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MTHG6128 Number Theory

Solutions to exam

1 Question:
(a) Define the terms
(i) algebraic number;
(ii) algebraic integer;

(iii) transcendental number.
[bookwork]

(b) Which of the following numbers are algebraic integers? Explain, stating
explicitly which theorems you use.

(i) /AL

(if) 3+2ﬁ;
(iif) 215,

[similar to coursework]

(c¢) Let a be an algebraic number, and suppose that a # 0. Show that % is an
algebraic number. [unseen]

(d) Give an example of an algebraic integer which is not approximable by
rationals up to order 6. Explain why the example you gave has the desired
properties. [unseen]

Solution:

(a) (i) a € C is an algebraic number if there exists a non-zero polynomial
f(z) with rational coefficients such that f(a) = 0.



(ii) o € C is an algebraic integer if there exists a monic polynomial f(z)
with integer coefficients such that f(a) = 0.

(ii) o € C is a transcendental number if « is not an algebraic number.

We had the following theorems in the lectures:

Theorem: « € C is a quadratic number if and only if & = u+vv/d for some
u,v € Q and 1 # d € Z squarefree.

Theorem: A quadratic number « is a quadratic integer if and only if o =
u + vV/d for some 1 # d € Z squarefree and for u, v satisfying

e ucZandv € Z

or

eu—3:€Z v—=ieZandd=1(mod4).

So all in all, & € C is a quadratic integer if and only if o = u 4+ vV/d for
some 1 # d € Z squarefree and for u, v satisfying

e ucZandveZ

or

eu—1€Z v—1eZandd=1(mod4).

(i) %ﬁ = 14+1V11. Soin thiscase,u =3, v =3 andd=11. Asu ¢ Z

29
and d = 11 # 1 (mod4), we conclude that 1+;/ﬁ is not an algebraic

integer.

. 2 2B=VT) 62T _ : : —

(ii) ewny. Bl 7oy, tewy. Sl B 3 — /7. So in this case, u = 3 and
v=—1. We have u € Z and v € Z, so 3+2ﬁ is an algebraic integer.

(iii) 3+%/E = 3(12\/5) = 1+2\/3 = %+%\/3 So in this case, u = %,v: % and
d=5 Asu—1=0€Z v—1i=0€Zandd=5=1(mod4), we

conclude that %475 is an algebraic integer.

Remark: The long explanation in (b) is only included for the convenience
of the checker. Students are not required to give this explanation for full
marks; it is enough to cite the relevant results from the lectures.



(c) If v is an algebraic number, then there are a,, a,_1, ..., a1, a9 € Q, at least
one of which is non-zero, such that a,a" +a,_1a" ' +... +aa+ag = 0. As
a # 0, we may divide by a” to obtain ag(1)"+a; ()" +.. 4ap_12+a, =
0. This shows that é is the root of a non-zero polynomial with rational
coefficients, hence an algebraic number.

(d) We had a theorem in the lectures saying that a root of a polynomial f is
not approximable by rationals to order deg(f) + 1. Therefore, ¥/2 is not
approximable by rationals to order 6 since it is the root of f(z) = 2° — 2.

2 Question:

(a) Calculate the value of the infinite continued fraction [3;4,2,1]. [similar to
coursework]

(b) You are given that

10;T,1,1,2,2,1,1, 1, 20]

is the continued fraction for y/113. Using this, find positive integers x and
y such that 2% + y? = 113. [similar to coursework]

(¢) You are given that
9;1,2,1,18]

is the continued fraction for +/95. Using this, find all the integer solutions
of the equation z? — 95y? = +1. [similar to coursework]

Solution:
(a) Let y be the value of [2;1]. Then y = [2;1,y] =2+ 5. So
)
o _J
i y+1
Thus
Yy —y—2=y

s -2y —-2=0
& y:1+\/§ory:1—\/§.

As y > 2, we must have y = 1 + v/3.



Now let = be the value of [3;4,2,1]. Then x = 3 + —1¢, and thus

4+’
1 1 1 2
r=34+-—-=834+-——=34+——— =3+
4+ 44 s 44 Y31 T+V3
2(7 =3 7T—v3 T76—+3
46 23 23

Remark: 4 points for calculating y correctly, 2 points for determining x
correctly.

As p =113 is a prime with p = 1 (mod 4), we know from lectures that

VD = lao;ar, ..., Qm, A, - . ., a1, 20]

for some m > 0 and positive integers ag, . . ., a,,. Let x; be the real numbers

appearing in the algorithm for finding the continued fraction of |/p, i.e.,

To = /p and a; = [2;], 41 = xia Then there are unique integers P,

Prt1+4/p
Qm+1

and Q11 with x40 = . Then x = P,,11 and y = Q41 satisfy
22 4+ y? =p.

