
MTH6128 Number Theory

Solutions to exam

1 Question:

(a) Define the terms

(i) algebraic number ;

(ii) algebraic integer ;

(iii) transcendental number.

[bookwork]

(b) Which of the following numbers are algebraic integers? Explain, stating
explicitly which theorems you use.

(i) 1+
√
11

2
;

(ii) 2
3+
√
7
;

(iii) 3+
√
45

6
.

[similar to coursework]

(c) Let a be an algebraic number, and suppose that a 6= 0. Show that 1
a

is an
algebraic number. [unseen]

(d) Give an example of an algebraic integer which is not approximable by
rationals up to order 6. Explain why the example you gave has the desired
properties. [unseen]

Solution:

(a) (i) α ∈ C is an algebraic number if there exists a non-zero polynomial
f(x) with rational coefficients such that f(α) = 0.
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(ii) α ∈ C is an algebraic integer if there exists a monic polynomial f(x)
with integer coefficients such that f(α) = 0.

(iii) α ∈ C is a transcendental number if α is not an algebraic number.

(b) We had the following theorems in the lectures:

Theorem: α ∈ C is a quadratic number if and only if α = u+v
√
d for some

u, v ∈ Q and 1 6= d ∈ Z squarefree.

Theorem: A quadratic number α is a quadratic integer if and only if α =
u+ v

√
d for some 1 6= d ∈ Z squarefree and for u, v satisfying

• u ∈ Z and v ∈ Z

or

• u− 1
2
∈ Z, v − 1

2
∈ Z and d ≡ 1 (mod 4).

So all in all, α ∈ C is a quadratic integer if and only if α = u + v
√
d for

some 1 6= d ∈ Z squarefree and for u, v satisfying

• u ∈ Z and v ∈ Z

or

• u− 1
2
∈ Z, v − 1

2
∈ Z and d ≡ 1 (mod 4).

(i) 1+
√
11

2
= 1

2
+ 1

2

√
11. So in this case, u = 1

2
, v = 1

2
and d = 11. As u /∈ Z

and d = 11 6≡ 1 (mod 4), we conclude that 1+
√
11

2
is not an algebraic

integer.

(ii) 2
3+
√
7

= 2(3−
√
7)

(3+
√
7)(3−

√
7)

= 6−2
√
7

2
= 3 −

√
7. So in this case, u = 3 and

v = −1. We have u ∈ Z and v ∈ Z, so 2
3+
√
7

is an algebraic integer.

(iii) 3+
√
45

6
= 3(1+

√
5)

6
= 1+

√
5

2
= 1

2
+ 1

2

√
5. So in this case, u = 1

2
, v = 1

2
and

d = 5. As u − 1
2

= 0 ∈ Z, v − 1
2

= 0 ∈ Z and d = 5 ≡ 1 (mod 4), we

conclude that 3+
√
45

6
is an algebraic integer.

Remark: The long explanation in (b) is only included for the convenience
of the checker. Students are not required to give this explanation for full
marks; it is enough to cite the relevant results from the lectures.
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(c) If α is an algebraic number, then there are an, an−1, . . . , a1, a0 ∈ Q, at least
one of which is non-zero, such that anα

n+an−1α
n−1+ . . .+a1α+a0 = 0. As

α 6= 0, we may divide by αn to obtain a0(
1
α

)n+a1(
1
α

)n−1+. . .+an−1
1
α

+an =
0. This shows that 1

α
is the root of a non-zero polynomial with rational

coefficients, hence an algebraic number.

(d) We had a theorem in the lectures saying that a root of a polynomial f is
not approximable by rationals to order deg(f) + 1. Therefore, 5

√
2 is not

approximable by rationals to order 6 since it is the root of f(x) = x5 − 2.

