So that

$$
\left(y_{1} \overline{x_{1}}\right)^{2} \equiv-1 \quad(\bmod p)
$$

where $x_{1} \overline{x_{1}} \equiv 1 \quad(\bmod p)$, but this is impossible, since -1 a quadratic non-residue $(\bmod p)$.

4 Question:

(a) Given a positive integer n define the order of $x(\bmod n)$. Define the term primitive root $(\bmod p)$. [Bookwork]
(b) Find a primitive root $(\bmod 13)$. How many primitive roots $(\bmod 13)$ are there? [Similar examples seen]
(c) Does there exist an integer n such that $n^{4} \not \equiv 1(\bmod 17)$ and $n^{5} \equiv 1$ (mod 17) ? Justify your answer by stating explicitly which theorems you use in the proof. [Unseen, similar to questions in previous exams]
(d) Compute $\varphi(280)$. (Hint: $280=2^{3} \cdot 5 \cdot 7$.) [Similar examples seen]
(e) Show that $\varphi(n)$ is even for $n>2$. [Coursework]

Solution:

(a) From the notes
(i) Let n be a positive integer. If there exists a positive integer d such that $x^{d} \equiv 1(\bmod n)$, then the order of $x(\bmod n)$ is the smallest positive integer d such that $x^{d} \equiv 1(\bmod n)$.
(ii) Let p be a prime number. An integer x is said to be a primitive root $\bmod p$ if x has order $p-1(\bmod p)$.
(b) By direct computation one can see that the order of each 2, 6, 7, 11 is 12 . To compute the order of 2 , first note that the order of 2 divides 12 . We need to check if any of $2^{2}, 2^{3}, 2^{4}, 2^{6}$ is $1(\bmod 13)$. We get that
$2^{2} \equiv 4 \quad(\bmod 13), 2^{3} \equiv 8 \quad(\bmod 13), 2^{4} \equiv 3 \quad(\bmod 13), 2^{6} \equiv 12 \quad(\bmod 13)$.
Since none of these is $1(\bmod 13) 2$ has order 12 . There are $\varphi(13-1)=4$ primitive roots.
(c) In the lectures we proved: For an integer x, there exists a positive integer d such that $x^{d} \equiv 1(\bmod n)$ if and only if $\operatorname{gcd}(x, n)=1$. If so, then the order of x divides $\phi(n)$.

Hence, the order of n must divide $\varphi(17)=16$ so its order must be one of $1,2,4,8,16$. If its order is either $1,2,4$ then $n^{4} \equiv 1(\bmod 17)$, the remaining options are 8,16 , but in this case $n^{5} \not \equiv 1 \quad(\bmod 17)$. So no such integer exists.
(d) $\varphi(280)=\varphi(8) \varphi(5) \varphi(7)=4 \cdot 4 \cdot 6=96$.
(e) We saw that $\varphi(n)=\prod_{p^{a} \| n}\left(p^{a}-p^{a-1}\right)$, where the notation $p^{a} \| n$ means that $p^{a} \mid n$ and p^{a+1} does not divide n. Notice that if $p>2$ then $p^{a}-p^{a-1}$ is even so if $n \neq 2^{b}$ then $\varphi(n)$ is even. If $n=2^{b}$ and $b=0$ then $\varphi(n)=1$ if $b \neq 0$ then $\varphi(n)=2^{b}-2^{b-1}=2^{b-1}$ which is even unless $b=1$.

5 Question:

(a) Define the term quadratic residue. Define the Legendre symbol $\left(\frac{a}{p}\right)$. State the Law of Quadratic Reciprocity. [Bookwork]
(b) Both 227 and 137 are primes. Compute $\left(\frac{137}{227}\right)$. You should clearly state any rules you use for calculating the Legendre symbol. [Similar to coursework/examples]
(c) Let p be an odd prime. Suppose that $p+2$ is also prime. Show that p is a quadratic residue $(\bmod (p+2))$ if and only if

$$
p \equiv \pm 1 \quad(\bmod 8)
$$

[Unseen]

Solution

(a) From the coursenotes: An integer a is a quadratic residue $(\bmod p)$ if there exists an integer x with $x^{2} \equiv a(\bmod p)$.
The Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a, \\ +1 & \text { if } p \nmid a \text { and } a \text { is a quadratic residue }(\bmod p), \\ -1 & \text { if } p \nmid a \text { and } a \text { is a quadratic non-residue }(\bmod p)\end{cases}
$$

Quadratic reciprocity is: For any two distinct odd primes p and q,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

(b) We will now repeatedly use quadratic reciprocity along with other properties of the Legendre symbol.

$$
\begin{aligned}
\left(\frac{137}{227}\right) & =\left(\frac{227}{137}\right) \quad \text { Quad. Recip. } \\
& =\left(\frac{-47}{137}\right) \quad \text { Periodicity } \\
& =\left(\frac{-1}{137}\right)\left(\frac{47}{137}\right) \quad \text { Multiplicativity } \\
& =1 \cdot\left(\frac{137}{47}\right) \quad \text { Quad. Recip. } \\
& =\left(\frac{-4}{47}\right) \quad \text { Periodicity } \\
& =\left(\frac{-1}{47}\right) \cdot\left(\frac{2}{47}\right)^{2} \quad \text { Mult. } \\
& =-1 \cdot 1=-1
\end{aligned}
$$

(c) Observe

$$
\left(\frac{p}{p+2}\right)=\left(\frac{p+2}{p}\right)
$$

since either p or $p+2$ must be $\equiv 1 \quad(\bmod 4)$.
Also

$$
\left(\frac{p+2}{p}\right)=\left(\frac{2}{p}\right)=1
$$

where the last equality holds if and only if $p \equiv \pm 1 \quad(\bmod 8)$.

