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1 Introduction

Number theory can be thought of as having its roots in the study of Diophantine equations. Di-
ophantine equations are polynomial equations with rational coefficients which we seek to solve
while we insist the solutions should again be rational numbers.

Number theory has a long history. The Greeks knew, by about 400BC, that X 2 − 2 = 0 has no
solution in rational numbers (the solutions defines a parabola).

Babylonians before 1600BC were already interested in rational solutions to the equation X 2+

Y 2 = 1 (e.g. (X ,Y ) = (1, 0), (
3

5
,
4

5
), (

5

13
,
12

13
), . . . and the Greeks knew that there are infinitely

many of them!), with a stone tablet to prove it.
An Arab manuscript around 972 AD, more or less, asks, for which integer N , is there a right

angled triangle with areaN whose sides have rational length? Algebraically, this amounts to solving
the simultaneous equations

X 2 + Y 2 = Z2

and
XY = 2N

in positive rational numbers. In fact, the problem boils down to solving the equation

Y 2 = X 3 −N 2X

in non-zero rational numbers, and the equation defines an example of what we call elliptic curves.

Number theory is full of surprises and one does not have to be an expert in number theory to
witness them. Let me give you another example. Let E denote the equation

Y 2 + Y = X 3 − X 2

andNp denote the number of solutions to

Y 2 + Y ≡ X 3 − X 2 mod p.

Here is a table
p 2 3 5 7 11 13 17 19 · · ·

p−Np −2 −1 1 −2 1 4 −2 0 · · ·
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On the other hand, consider the following infinite product in q

f = q
∞∏
n=1

(1− qn)2(1− q11n)2

and it is an exercise in binomial expansions to find it equals

q−2q2−q3+2q4+q5+2q6−2q7−2q9−2q10+q11−2q12+4q13+4q14−q15−4q16−2q17+4q18+· · · .

Can you see a pattern? The number p−Np is just the coefficient of the p-th power of q. Is this
a coincidence, or is there any explanation for it? The Shimura-Taniyama conjecture (it is a theorem
of C. Breuil, B. Conrad, F. Diamond, R. Taylor and A. Wiles) asserts that any equation of the form

Y 2 + aY = X 3 + bX 2 + cX + d,

where a, b, c, d ∈ Q, corresponds to a power series like f in a similar manner.

Number Theory has become an extremely technical subject drawing on techniques from all
over mathematics. Nonetheless, it retains, at the heart of the subject, a particular beauty and
elegance in its simplicity of messages it inspires in people (Gauss called number theory the ‘queen
of mathematics’): you might have heard the following:

• Fermat’s Last Theorem (P. Fermat, L. Euler, ..., A. Wiles): the equation X n + Y n = Zn has
no solutions in integers when n ≥ 3.

• the Twin prime conjecture (..., Y. Zhang, J. Maynard, T. Tao, B. Green, ... not completely
proved yet): there exist infinitely many pairs of primes that differ by 2 (e. g. {3, 5} and
{17, 19}).

• the Goldbach conjecture (open): every integer (> 2) is the sum of two primes.

• the Riemann hypothesis (open): the “non-trivial” zeros of the Riemann zeta function ζ(s) =
∞∑
n=1

1

ns
in s ∈ C all have real part

1

2
(this is one of the seven Millennium problems; if you

solve one of these, you will receive one million dollars from the Clay Maths Institute).

They are extremely hard to prove. For example, it took about 350 years for the FLT to be
proved completely and this is the only one in the list that has been proved! David Hilbert, one of
the greatest mathematicians in the 19th and early 20th centuries, famously said “If I were to awaken
after having slept for a thousand years, my first question would be: has the Riemann Hypothesis
been proven?”.

Topics such as the Langlands program, the Birch-Swinnerton-Dyer conjecture, the Fontaine-
Mazur conjecture and the abc conjecture are right at the centre of very active research in number
theory that continues to inspire many researchers in mathematics.

There are a lot of number theorists in

https://www.bbc.co.uk/programmes/b00srz5b/episodes/player
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In my youth, I spent a lot of time reading entries in

https://mathshistory.st-andrews.ac.uk

I occasionally stumble upon articles from

https://www.quantamagazine.org/tag/number-theory/

2 Samplers

So what exactly are we going to learn? Inevitably, they are all about numbers (by which I normally
mean integers/natural numbers). Let p be an odd prime number. We will answer questions such as

• (quadratic reciprocity) Given a number a, is it congruent to the square of an integer mod p
(e.g. −1 ≡ 52 mod 13 but no square is congruent to−1 mod 19)? Is there an easy way (i.e.,
easier than checking all p mod p residues) to figure this out?

• (Continued fraction and Diophantine approximation) How closely can
√
p be approxim-

ated by a rational number (e.g
√
2 is approximately

141421

100000
but

1393

985
is an even better

approximation with much smaller numerator and denominator)? What do we mean exactly
by ‘good’ approximation?