2 Question:

(a) Calculate the value of the infinite continued fraction [3; 4, 2, 1]. [similar to
coursework]

(b) You are given that
[10; 1, 1, 1, 2, 2, 1, 1, 1, 20]

is the continued fraction for
√

113. Using this, find positive integers x and
y such that x2 + y2 = 113. [similar to coursework]

(c) You are given that
[9; 1, 2, 1, 18]

is the continued fraction for
√

95. Using this, find all the integer solutions
of the equation x2 − 95y2 = ±1. [similar to coursework]

Solution:

(a) Let y be the value of [2; 1]. Then y = [2; 1, y] = 2 + 1
1+ 1

y

. So

y − 2 =
y

y + 1
.

Thus

y2 − y − 2 = y

⇔ y2 − 2y − 2 = 0

⇔ y = 1 +
√

3 or y = 1−
√

3.

As y > 2, we must have y = 1 +
√

3.
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Now let x be the value of [3; 4, 2, 1]. Then x = 3 + 1
4+ 1

y

, and thus

x = 3 +
1

4 + 1
y

= 3 +
1

4 + 1
1+
√
3

= 3 +
1

4 +
√
3−1
2

= 3 +
2

7 +
√

3

= 3 +
2(7−

√
3)

46
= 3 +

7−
√

3

23
=

76−
√

3

23
.

Remark: 4 points for calculating y correctly, 2 points for determining x
correctly.

(b) As p = 113 is a prime with p ≡ 1 (mod 4), we know from lectures that

√
p = [a0; a1, . . . , am, am, . . . , a1, 2a0]

for some m ≥ 0 and positive integers a0, . . . , am. Let xi be the real numbers
appearing in the algorithm for finding the continued fraction of

√
p, i.e.,

x0 =
√
p and ai = bxic, xi+1 = 1

xi−ai . Then there are unique integers Pm+1

and Qm+1 with xm+1 =
Pm+1+

√
p

Qm+1
. Then x = Pm+1 and y = Qm+1 satisfy

x2 + y2 = p.

In this case, m = 4, so we have to find x5 from the continued fraction
algorithm. We run the algorithm from the lectures: Starting with x0 =√

113, we get

a0 = bx0c = 10, x1 =
1

x0 − a0
=

10 +
√

113

13

a1 = bx1c = 1, x2 =
1

x1 − a1
=

3 +
√

113

8

a2 = bx2c = 1, x3 =
1

x2 − a2
=

5 +
√

113

11

a3 = bx3c = 1, x4 =
1

x3 − a3
=

6 +
√

113

7

a4 = b43c = 2, x5 =
1

x4 − a4
=

8 +
√

113

7
.

So P5 = 8, Q5 = 7, and indeed, 82 + 72 = 64 + 49 = 113.

Remark: A detailed explanation of the procedure is not required, but the
strategy should become clear. 2 points for the correct strategy, 4 points for
the computation.
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(c) Assume that we are given a positive integer n which is not a square, and
that the continued fraction for

√
n is given by [a0; a1, . . . , aN ]. Let x1 =

[a0, . . . , aN−1], y1 = [a1, . . . , aN−1] so that x1/y1 is the (N−1)-th convergent
of
√
n. For every positive integer m, define integers xm and ym by setting

xm + ym
√
n = (x1 + y1

√
n)m. We know that x21 − ny21 = (−1)N , so there

are two cases:

If x21−ny21 = 1, then there exists no solution of the equation x2−ny2 = −1.
Moreover, every integer solution x, y of x2−ny2 = 1 is given by x = xm, y =
ym or x = xm, y = −ym or x = −xm, y = ym or x = −xm, y = −ym for
some positive integer m.

If x21 − ny21 = −1, then every integer solution x, y of x2 − ny2 = 1 is
given by x = xm, y = ym or x = xm, y = −ym or x = −xm, y = ym or
x = −xm, y = −ym for some even integer m ≥ 2, and every integer solution
x, y of x2 − ny2 = −1 is given by x = xm, y = ym or x = xm, y = −ym or
x = −xm, y = ym or x = −xm, y = −ym for some odd integer m ≥ 1.