In this case, m = 4, so we have to find x5 from the continued fraction
algorithm. We run the algorithm from the lectures: Starting with zy =

V113, we get
1 10+ +/113

ag = LI’QJ = ]_0, Ty =

o — Qo 13
1 3+ V113
T, — aq 8
do= |za] = 1, 75 = 5+ /113
2 — 2] — 4 3_x2_a2_ 11
1 6+ 113
T3 — as 7
1 8+ 113
ay = L43J 22, Ty — = .
Ty — Ay 7

So P; =8, Q5 =7, and indeed, 8% + 72 = 64 + 49 = 113.

Remark: A detailed explanation of the procedure is not required, but the
strategy should become clear. 2 points for the correct strategy, 4 points for
the computation.



(c) Assume that we are given a positive integer n which is not a square, and
that the continued fraction for \/n is given by [ag; a1, ..., an]. Let x; =
lag, ...,an_1], y1 = [a1,...,an_1] so that x1/y; is the (N —1)-th convergent
of \/n. For every positive integer m, define integers x,, and y,, by setting
T + Ymv/n = (21 + y1/n)™. We know that 22 — ny? = (—1), so there
are two cases:

If 22 —ny? = 1, then there exists no solution of the equation 2 —ny? = —1.
Moreover, every integer solution x,y of 22 —ny? = 1 is given by = x,,,, y =
Ym OF T = Tpy, Y = —Ym OF T = —Tp, Y = Y OF T = —Tp,, Yy = —Y,, for
some positive integer m.

If 22 — ny? = —1, then every integer solution z,y of x? — ny? = 1 is
given by £ = T,y = Y OF T = Tpy, Yy = —Ym OF T = —Tpy, Y = Y OF
T = —Tm,Y = —Ymn for some even integer m > 2, and every integer solution
z,yof 22 —ny? = —1lis given by & = Zpn, ¥y = Ym OF T = Ty, Y = —Ym O
T=—Tpm,Y = Ym OF T = —T,,, Yy = —¥,, for some odd integer m > 1.

We may now apply this general procedure: n = 95 is not a square, so
we can use the procedure described above. The period of the continued
fraction of /95 is N = 4. We compute z; = [9,1,2,1] and y; = [1,2, 1]:

1] =1

2,1 = 3
[1,2,1] = 1-3+1=4
9,1,2,1] = 9-4+3 =39

So x1 = 39, yy = 4. We have 27 —ny? = 392 — 95 -4 = (-1)* = 1.
Moreover, let x,, and y,, be given by z,, + ynv95 = (39 + 4/95)™, for
positive integers m. Then every integer solution z,y of 2% — 95y? = 1 is
given, up to signs, by © = x,,,y = y,, for some integer m > 1, and there is
no integer solution x,y of 2 — 95y% = —1.

Remark: 4 points for the explanation, 4 points for the computation.

Remark: The long explanations in (b) and (c) are only included for the
convenience of the checker. Students are not required to give these expla-
nations for full marks; it is enough to cite the relevant results from the
lectures.

3 Question:

(a) Let p be a prime. What is a primitive root (mod p)? What is the order
(mod p) of an integer x with 1 < x < p — 1?7 [bookwork]

>



(b) Find a primitive root (mod 13). [similar to coursework]

(c) What are the possible orders (mod 13) of an integer z with 1 < z < 127
For each possible order, find a natural number x with 1 < z < 12 which
has exactly that order (mod 13). [unseen]

(d) Let p be a prime and g a primitive root (mod p). Show that for every integer
x with 1 < 2 < p — 1, there is a natural number i with z = ¢* (mod p).
[unseen]

Solution:

(a) A primitive root (mod p) is an integer g which has order p — 1 mod p, i.e.,
g* % 1(modp) for all 1 < k < p — 2. The order (mod p) of an integer x
with 1 <z < p— 1 is the smallest integer i > 0 such that z' = 1 (modp).

(b) We have to find an element with order 12. We compute modulo 13: 22 = 4,
28 =8,24=3,2° =6, 26 = 12. As the order of 2 has to divide 12, this
computation shows that 2 is a primitive root.

(¢) The possible orders (mod 13) are precisely the divisors of 12, i.e., 1, 2, 3,
4,6 and 12. In general, we know that if ¢ is a primitive root (mod p), then
the order of ¢' (mod p) is given by m. In our case, we can take g = 2.
Then 2'? (which is congruent to 1 modulo 13) has order 1, 2° has order 2,
24 has order 3, 22 has order 4, 22 has order 6 and 2 has order 12.