• (Pell equations) Does the equation x2−py2 = 1 have a solution? What about x2−py2 = −1
(e.g. 182 − 13 · 52 = −1 but there is no solution to x2 − 19y2 = −1)?

• (Representations of primes as sums of squares) Can we express p in the form x2+y2 for some
natural numbers x and y (e.g. 13 = 32 + 22 but 19 cannot be)?

3 Revision

Let N = {1, 2, . . . } be the set of natural numbers. Let Z = {· · · ,−2,−1, 0, 1, 2, . . . } be the set
of integers.

3.1 Euclid’s algorithm

We all know by experience that if a pair of non-negative integers a and b with b > 0, there exist
integers q ≥ 0 and r ≥ 0 such that 0 ≤ r < b and

a = bq+ r.

The q (resp. r) is often referred to as the quotient (resp. remainder) when we divide a by b.
In fact, something more general is true (See Appendix): for integers a and b with b > 0 (i.e. a

can be negative!), there exist unique integers q and r such that 0 ≤ r < b and

a = bq+ r.

When the residue r = 0, we say b divides a, we often write

b|a.
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Though b has been assumed to be positive, this definition of ‘division’ holds more generally for
b = 0, i.e, 0 divides a if there exists an integer q such that a = 0q. And this forces a = 0. In other
words, the only integer which 0 divides is 0! Note that we are only considering ‘0 divides 0’, and

not considering the fraction
a
b
=

0

0
(which makes sense if b > 0 divides a). Indeed, it also works

for negative b!: for integers a and b, we say that b divides a (and write b|a) if there exists an integer
q such that a = bq.

Remark. Note that a|b means different from b|a. Also do not confuse this with b/a which is a

rational number with numerator b and denominator a (I will typically write
b
a
though).

Definition. The highest common factor, or the greatest common divisor in this course, d =
gcd(a, b) of two integers (not necessarily positive!) a and b is a non-negative integer d characterised
by the following properties:

• d|a and d|b,

• if e is a natural number satisfying e|a and e|b, then e|d.

When gcd(a, b) = 1, we often say that a and b are relatively prime, or coprime.

Example. gcd(4, 6) = 2. The only integers that divide 4 and 6 are±1 and±2. They all divide
2. The point is that gcd is defined to be non-negative.

Remark. Note that, by definition, gcd is a non-negative integer. It is certainly possible to define
it to be merely an integer satisfying the properties above (in which case 2 and−2 are both gcd(4, 6)
) but it would be more convenient for everyone to talk about the gcd.

Example. gcd(0, 0) = 0. Indeed, for any integer n ≥ 0, gcd(n, 0) = n.

To prove the latter (which specialises to n = 0), we use the definition of gcd. Let g = gcd(n, 0)
for brevity. Firstly, g divides n by definition. Therefore there exists an integer r such that n = rg.
On the other hand, since n|n and n|0 (because 0 = n0), it follows from the second property of gcd
that n|g, i.e., there exists an integer s such that g = sn. Combining, n = rg = rsn. It follows that
either n is zero or n is non-zero with rs = 1. If n is zero, g is zero (since g = s0 = 0) and we are
done. If n is non-zero, rs = 1, hence (r, s) = (1, 1) or (−1,−1). However, since both g and n are
non-negative, the only possibility is (r, s) = (1, 1), i.e., n = g.

Remark. Do you know gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b)?

Let us prove the first equality (NON-EXAMINABLE). Observe that if d is an integer, then
d|a and d|b is equivalent to d| − a and d|b. If gcd(a, b) = 0, then a = 0 and b = 0, and
both gcd’s are 0. If gcd(a, b) > 0, then gcd(−a, b) is also > 0. For if it were zero, it would
imply a = 0 and b = 0 and gcd(a, b) = 0 which is a contradiction. The aforementioned equi-
valence shows that gcd(a, b)|gcd(−a, b) and gcd(−a, b)|gcd(a, b). Since both gcd’s are positive,
gcd(a, b) = gcd(−a, b). The other equalities can be proved similarly.
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Euclid’s algorithm is a procedure to find the gcd systematically, given a pair of integers a, bwith
b > 0. The algorithm is based on the observation that

gcd(a, b) = gcd(b, r)

where r is the unique integer satisfying a = bq+ r with 0 ≤ r < b. See Appendix 2.

Note that Euclid’a algorithm computes gcd(a, b) when at least only one of them, often labelled
as ‘b’, is positive, but Remark above shows that gcd of two negative integers, a and b say, can be
computed by gcd(−a,−b) for example. The latter can be computed via Euclid’s algorithm.

Exercise. Find gcd(225, 157).