We may now apply this general procedure: n = 95 is not a square, so
we can use the procedure described above. The period of the continued
fraction of

√
95 is N = 4. We compute x1 = [9, 1, 2, 1] and y1 = [1, 2, 1]:

[1] = 1

[2, 1] = 3

[1, 2, 1] = 1 · 3 + 1 = 4

[9, 1, 2, 1] = 9 · 4 + 3 = 39.

So x1 = 39, y1 = 4. We have x21 − ny21 = 392 − 95 · 42 = (−1)4 = 1.
Moreover, let xm and ym be given by xm + ym

√
95 = (39 + 4

√
95)m, for

positive integers m. Then every integer solution x, y of x2 − 95y2 = 1 is
given, up to signs, by x = xm, y = ym for some integer m ≥ 1, and there is
no integer solution x, y of x2 − 95y2 = −1.

Remark: 4 points for the explanation, 4 points for the computation.

Remark: The long explanations in (b) and (c) are only included for the
convenience of the checker. Students are not required to give these expla-
nations for full marks; it is enough to cite the relevant results from the
lectures.

3 Question:

(a) Let p be a prime. What is a primitive root (mod p)? What is the order
(mod p) of an integer x with 1 ≤ x ≤ p− 1? [bookwork]
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(b) Find a primitive root (mod 13). [similar to coursework]

(c) What are the possible orders (mod 13) of an integer x with 1 ≤ x ≤ 12?
For each possible order, find a natural number x with 1 ≤ x ≤ 12 which
has exactly that order (mod 13). [unseen]

(d) Let p be a prime and g a primitive root (mod p). Show that for every integer
x with 1 ≤ x ≤ p − 1, there is a natural number i with x ≡ gi (mod p).
[unseen]

Solution:

(a) A primitive root (mod p) is an integer g which has order p− 1 mod p, i.e.,
gk 6≡ 1 (mod p) for all 1 ≤ k ≤ p − 2. The order (mod p) of an integer x
with 1 ≤ x ≤ p− 1 is the smallest integer i > 0 such that xi ≡ 1 (mod p).

(b) We have to find an element with order 12. We compute modulo 13: 22 = 4,
23 = 8, 24 ≡ 3, 25 ≡ 6, 26 ≡ 12. As the order of 2 has to divide 12, this
computation shows that 2 is a primitive root.

(c) The possible orders (mod 13) are precisely the divisors of 12, i.e., 1, 2, 3,
4, 6 and 12. In general, we know that if g is a primitive root (mod p), then
the order of gi (mod p) is given by 12

gcd(i,12)
. In our case, we can take g = 2.

Then 212 (which is congruent to 1 modulo 13) has order 1, 26 has order 2,
24 has order 3, 23 has order 4, 22 has order 6 and 2 has order 12.

(d) Assume the contrary, i.e., there exists x with 1 ≤ x ≤ p − 1 such that
x 6≡ gi (mod p) for all i. As gi (mod p) only depends on i (mod p − 1),
we can have at most p− 2 elements in {gi (mod p) : 1 ≤ i ≤ p− 1}. Thus
there must exist two distinct integers i and j with 1 ≤ i, j ≤ p−1 such that
gi ≡ gj (mod p). Assuming that i < j, we conclude that gj−i ≡ 1 (mod p).
But this is a contradiction since the order of g is p−1, and 0 < j−i < p−1.

4 Question:

(a) Let p be an odd prime, and let a be an integer. Define the Legendre symbol(
a

p

)
. [bookwork]

(b) Calculate the value of

(
21

67

)
. You should state clearly any rules for com-

puting Legendre symbols that you use, but are not required to prove them.
[similar to coursework]
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(c) Let p be an odd prime. Show that we have

(
5

p

)
= −1 if and only if

p ≡ 2 (mod 5) or p ≡ 3 (mod 5). [unseen]

(d) Show that there are infinitely many primes congruent to 1 mod 4. [seen in
lectures]

Solution:

(a)

(
a

p

)
=

 0 if p | a,
+1 if p 6 | a and a is a quadratic residue (mod p),
−1 if p 6 | a and a is a quadratic non-residue (mod p).

