University of London
MTH6128

Solutions to exam

1 Question:

(a) Define the terms
(i) algebraic number;
(ii) algebraic integer;
(iii) transcendental number.
[bookwork]
(b) Which of the following numbers are algebraic integers? Explain, stating explicitly which theorems you use.
(i) $\frac{1+\sqrt{11}}{2}$;
(ii) $\frac{2}{3+\sqrt{7}}$;
(iii) $\frac{3+\sqrt{45}}{6}$.
[similar to coursework]
(c) Let a be an algebraic number, and suppose that $a \neq 0$. Show that $\frac{1}{a}$ is an algebraic number. [unseen]
(d) Give an example of an algebraic integer which is not approximable by rationals up to order 6 . Explain why the example you gave has the desired properties. [unseen]

Solution:

(a) (i) $\alpha \in \mathbb{C}$ is an algebraic number if there exists a non-zero polynomial $f(x)$ with rational coefficients such that $f(\alpha)=0$.
(ii) $\alpha \in \mathbb{C}$ is an algebraic integer if there exists a monic polynomial $f(x)$ with integer coefficients such that $f(\alpha)=0$.
(iii) $\alpha \in \mathbb{C}$ is a transcendental number if α is not an algebraic number.
(b) We had the following theorems in the lectures:

Theorem: $\alpha \in \mathbb{C}$ is a quadratic number if and only if $\alpha=u+v \sqrt{d}$ for some $u, v \in \mathbb{Q}$ and $1 \neq d \in \mathbb{Z}$ squarefree.
Theorem: A quadratic number α is a quadratic integer if and only if $\alpha=$ $u+v \sqrt{d}$ for some $1 \neq d \in \mathbb{Z}$ squarefree and for u, v satisfying

- $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$
or
- $u-\frac{1}{2} \in \mathbb{Z}, v-\frac{1}{2} \in \mathbb{Z}$ and $d \equiv 1(\bmod 4)$.

So all in all, $\alpha \in \mathbb{C}$ is a quadratic integer if and only if $\alpha=u+v \sqrt{d}$ for some $1 \neq d \in \mathbb{Z}$ squarefree and for u, v satisfying

- $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$
or
- $u-\frac{1}{2} \in \mathbb{Z}, v-\frac{1}{2} \in \mathbb{Z}$ and $d \equiv 1(\bmod 4)$.
(i) $\frac{1+\sqrt{11}}{2}=\frac{1}{2}+\frac{1}{2} \sqrt{11}$. So in this case, $u=\frac{1}{2}, v=\frac{1}{2}$ and $d=11$. As $u \notin \mathbb{Z}$ and $d=11 \not \equiv 1(\bmod 4)$, we conclude that $\frac{1+\sqrt{11}}{2}$ is not an algebraic integer.
(ii) $\frac{2}{3+\sqrt{7}}=\frac{2(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}=\frac{6-2 \sqrt{7}}{2}=3-\sqrt{7}$. So in this case, $u=3$ and $v=-1$. We have $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$, so $\frac{2}{3+\sqrt{7}}$ is an algebraic integer.
(iii) $\frac{3+\sqrt{45}}{6}=\frac{3(1+\sqrt{5})}{6}=\frac{1+\sqrt{5}}{2}=\frac{1}{2}+\frac{1}{2} \sqrt{5}$. So in this case, $u=\frac{1}{2}, v=\frac{1}{2}$ and $d=5$. As $u-\frac{1}{2}=0 \in \mathbb{Z}, v-\frac{1}{2}=0 \in \mathbb{Z}$ and $d=5 \equiv 1(\bmod 4)$, we conclude that $\frac{3+\sqrt{45}}{6}$ is an algebraic integer.