225 = 157 · 1 + 68
157 = 68 · 2 + 21
68 = 21 · 3 + 5
21 = 5 · 4 + 1
5 = 1 · 5 + 0

Repeatedly applying the ‘key observation’, one sees gcd(225, 157) = gcd(157, 68) = gcd(68, 21) =
gcd(21, 5) = gcd(5, 1) = 1.

Exercise. What is gcd(123, 456)? What is gcd(123,−456)?

456 = 123 · 3 + 87
123 = 87 · 1 + 36
87 = 36 · 2 + 15
36 = 15 · 2 + 6
15 = 6 · 2 + 3
6 = 3 · 2 + 0

On the other hand,

−456 = 123 · (−4) + 36
123 = 36 · 3 + 15
36 = 15 · 2 + 6
15 = 6 · 2 + 3
6 = 3 · 2 + 0

Euclid’s algorithm also finds a pair of integers r and s such that

ar + bs = gcd(a, b).

In the first example above, we work back up the chain:

1 = 21− 5 · 4
= 21− (68− 21 · 3) · 4 = 21 · 13− 68 · 4
= (157− 68 · 2)− 68 · 4 = 157 · 13− 68 · 30
= 157 · 13− (225− 157) · 30 = 157 · 43− 225 · 30

So r = −30 and s = 43 work. In fact:
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Proposition 1. For any d ∈ N and a, b ∈ Z, the following are equivalent:

• the equation ax + by = d is soluble (in integers) in x and y.

• gcd(a, b) divides d.

Proof. For brevity, let g denote gcd(a, b). Firstly, suppose that there exist r, s in Z such that
ar + bs = d. Since any common divisor of a and b divides the LHS, it divides d on the RHS. In
particular, g, the greatest common divisor of a and b, divides d.

Conversely, suppose that g divides d. Let d = zg for some z ∈ Z. By Euclid’a algorithm, one
can find r, s in Z such that ar + bs = g. Multiplying the equation by z, we have

zg = z(ar + bs) = a(zr) + b(zs).

Since d = zg, the pair (x, y) = (zr, zs) defines a solution for the equation ax + by = d.�

Example. We know gcd(225, 157) = 1, so 225x+157y = d is soluble in integers for any integer
d > 0. Indeed, the proof explains how to find a solution: using Euclid’s algorithm, find integers r, s
such that 225r+157s = 1. Then (x, y) = (rd, sd), as 225rd+157sd = (225r+157s)d = 1d = d.

Example. We know gcd(123,−456) = 3. It follows from the proposition that 123x +
(−456)y = 2 is not soluble. On the other hand, 123x+(−456)y = 6 is soluble, because Euclid’s al-
gorithm find a pair of integers r and s such that 123r+(−456)s = 3 and therefore (x, y) = (2r, 2s)
does the job.

One can extend these concepts to more than two numbers: if a1, . . . , aN ∈ N, then we have a
gcd d = gcd(a1, . . . , aN ) such that a1x1 + · · · aNxN = d.

3.2 Primes and factorisation

A natural number p ∈ N ∪ {0} is said to be prime if

• p > 1,

• if p = ab holds for some a, b ∈ Z, then we either have (a, b) = (p, 1), (−p,−1), (1, p) or
(−1,−p).

We are going to show that every positive integer greater than 1 can be factored into primes,
and the factorisation is unique up to the possibility of writing the factors in a different order (e.g.
12 = 2 · 2 · 3 = 2 · 3 · 2 = 3 · 2 · 2). This innocuous ‘fact’ is in fact known as the Fundamental
Theorem of Arithmetic. We will prove this rather carefully.

Proposition 2. (Bezout’s identity) Given a, b ∈ Z, there exist integers r, s such that

ar + bs = gcd(a, b).

Proof. See Example sheet 1. �

Lemma 3. Let a and b be integers and p be a prime. If p|ab, then either p|a or p|b holds.
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Proof. Suppose that p does not divide a. It suffices to prove, assuming p divides ab, that p divides
b. Since p does not divide a, gcd(a, p) = 1 [this is where we use the assumption that p is prime;
since p is a prime, it follows from the definition that a divisor of p is either±1 or±p and it is clear
that only ±1 commonly divides a as p does not divides a by assumtion]. It therefore follows that
there exists r, s in Z such that ar + ps = 1 by Bezout. Multiplying both sides by b, we obtain

b = b(ar + ps) = abr + pbs.

Since p divides ab, it divides the term abr. Also p certainly divides pbs. It therefore follows that p
divides b. �

Remark. The lemma shows that p is prime (in the sense defined above) if and only if the as-

sertion if p|ab for some integers a and b then either p|a or p|b holds holds. So it is possible to use

if... as the definition of a prime number!– in fact the latter definition is more amenable to gen-
eralisations and is used to define prime elements/prime ideals in number fields (algebraic number
theory).