(b) (
21

67

)
R1
=

(
3

67

)(
7

67

)
R4
= (−1)

(
67

3

)
(−1)

(
67

7

)
R0
=

(
1

3

)(
4

7

)
= +1.

(c) We have (
5

p

)
R4
=
(p

5

)
,

and as 12 = 1, 22 = 4, 32 = 9 ≡ 4 (mod 5), 42 = 16 ≡ 1 (mod 5), we have
that (p

5

)
= −1

if and only if p ≡ 2 (mod 5) or p ≡ 3 (mod 5).

(d) We argue by contradiction. Suppose that p1, . . . , pr were all the primes
congruent to 1 (mod 4). Now let

x = 2p1p2 · · · pr, N = x2 + 1.

Let q be a prime divisor of N . Then q is odd. We have

x2 ≡ −1 (mod q),

so −1 is a quadratic residue mod q. By R2, q ≡ 1 (mod 4). Hence by
assumption, q must be one of the primes p1, . . . , pr. But this is a contra-
diction, since N leaves remainder 1 when divided by each of these primes.

5 Question:
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(a) What is a quadratic form over the integers? [bookwork]

(b) In each of the following cases, state whether the quadratic form is positive
definite, negative definite, indefinite, or degenerate:

(i) 7x2 + 3xy + 4y2;

(ii) 5x2 + 4xy − 3y2.

[similar to coursework]

(c) Find a reduced positive definite quadratic form which is equivalent to

5x2 + 2xy + y2.

[similar to coursework]

(d) Show that equivalent quadratic forms have the same discriminant. [seen in
lectures]

(e) Give examples of two positive definite quadratic forms with the same dis-
criminant, which are not equivalent. Explain why the examples you gave
have the desired properties. [unseen]

Solution:

(a) A quadratic form over the integers is a function f(x, y) = ax2 + bxy + cy2

with a, b, c ∈ Z.

(b) (i) The discriminant is 32 − 4 · 7 · 4 = 9 − 112 = −103, hence negative.
Moreover, the coefficient in front of x2 is positive. Hence this quadratic
form is positive definite.

(ii) The discriminant is 42 − 4 · 5 · (−3) = 16 + 60 = 76, hence positive.
Thus the quadratic form is indefinite.

(c) We run the algorithm from the lectures:

The coefficients of the given quadratic form are a0 = 5, b0 = 2 and a1 = 1.
We want to find q1 and b1 with 2 = 2q1− b1 and −1 < b1 ≤ 1. The solution
is q1 = 1, b1 = 0, and f1(x, y) = x2 + a2y

2, where a2 = 5 − 2 · 1 + 1 = 4,
that is, f1(x, y) = x2 + 4y2, which is reduced.

(d) Let f and g be equivalent quadratic forms. Then for their matrices M
and N , we must be able to find a unimodular matrix P with integer
coefficients such that N = P>MP . Therefore, the discriminant of g is
given by − det(N), hence by − det(P>MP ) = − det(P>) det(M) det(P ) =
− det(P ) det(M) det(P ) = − det(M), which is the discriminant of f .
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(e) Consider the quadratic forms f(x, y) = x2 + 3y2 and g(x, y) = 2x2 +
2xy + 2y2. Their discriminants are both −12. As their coefficients in
front of x2 are positive, they are both positive definite. However, they
are not equivalent: f represents the integer 1 as f(1, 0) = 1. However,
g(x, y) = x2 + (x+ y)2 + y2 is always strictly bigger than 1, as g(x, y) = 1
would imply that two out of the three terms x, x + y and y would have
to vanish, but then, the remaining term would also have to vanish, forcing
x = y = 0.
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