Remark: The long explanation in (b) is only included for the convenience of the checker. Students are not required to give this explanation for full marks; it is enough to cite the relevant results from the lectures.
(c) If α is an algebraic number, then there are $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0} \in \mathbb{Q}$, at least one of which is non-zero, such that $a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\ldots+a_{1} \alpha+a_{0}=0$. As $\alpha \neq 0$, we may divide by α^{n} to obtain $a_{0}\left(\frac{1}{\alpha}\right)^{n}+a_{1}\left(\frac{1}{\alpha}\right)^{n-1}+\ldots+a_{n-1} \frac{1}{\alpha}+a_{n}=$ 0 . This shows that $\frac{1}{\alpha}$ is the root of a non-zero polynomial with rational coefficients, hence an algebraic number.
(d) We had a theorem in the lectures saying that a root of a polynomial f is not approximable by rationals to order $\operatorname{deg}(f)+1$. Therefore, $\sqrt[5]{2}$ is not approximable by rationals to order 6 since it is the root of $f(x)=x^{5}-2$.

2 Question:

(a) Calculate the value of the infinite continued fraction $[3 ; 4, \overline{2,1}]$. [similar to coursework]
(b) You are given that

$$
[10 ; \overline{1,1,1,2,2,1,1,1,20}]
$$

is the continued fraction for $\sqrt{113}$. Using this, find positive integers x and y such that $x^{2}+y^{2}=113$. [similar to coursework]
(c) You are given that

$$
[9 ; \overline{1,2,1,18}]
$$

is the continued fraction for $\sqrt{95}$. Using this, find all the integer solutions of the equation $x^{2}-95 y^{2}= \pm 1$. [similar to coursework]

Solution:

(a) Let y be the value of $[2 ; 1]$. Then $y=[2 ; 1, y]=2+\frac{1}{1+\frac{1}{y}}$. So

$$
y-2=\frac{y}{y+1} .
$$

Thus

$$
\begin{aligned}
& y^{2}-y-2=y \\
\Leftrightarrow & y^{2}-2 y-2=0 \\
\Leftrightarrow & y=1+\sqrt{3} \text { or } y=1-\sqrt{3} .
\end{aligned}
$$

As $y>2$, we must have $y=1+\sqrt{3}$.

Now let x be the value of $[3 ; 4, \overline{2,1}]$. Then $x=3+\frac{1}{4+\frac{1}{y}}$, and thus

$$
\begin{aligned}
x=3+\frac{1}{4+\frac{1}{y}}= & 3+\frac{1}{4+\frac{1}{1+\sqrt{3}}}=3+\frac{1}{4+\frac{\sqrt{3}-1}{2}}=3+\frac{2}{7+\sqrt{3}} \\
& =3+\frac{2(7-\sqrt{3})}{46}=3+\frac{7-\sqrt{3}}{23}=\frac{76-\sqrt{3}}{23} .
\end{aligned}
$$

Remark: 4 points for calculating y correctly, 2 points for determining x correctly.
(b) As $p=113$ is a prime with $p \equiv 1(\bmod 4)$, we know from lectures that

$$
\sqrt{p}=\left[a_{0} ; \overline{a_{1}, \ldots, a_{m}, a_{m}, \ldots, a_{1}, 2 a_{0}}\right]
$$

for some $m \geq 0$ and positive integers a_{0}, \ldots, a_{m}. Let x_{i} be the real numbers appearing in the algorithm for finding the continued fraction of \sqrt{p}, i.e., $x_{0}=\sqrt{p}$ and $a_{i}=\left\lfloor x_{i}\right\rfloor, x_{i+1}=\frac{1}{x_{i}-a_{i}}$. Then there are unique integers P_{m+1} and Q_{m+1} with $x_{m+1}=\frac{P_{m+1}+\sqrt{p}}{Q_{m+1}}$. Then $x=P_{m+1}$ and $y=Q_{m+1}$ satisfy $x^{2}+y^{2}=p$.
In this case, $m=4$, so we have to find x_{5} from the continued fraction algorithm. We run the algorithm from the lectures: Starting with $x_{0}=$ $\sqrt{113}$, we get