To see the equivalence advertised above, we argue as follows:

Suppose firstly that if... holds. And suppose that p = αβ for some integer α and β. By

assumption, p|αβ. It then follows from if... that either p|α or p|β. If it is the former, then α must
be either p or −p (hence β is either 1 or −1), while if it is the latter, β must be either p or −p (in
which case α is either 1 or −1). It follows that p is prime.

On the other hand, suppose that p is a prime number. The lemma proves that if... holds.

Lemma 4. Let a1, . . . , aN be integers and p be a prime. If p|a1 · · · aN , then p|an for some 1 ≤ n ≤ N .

Proof. By the lemma, p divides a1 or the product a2 · · · aN . If p divides a1, we are done. Other-
wise p divides a2 · · · aN . Using the lemma again, p therefore divides either a2 or a3 · · · aN . Repeat
the argument. �

Theorem 5. (The Fundamental Theorem of Arithmetic) Any natural number greater than 1 can be written
as a product of prime numbers, and this product expression is unique apart from re-ordering of the factors.

Proof. We prove the existence of prime factorisation by induction. LetN be a natural number.
Suppose that the statement of the theorem holds for any natural number ≤ N − 1. If N itself is
a prime, then there is nothing to prove. IfN is not a prime, it is a product of two integers each of
which is < N . For these integers, we know from the inductive hypothesis that these two numbers
are indeed product of prime numbers. Putting them together,N is a product of prime numbers.

To prove the uniqueness of prime factorisation, let N = p1 · · · pr = q1 · · · qs be prime fac-
torisations of N . Since p1 divides q1 . . . qs, it follows from the lemma above that p1 divides qn for
some 1 ≤ n ≤ s. By re-ordering q’s if necessary, we may assume that p1 divides q1. Since they are
both positive integers, p1 = q1. Repeat the argument, starting with p2 · · · pr = q2 · · · qs. �

3.3 Appendix: Euclidian algorithm (PROOFS NON-EXAMINABLE)

Proposition. Let a, b ∈ Z and suppose b > 0. There exist unique q, r ∈ Z such that 0 ≤ r < b.
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Proof. Existence Let S = {a + zb | z ∈ Z, a + zb ≥ 0}. Since a ∈ S, it follows that S is
non-empty, and let r be the smallest element of S. Necessarily, r is of the form

r = a+ (−q)b ≥ 0

for some q ∈ Z.
r < b If r ≥ b, then

0 ≤ r − b = a− (q+ 1)b < a− qb = r

contradicting the minimality r. Hence r < b.

Uniqueness Suppose a = qb+ r with 0 ≤ r < b; and a = q′b+ r′ with 0 ≤ r′ < b. Observe

that r′ = a− bq′ ∈ S, hence r′ ≥ r (by the minimality of r). It follows from

r′ = a− bq′ ≥ a− bq = r

that q ≥ q′. We may let q′ = q− s for some s ≥ 0. It follows that

r′ = a = bq′ = a− b(q− s) = a− bq+ bs = r + bs.

It then follows that s = 0, therefore q = q′ and r = r′. �

Corollary. If a = qb+ r as above, then

gcd(a, b) = gcd(b, r).

Proof. Let g = gcd(a, b) and h = gcd(b, r).

Firstly suppose that g = 0. Since g divides a and b, and 0 is the only integer 0 can divide, a = 0
and b = 0. Therefore g = 0. It also follows that r = 0, hence h = 0.

On the other hand, if g > 0, then so is h. If h was 0, an argument similar to the one above
would show that g = 0 which contradicts the assumption.

g|h Since g|a and g|b, g|(a− bq), i.e., g|r. Since g|b by definition, it follows from the second

property of gcd that g|h. By the minimality of h, we then conclude that g ≤ h.
Similarly,

h|g Since h|b and h|r, h|(qb+ r), i.e., h|a. Since h|b by definition, it follows from the second

property of gcd that h|g.
Combining, g = h as both g and h are positive integers. �

3.4 Congruences and modular arithmetic

Let n be a positive natural number. We say that a, b ∈ Z are congruent mod n if n|(a − b) and
write

a ≡ b (mod n)

or even
a ≡ b

9



if ‘mod n’ is clear from the context.

Fact. Congruence mod n is an equivalence relation; the equivalence classes (there are n of
them, corresponding to the n possible remainders, 0, 1, . . . , n− 1, when we divide a number by n)
are called congruence classes modulo n. We denote by [a]n the congruence class modulo n that is
represented by a. As a set

[a]n = {z ∈ Z| z ≡ a mod n} = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . . }.

By definition, any member of [a]n can represent the class. To put it simply,

a ≡ b mod n if and only if [a]n = [b]n

We let Z/nZ denote the set of all congruence classes mod n (I would write it Fp if n is a prime
number p); it is a ring (see Supplementary notes 1) with addition

[a]n + [b]n = [a+ b]n

and multiplication:
[a]n · [b]n = [ab]n.