(d) Assume the contrary, i.e., there exists x with 1 < z < p — 1 such that
x # ¢' (mod p) for all i. As ¢’ (mod p) only depends on 7 (mod p — 1),
we can have at most p — 2 elements in {g* (mod p): 1 <i <p—1}. Thus
there must exist two distinct integers ¢ and 7 with 1 <17,7 < p—1 such that
g' = ¢’ (mod p). Assuming that i < j, we conclude that ¢’~* = 1 (mod p).
But this is a contradiction since the order of gisp—1, and 0 < j—i < p—1.

4 Question:

(a) Let p be an odd prime, and let a be an integer. Define the Legendre symbol

(%) . [bookswork]

21
(b) Calculate the value of (ﬁ) You should state clearly any rules for com-

puting Legendre symbols that you use, but are not required to prove them.
[similar to coursework]



(c) Let p be an odd prime. Show that we have (§) = —1 if and only if
p
p =2 (mod 5) or p =3 (mod 5). [unseen]

(d) Show that there are infinitely many primes congruent to 1 mod 4. [seen in
lectures]

Solution:

a 0 ifp|a,
(—) =< +1 ifp fa and a is a quadratic residue (mod p),
—1 if p fa and a is a quadratic non-residue (mod p).

B =D =) -

(¢) We have
() =),

and as 12 =1,22=4,3>=9 =4 (mod 5), 4> = 16 = 1 (mod 5), we have
that
-
)
if and only if p = 2 (mod 5) or p = 3 (mod 5).

(d) We argue by contradiction. Suppose that pi,...,p, were all the primes
congruent to 1 (mod 4). Now let

T =2pip2 - Pr, N =a?+1.
Let g be a prime divisor of N. Then ¢ is odd. We have
7? = —1 (mod q),

so —1 is a quadratic residue mod ¢. By R2, ¢ = 1 (mod 4). Hence by
assumption, ¢ must be one of the primes pq,...,p,. But this is a contra-
diction, since N leaves remainder 1 when divided by each of these primes.

5 Question:



(e)

What is a quadratic form over the integers? [bookwork]

In each of the following cases, state whether the quadratic form is positive
definite, negative definite, indefinite, or degenerate:

(i) 72% + 3zy + 4%
(i) bz? + 4y — 3y*.
[similar to coursework]
Find a reduced positive definite quadratic form which is equivalent to
5% + 2xy + 2
[similar to coursework]

Show that equivalent quadratic forms have the same discriminant. [seen in
lectures]

Give examples of two positive definite quadratic forms with the same dis-
criminant, which are not equivalent. Explain why the examples you gave
have the desired properties. [unseen]

Solution:

(a)

(b)

(c)

A quadratic form over the integers is a function f(z,y) = ax® + bxy + cy?
with a,b,c € Z.

(i) The discriminant is 32 —4-7-4 = 9 — 112 = —103, hence negative.
Moreover, the coefficient in front of 22 is positive. Hence this quadratic
form is positive definite.

(ii) The discriminant is 4> — 4 -5 (=3) = 16 4+ 60 = 76, hence positive.
Thus the quadratic form is indefinite.

We run the algorithm from the lectures:

The coefficients of the given quadratic form are ag = 5, by = 2 and a; = 1.
We want to find ¢; and b; with 2 = 2¢; —b; and —1 < b; < 1. The solution
isq =1,b; =0, and fi(z,y) = 2® + asy?, where ay =5—-2-1+1 = 4,
that is, fi(x,y) = x* + 4y?, which is reduced.

Let f and g be equivalent quadratic forms. Then for their matrices M
and N, we must be able to find a unimodular matrix P with integer
coefficients such that N = PTMP. Therefore, the discriminant of g is
given by — det(NN), hence by — det(PTMP) = —det(P") det(M) det(P) =
—det(P) det(M) det(P) = — det(M), which is the discriminant of f.

8



(e) Consider the quadratic forms f(z,y) = x* + 3y? and g(z,y) = 22% +
27y + 2y?. Their discriminants are both —12. As their coefficients in
front of z? are positive, they are both positive definite. However, they
are not equivalent: f represents the integer 1 as f(1,0) = 1. However,
g(z,y) = 2% + (x + y)* + y? is always strictly bigger than 1, as g(z,y) = 1
would imply that two out of the three terms x, x 4+ y and y would have
to vanish, but then, the remaining term would also have to vanish, forcing
z=1y=0.