$$
\begin{aligned}
& a_{0}=\left\lfloor x_{0}\right\rfloor=10, x_{1}=\frac{1}{x_{0}-a_{0}}=\frac{10+\sqrt{113}}{13} \\
& a_{1}=\left\lfloor x_{1}\right\rfloor=1, x_{2}=\frac{1}{x_{1}-a_{1}}=\frac{3+\sqrt{113}}{8} \\
& a_{2}=\left\lfloor x_{2}\right\rfloor=1, x_{3}=\frac{1}{x_{2}-a_{2}}=\frac{5+\sqrt{113}}{11} \\
& a_{3}=\left\lfloor x_{3}\right\rfloor=1, x_{4}=\frac{1}{x_{3}-a_{3}}=\frac{6+\sqrt{113}}{7} \\
& a_{4}=\left\lfloor 4_{3}\right\rfloor=2, x_{5}=\frac{1}{x_{4}-a_{4}}=\frac{8+\sqrt{113}}{7}
\end{aligned}
$$

So $P_{5}=8, Q_{5}=7$, and indeed, $8^{2}+7^{2}=64+49=113$.
Remark: A detailed explanation of the procedure is not required, but the strategy should become clear. 2 points for the correct strategy, 4 points for the computation.
(c) Assume that we are given a positive integer n which is not a square, and that the continued fraction for \sqrt{n} is given by $\left[a_{0} ; \overline{a_{1}, \ldots, a_{N}}\right]$. Let $x_{1}=$ $\left[a_{0}, \ldots, a_{N-1}\right], y_{1}=\left[a_{1}, \ldots, a_{N-1}\right]$ so that x_{1} / y_{1} is the $(N-1)$-th convergent of \sqrt{n}. For every positive integer m, define integers x_{m} and y_{m} by setting $x_{m}+y_{m} \sqrt{n}=\left(x_{1}+y_{1} \sqrt{n}\right)^{m}$. We know that $x_{1}^{2}-n y_{1}^{2}=(-1)^{N}$, so there are two cases:
If $x_{1}^{2}-n y_{1}^{2}=1$, then there exists no solution of the equation $x^{2}-n y^{2}=-1$. Moreover, every integer solution x, y of $x^{2}-n y^{2}=1$ is given by $x=x_{m}, y=$ y_{m} or $x=x_{m}, y=-y_{m}$ or $x=-x_{m}, y=y_{m}$ or $x=-x_{m}, y=-y_{m}$ for some positive integer m.
If $x_{1}^{2}-n y_{1}^{2}=-1$, then every integer solution x, y of $x^{2}-n y^{2}=1$ is given by $x=x_{m}, y=y_{m}$ or $x=x_{m}, y=-y_{m}$ or $x=-x_{m}, y=y_{m}$ or $x=-x_{m}, y=-y_{m}$ for some even integer $m \geq 2$, and every integer solution x, y of $x^{2}-n y^{2}=-1$ is given by $x=x_{m}, y=y_{m}$ or $x=x_{m}, y=-y_{m}$ or $x=-x_{m}, y=y_{m}$ or $x=-x_{m}, y=-y_{m}$ for some odd integer $m \geq 1$.

We may now apply this general procedure: $n=95$ is not a square, so we can use the procedure described above. The period of the continued fraction of $\sqrt{95}$ is $N=4$. We compute $x_{1}=[9,1,2,1]$ and $y_{1}=[1,2,1]$:

$$
\begin{aligned}
{[1] } & =1 \\
{[2,1] } & =3 \\
{[1,2,1] } & =1 \cdot 3+1=4 \\
{[9,1,2,1] } & =9 \cdot 4+3=39 .
\end{aligned}
$$

So $x_{1}=39, y_{1}=4$. We have $x_{1}^{2}-n y_{1}^{2}=39^{2}-95 \cdot 4^{2}=(-1)^{4}=1$. Moreover, let x_{m} and y_{m} be given by $x_{m}+y_{m} \sqrt{95}=(39+4 \sqrt{95})^{m}$, for positive integers m. Then every integer solution x, y of $x^{2}-95 y^{2}=1$ is given, up to signs, by $x=x_{m}, y=y_{m}$ for some integer $m \geq 1$, and there is no integer solution x, y of $x^{2}-95 y^{2}=-1$.
Remark: 4 points for the explanation, 4 points for the computation.
Remark: The long explanations in (b) and (c) are only included for the convenience of the checker. Students are not required to give these explanations for full marks; it is enough to cite the relevant results from the lectures.