Remark. Strictly speaking, one needs to check that these operations are independent of rep-
resentatives one chooses, i.e., if a ≡ a′ mod n′, is it true that [a]n + [b]n = [a′]n + [b]n?

Example. The set Z/4Z has 4 classes:

[0]4 = {. . . ,−12,−8,−4, 0, 4, 8, 12, . . . }
[1]4 = {. . . ,−11,−7,−3, 1, 5, 9, 13, . . . }
[2]4 = {. . . ,−10,−6,−2, 2, 6, 10, 14, . . . }
[3]4 = {. . . ,−9,−5,−1, 3, 7, 11, 15, . . . }

and they add:
+ [0]4 [1]4 [2]4 [3]4
[0]4 [0]4 [1]4 [2]4 [3]4
[1]4 [1]4 [2]4 [3]4 [0]4
[2]4 [2]4 [3]4 [0]4 [1]4
[3]4 [3]4 [0]4 [1]4 [2]4

and multiply:

× [0]4 [1]4 [2]4 [3]4
[0]4 [0]4 [0]4 [0]4 [0]4
[1]4 [0]4 [1]4 [2]4 [3]4
[2]4 [0]4 [2]4 [0]4 [2]4
[3]4 [0]4 [3]4 [2]4 [1]4

Proposition 6. If p is a prime, then Fp is a field.
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Proof. The hardest part is to show that any non-zero element of Fp has multiplicative inverse.
Let [a] be a non-zero element (the zero element being [0]); this amounts to assuming that p does
not divide a. Since gcd(a, p) = 1, there exists r, s in Z such that ar + ps = 1 (Bezout). This
means that ar ≡ 1 mod p. Phrased in terms of the corresponding congruence classes, it follows
that [a][r] = [1], i.e. [a] has an inverse [r]. �

Remark. Observe that this proof is constructive, and the key input is Bezout’s identity/Euclid’s
algorithm.

Remark. Note that if n is not a prime, Z/nZ is not necessarily a field. For example, when
n = 4, the class [2]4 in Z/4Z does not have multiplicative inverse, i.e. there is no integer z such
that [2]4[z]4 = [1]4. This can be check from the multiplication table above and see the row/column
of [2]4. Whether z is 0, 1, 2, 3. [2]4[r]4 is never [1]4.

Note that ‘division’ makes sense only over a field– in a ring R (e.g. Z,Z/nZ,...), ‘division’ by
an element r of R is nothing other than ‘multiplication by the (multiplicative) inverse of r’, and
this operation inherently assumes that the inverse exists in R in the first place (i.e. an element s
of R such that rs = sr = 1 in R). It is only when we know it exists in R that one can write s as
1

r
. For example, in Q, it is not possible to divide a rational number by 0, because 0 does not have

multiplicative inverse; any non-zero rational number
r
s
, where r and s are both non-zero integers,

do have multiplicative inverse inverse (which we know is as
s
r
). On the other hand, the ring Z is

not closed under ‘division’, because almost all elements do not have their multiplicative inverses in

Z. For example, 2 does not have multiplicative inverse– indeed
1

2
is the inverse, but it is not an

element of Z.
What Proposition 6 ascertains is that one can perform division in Fp, or equivalently ‘mod p’–

in fact, the proof demonstrates how to find the multiplicative inverse of [a]p or, equivalently the
inverse of a mod p (an integer z such that ar ≡ 1 mod p). On the other hand, it is not possible to
do so in Z/4Z.

Example. If Fp is a field, any non-zero element has an inverse. Let p = 157. Then the congru-
ence class [225]157 defines a non-zero element in Z/157Z. What is the inverse? In other words,
what is x ∈ Z such that [225]157[x]157 = [1]157? Recall from earlier that Euclid’s algorithm gave us
157 ·43−225 ·30 = 1. Reducing mod 157, we have [−30]157[225]157 = [1]157, so x = −30works.

One of my favourite theorems in number theory:

Theorem 7 (Fermat’s Little Theorem). Let p be a prime number. Then zp ≡ z mod p for any
z ∈ N.

Remark. Do not confuse this with Fermat’s Last Theorem! In theory, both can be abbreviated
as ‘FLT’.

Proof. If p divides z, or equivalently z is congruent to 0 mod p, the assertion clearly holds. We

11



therefore suppose that z is not congruent to 0 mod p. Consider the set

{z, 2z, . . . , (p− 1)z}

and the set
{r1, . . . , rp−1}

of ‘residues’ where 1 ≤ rj ≤ p− 1 is defined to be the residue (in the range [1, p− 1]) of jz when
divided by p.

{r1, . . . , rp−1} = {1, . . . , p− 1} By definition, we only know that {r1, . . . , rp−1} is a subset
of {1, . . . , (p− 1)} but they are indeed equal. To see this, it suffices to establish if 1 ≤ i, j ≤ p− 1
are distinct, then ri and rj are distinct. This is equivalent to proving that if ri = rj (i.e. iz ≡ jzmod
p), then i ≡ j mod p (so that i = j since 1 ≤ i, j ≤ p− 1).

Suppose that ri = rj. By definition, we have iz = pqj + ri and jz = pqj + rj for some integers
qi and qj. Subtracting one from the other, we have

(i − j)z = p(qi − qj) + (ri − rj) = p(qi − qj) ≡ 0

mod p. Since z has inverse mod p (for z is coprime to p), it is possible to divide the congruence by
z and we have

(i − j) ≡ 0

mod p as desired.
The upshot of this observation is that, for every 1 ≤ j ≤ p− 1, there exists a unique 1 ≤ i ≤

p− 1 such that jz ≡ ri.

In particular, the product of all elements in {z, 2z, . . . , (p−1)z} and {r1, . . . , rp−1} = {1, . . . , p−
1} must coincide mod p. This therefore results in

p−1∏
j=1

j ≡
p−1∏
j=1

zj = zp−1

p−1∏
j=1

j.

Every j (1 ≤ j ≤ p−1) has inversemod p; therefore, bymultiplying both sides of the congruence
identity by these inverses, we obtain 1 ≡ zp−1 mod p. Multiplying z on both sides, z ≡ zpmod p. �

Here’s another proof.

Proof. Wemay suppose that z is not congruent to 0mod p. The congruence class [z] is a non-zero
element of Fp. It then follows from the Lagrange’s theorem (see the Introduction to Algebra notes)
that the order of [z] divides the order, p− 1, of the multiplicative group of Fp. It therefore follows
that [1] = [z]p−1 = [zp−1]. In other words, zp−1 ≡ 1 mod p. Multiplying both sides by z, we have
zp ≡ z mod p. �

Example. Let p = 7. If a ≡ b mod p, i.e., a and b belong to the same congruence class, then
ap ≡ bp. So it suffices to check on representatives 0 ≤ r ≤ p− 1.

z 0 1 2 3 4 5 6
z7 0 1 128 2187 16384 78125 279936

z7 − z 7 · 0 7 · 0 7 · 18 7 · 312 7 · 234 7 · 11160 7 · 39990

12



One possibly surprising application of Fermat’s LittleTheorem is that, given a numberN , there
is a chance that we will knowN is composite (i.e. not a prime). All one has to do is spot a natural
number z such that zN is not congruent to z mod N . For if N were a prime, then zN would be
congruent to z modN for any z.

Be careful that it is certainly possible that zN ≡ z mod N holds for some z even if N is not a
prime number. For example, 36 = 729 ≡ 3 mod 6 (see Example Sheet 1). What if zN ≡ z modN
holds for any z? Does it mean thatN is a prime number?

Example. 32047 ≡ 992 (mod 2047), hence 2047 is not a prime number.

3.5 Congruence equations

Proposition 8. Let a, n be natural numbers and let b be an integer. The congruence equation ax ≡ d
mod n is soluble if and only if gcd(a, n) divides d.

Proof. Suppose that ax ≡ d mod n is soluble in x, i.e., there exists an integer r such that ar ≡ d
mod n. In other words, ar + zn = d for some z ∈ Z. A common divisor of a and n, in particular,
gcd(a, n), divides the LHS and therefore the RHS.

Conversely, suppose that g = gcd(a, n) divides d. We may then let a = ga′, d = gd′ and
n = gn′. It suffices to see that the congruence equation a′x ≡ d′ mod n′ is soluble.

[Why does this suffice? Suppose that r is an integer such that a′r ≡ d′ mod n′. Evidently,
r + sn′ for any integer s is also a solution for the congruence equation, because a′(r + sn′)− d′ =
a′r− d′ + a′sn′ and both a′r− d and a′sn′ are divisible by n′. With this in mind, let t be an integer
such that a′(r + sn′)− d′ = tn′. It then follows that

a(r + sn′) = ga′(r + sn′) = g(d′ + tn′) = d + tn ≡ d

mod n. This shows that any integer congruent to r mod n′ is a solution to the congruence equation
ax ≡ d mod n.]

Since gcd(a′, n′) = 1, it follows from Bezout that there exists r, s ∈ Z such that a′r + n′s = 1.
Multiplying the both sides by d′, we find a′(d′r) + n′(d′s) = d′ and the congruence equation
a′x ≡ b′ mod n′ has a solution x = d′r mod n′. �

Remark. In the lecture, I did not talk about solving a′x ≡ d′ mod n′. I simply made appeal
to gcd(a′, n′) = 1 and Bezout to find r and s such that a′r + n′s = 1 and multiply 1 = a′r + n′s
by d = d′g to get d = d(a′r + n′s) = bdg(a′r + n′s) = a(d′r) + n(d′s). This establishes, rather
quickly, that ax ≡ d mod n has a solution x = d′r mod n. This is correct in terms of proving the
proposition, but the proof above actually shows something stronger(!), namely that d′r is a solution
mod n′, not just modulo n.