3 Question:

(a) Let p be a prime. What is a primitive root $(\bmod p)$? What is the order $(\bmod p)$ of an integer x with $1 \leq x \leq p-1$? [bookwork]
(b) Find a primitive root (mod 13). [similar to coursework]
(c) What are the possible orders $(\bmod 13)$ of an integer x with $1 \leq x \leq 12$? For each possible order, find a natural number x with $1 \leq x \leq 12$ which has exactly that order (mod 13). [unseen]
(d) Let p be a prime and g a primitive root $(\bmod p)$. Show that for every integer x with $1 \leq x \leq p-1$, there is a natural number i with $x \equiv g^{i}(\bmod p)$. [unseen]

Solution:

(a) A primitive root $(\bmod p)$ is an integer g which has order $p-1 \bmod p$, i.e., $g^{k} \not \equiv 1(\bmod p)$ for all $1 \leq k \leq p-2$. The order $(\bmod p)$ of an integer x with $1 \leq x \leq p-1$ is the smallest integer $i>0$ such that $x^{i} \equiv 1(\bmod p)$.
(b) We have to find an element with order 12 . We compute modulo 13: $2^{2}=4$, $2^{3}=8,2^{4} \equiv 3,2^{5} \equiv 6,2^{6} \equiv 12$. As the order of 2 has to divide 12 , this computation shows that 2 is a primitive root.
(c) The possible orders $(\bmod 13)$ are precisely the divisors of 12 , i.e., $1,2,3$, 4,6 and 12 . In general, we know that if g is a primitive root $(\bmod p)$, then the order of $g^{i}(\bmod p)$ is given by $\frac{12}{\operatorname{gcd}(i, 12)}$. In our case, we can take $g=2$. Then 2^{12} (which is congruent to 1 modulo 13) has order $1,2^{6}$ has order 2 , 2^{4} has order $3,2^{3}$ has order $4,2^{2}$ has order 6 and 2 has order 12 .
(d) Assume the contrary, i.e., there exists x with $1 \leq x \leq p-1$ such that $x \not \equiv g^{i}(\bmod p)$ for all i. As $g^{i}(\bmod p)$ only depends on $i(\bmod p-1)$, we can have at most $p-2$ elements in $\left\{g^{i}(\bmod p): 1 \leq i \leq p-1\right\}$. Thus there must exist two distinct integers i and j with $1 \leq i, j \leq p-1$ such that $g^{i} \equiv g^{j}(\bmod p)$. Assuming that $i<j$, we conclude that $g^{j-i} \equiv 1(\bmod p)$. But this is a contradiction since the order of g is $p-1$, and $0<j-i<p-1$.

4 Question:

(a) Let p be an odd prime, and let a be an integer. Define the Legendre symbol $\left(\frac{a}{p}\right)$. [bookwork]
(b) Calculate the value of $\left(\frac{21}{67}\right)$. You should state clearly any rules for computing Legendre symbols that you use, but are not required to prove them. [similar to coursework]
(c) Let p be an odd prime. Show that we have $\left(\frac{5}{p}\right)=-1$ if and only if $p \equiv 2(\bmod 5)$ or $p \equiv 3(\bmod 5) .[$ unseen]
(d) Show that there are infinitely many primes congruent to $1 \bmod 4$. [seen in lectures]

Solution:

(a)

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a, \\ +1 & \text { if } p \nmid a \text { and } a \text { is a quadratic residue }(\bmod p), \\ -1 & \text { if } p \nmid a \text { and } a \text { is a quadratic non-residue }(\bmod p) .\end{cases}
$$

(b)

$$
\left(\frac{21}{67}\right) \stackrel{R 1}{=}\left(\frac{3}{67}\right)\left(\frac{7}{67}\right) \stackrel{R 4}{=}(-1)\left(\frac{67}{3}\right)(-1)\left(\frac{67}{7}\right) \stackrel{R 0}{=}\left(\frac{1}{3}\right)\left(\frac{4}{7}\right)=+1
$$