Example. Let a = 2, n = 3, b = 5. Since gcd(2, 3) = 1 and this divides 5, the theorem
asserts that the congruence equation 2x ≡ 5 mod 3 is soluble (of course, it is possible to rewrite
the congruence equation as 2x ≡ 2mod 3 but it is more instructive to keep ‘b’ in its original form).

A dogged approach (effective when n is very small):
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x mod 3 0 1 2
2x mod 3 0 2 4

2x − 5 mod 3 1 0 2

Hence x ≡ 1 mod 3 is a solution.

A slick approach (effective when n is large). While the theorem itself does not say ‘how to solve
the congruence equation’, the proof is constructive and one can follow it to find a solution. Since
gcd(2, 3) = 1, a′ = a = 2, n′ = n = 3 and b′ = b = 5. Apply Euclid’s algorithm to find
1 = (−1) · 2 + 1 · 3. Hence (−1) · 5 mod 3, i.e., 1 mod 3 is the solution for 2x ≡ 5 mod 3.

Example. Let a = 2, n = 4, b = 5. Since gcd(2, 4) = 2, the theorem says the congruence
equation 2x ≡ 5 mod 4 is not soluble. For any x mod 4, 2x is always even mod 4 and cannot
possibly be congruent to 5.

3.6 The Chinese Remainder Theorem

The CRT is about solving simultaneous congruences to different moduli. We say that m and n are
coprime if gcd(m, n) = 1.

Theorem 9. Let m, n be coprime natural numbers. Then there is a solution to the simultaneous
congruence equations:

x ≡ a (mod m)

x ≡ b (mod n).

Indeed the solution is unique modulomn in the sense that if x and y are both solutions, then x ≡ y
mod mn holds.

Proof. We firstly show the existence. Since gcd(m, n) = 1, there are integers r, s such that
mr + ns = 1. We therefore have

mr ≡ 0 mod m,

mr ≡ 1 mod n,

ns ≡ 1 mod m,

ns ≡ 0 mod n.

Let x = mrb+nsa. This is what we are looking for. Indeed, x ≡ nsa ≡ amodmwhile x ≡ mrb ≡ b
mod n.

To prove the uniqueness, suppose that x and y are solutions. On one hand, it follows from
x ≡ a ≡ y mod m that m|(x − y). On the other hand, x ≡ b ≡ y mod n implies that n|(x − y).
Since m and n are coprime, we may then conclude mn|(x − y), in other words, x ≡ y mod mn. �

More generally,

Theorem 10. Let n1, . . . , nr be pairwise coprime natural numbers. Then there is a solution,
unique modulo n1 · · · nr , to the congruences

x ≡ ai (mod ni).
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Example. Find x satisfying the following simultaneous equations:

x ≡ 2 (mod 3),

x ≡ 1 (mod 4),

x ≡ 3 (mod 5).

The CRT theorem says that there is a unique solution mod 60 which can be found either by
trial-and-error, or following the systematic argument in the proof.

Firstly, we solve the fist two equations– we apply the argument in the proof of CRT with
m = 3, n = 4, a = 2 and b = 1. By Euclid’s algorithm, we find 3 · (−1) + 4 · 1 = 1 = gcd(3, 4)
and

x = 3 · (−1) · 1 + 4 · 1 · 2 = 5

define a solution mod 12. We need to solve the following simultaneous equations

y ≡ 5 (mod 12),

y ≡ 3 (mod 5).

Since gcd(12, 5) = 1, we may apply CRT with m = 12, n = 5, a = 5 and b = 3. By Euclid’s
algorithm, we find 12 · (−2) + 5 · 5 = 1 = gcd(12, 5) and

y = 12 · (−12) · 3 + 5 · 5 · 5 = 53

defines a solution mod 60.

3.7 Prime numbers

Not that, apart from 2, every prime is congruent to either 1 or −1 ≡ 3 mod 4. Indeed,

Theorem 11. There are infinitely many primes congruent to −1 mod 4.

Proof. Suppose that there are only finitely many such primes, say q1, . . . , qr . Consider N =
4q1 . . . qr − 1. It is congruent to −1 mod 4.

N is not a prime Indeed if it were a prime, it would be one of the q’s but N is clearly bigger

than any one of them.

IfN is not a prime, then it is composite. However,

2 is not a factor ofN If it were, N would be even, but it is not (since N is congruent to −1
mod 4, it is congruent to −1 mod 2).