(c) We have

$$
\left(\frac{5}{p}\right) \stackrel{R 4}{=}\left(\frac{p}{5}\right),
$$

and as $1^{2}=1,2^{2}=4,3^{2}=9 \equiv 4(\bmod 5), 4^{2}=16 \equiv 1(\bmod 5)$, we have that

$$
\left(\frac{p}{5}\right)=-1
$$

if and only if $p \equiv 2(\bmod 5)$ or $p \equiv 3(\bmod 5)$.
(d) We argue by contradiction. Suppose that p_{1}, \ldots, p_{r} were all the primes congruent to $1(\bmod 4)$. Now let

$$
x=2 p_{1} p_{2} \cdots p_{r}, \quad N=x^{2}+1
$$

Let q be a prime divisor of N. Then q is odd. We have

$$
x^{2} \equiv-1(\bmod q),
$$

so -1 is a quadratic residue $\bmod q$. By $\mathrm{R} 2, q \equiv 1(\bmod 4)$. Hence by assumption, q must be one of the primes p_{1}, \ldots, p_{r}. But this is a contradiction, since N leaves remainder 1 when divided by each of these primes.

5 Question:

(a) What is a quadratic form over the integers? [bookwork]
(b) In each of the following cases, state whether the quadratic form is positive definite, negative definite, indefinite, or degenerate:
(i) $7 x^{2}+3 x y+4 y^{2}$;
(ii) $5 x^{2}+4 x y-3 y^{2}$.
[similar to coursework]
(c) Find a reduced positive definite quadratic form which is equivalent to

$$
5 x^{2}+2 x y+y^{2} .
$$

[similar to coursework]
(d) Show that equivalent quadratic forms have the same discriminant. [seen in lectures]
(e) Give examples of two positive definite quadratic forms with the same discriminant, which are not equivalent. Explain why the examples you gave have the desired properties. [unseen]

Solution:

(a) A quadratic form over the integers is a function $f(x, y)=a x^{2}+b x y+c y^{2}$ with $a, b, c \in \mathbb{Z}$.
(b) (i) The discriminant is $3^{2}-4 \cdot 7 \cdot 4=9-112=-103$, hence negative. Moreover, the coefficient in front of x^{2} is positive. Hence this quadratic form is positive definite.
(ii) The discriminant is $4^{2}-4 \cdot 5 \cdot(-3)=16+60=76$, hence positive. Thus the quadratic form is indefinite.
(c) We run the algorithm from the lectures:

The coefficients of the given quadratic form are $a_{0}=5, b_{0}=2$ and $a_{1}=1$. We want to find q_{1} and b_{1} with $2=2 q_{1}-b_{1}$ and $-1<b_{1} \leq 1$. The solution is $q_{1}=1, b_{1}=0$, and $f_{1}(x, y)=x^{2}+a_{2} y^{2}$, where $a_{2}=5-2 \cdot 1+1=4$, that is, $f_{1}(x, y)=x^{2}+4 y^{2}$, which is reduced.
(d) Let f and g be equivalent quadratic forms. Then for their matrices M and N, we must be able to find a unimodular matrix P with integer coefficients such that $N=P^{\top} M P$. Therefore, the discriminant of g is given by $-\operatorname{det}(N)$, hence by $-\operatorname{det}\left(P^{\top} M P\right)=-\operatorname{det}\left(P^{\top}\right) \operatorname{det}(M) \operatorname{det}(P)=$ $-\operatorname{det}(P) \operatorname{det}(M) \operatorname{det}(P)=-\operatorname{det}(M)$, which is the discriminant of f.
(e) Consider the quadratic forms $f(x, y)=x^{2}+3 y^{2}$ and $g(x, y)=2 x^{2}+$ $2 x y+2 y^{2}$. Their discriminants are both -12 . As their coefficients in front of x^{2} are positive, they are both positive definite. However, they are not equivalent: f represents the integer 1 as $f(1,0)=1$. However, $g(x, y)=x^{2}+(x+y)^{2}+y^{2}$ is always strictly bigger than 1 , as $g(x, y)=1$ would imply that two out of the three terms $x, x+y$ and y would have to vanish, but then, the remaining term would also have to vanish, forcing $x=y=0$.