Similarly,

q ∈ {q1, . . . , qr} is not a factor ofN either If it were, N ≡ 0 mod q, but by definition N =

4q1 . . . qr − 1 ≡ −1 mod q.
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We may then conclude

any prime factor ofN is congruent to 1 mod 4 We have established that any prime factor of

N is not congruent to−1mod 4. On the other hand, a prime factor cannot be congruent to 0 nor
2 mod 4 (if it were, 2 would be a prime factor ofN which, we know, is not true).

However, the product of integers (we only need to observe it for primes numbers though) that
are congruent to 1 mod 4 again is congruent to 1 mod 4 and this contradicts N ≡ −1 mod 4.
Therefore, there are infinitely many primes congruent to −1 mod 4. �

Remark. It is true that there are infinitely many primes congruent to 1 mod 4, but what goes
wrong with the argument if we run it for primes congruent to 1 mod 4?

4 Euler’s totient function and primitive roots

4.1 Euler’s totient function

Definiton. Euler’s totient function, or Euler’s φ-function, is the function φ : N ! N that sends n
in N to the number of natural numbers 1 ≤ z ≤ n coprime to n (i.e. gcd(z, n) = 1).

Example. If p is a prime, φ(p) = p− 1, since 1, 2, . . . , p− 1 are all coprime to p.

Example. φ(8) = 4; the odd numbers 1, 3, 5, 7 are coprime to 8, while the even numbers
2, 4, 6, 8 are not.

Definition. IfR is a commutative ring with identity, then an element r inR is said to be a unit
if there exists s in R such that rs = 1. The units in R form a group under multiplication.

Proposition 14. The number |(Z/nZ)×| of elements in the group (Z/nZ)× of units in Z/nZ
is φ(n).

Proof. It suffices to establish that [z] is a unit in Z/nZ if and only if z is relatively prime to n.
Suppose that z is relatively prime to n, i.e., gcd(z, n) = 1. It then follows that there exists r, s

in Z such that zr + ns = 1. Hence zr ≡ 1 mod N and this is nothing other than saying that
[z][r] = [1] and [z] is a unit.

Conversely, suppose that [z] is a unit. Then there exists a congruence class [r] ∈ Z such that
[z][r] = [zr] = [1]. It follows that zr ≡ 1mod n and we may write zr+ns = 1 for some r inZ. Let
d = gcd(z, n). By definition, d divides z and divides n, and therefore it divides zr + ns. Therefore
d = 1. �

From this, we can deduce

Theorem 15. Let n be a positive integer and z be an integer such that gcd(z, n) = 1. Then
zφ(n) ≡ 1 mod n.
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Proof. Compare this proof with the proof of Fermat’s Little Theorem. For brevity, let N =
φ(n) and let z1, . . . , zN be the integers in {0, 1, . . . , n} that are relatively prime to n. Consider
the set {r1, . . . , rN} where rj is defined to be the residue 1 ≤ rj ≤ n − 1 of zzj when divided
by n. Indeed, {r1, . . . , rN} = {z1, . . . , zN}. To see this, it suffices to establish that if ri = rj
mod n for 1 ≤ i, j ≤ N , i.e., zzi ≡ zzj mod n, then i ≡ j mod n (hence i = j). But this
follows by multiplying both sides by the inverse of z (it exists because z is coprime to n). Since
{z1z, . . . , zN z} ≡ {r1, . . . , rN} = {z1, . . . , zN} mod n, we have

zN
N∏
j=1

zj =
N∏
j=1

zjz ≡
N∏
j=1

zj

Since zj for every 1 ≤ j ≤ N is invertible, so is
N∏
j=1

zj, and it follows that 1 ≡ zN mod n. �

Corollary 16. Let p be a prime. Then zp ≡ z mod p for any integer z.

[This is Fermat’s Little Theorem. In other words, Theorem 15 generalises the FLT. ]

Proof. Let n = p in the theorem. Then zp−1 ≡ 1mod p for z not divisible by p. Multiplying the
both sides by z, we have zp ≡ z mod p. On the other hand, if p divides z, then z ≡ 0 mod p and
zp ≡ 0 ≡ z mod p. �

Theorem 17.

1. If p is a prime and r > 0, then φ(pr) = pr−1(p− 1).

2. If gcd(k, `) = 1, then φ(k`) = φ(k)φ(`).

3. If n = pr11 · · · prss =
s∏
j=1

prjj , where p1, . . . , ps are distinct primes and r1, . . . , rs > 0, then

φ(n) =
s∏
j=1

prj−1
j (pj − 1) = n

s∏
j=1

(1− 1/pj)

Proof. Non-examinable. �

Example. 720 = 24 · 32 · 5

φ(720) = 23(2− 1)31(3− 1)50(5− 1) = 8 · 6 · 4 = 192.

Proposition 18. Let d be a divisor of n. Then the number of integers z with 1 ≤ z ≤ n and

gcd(z, n) = d is φ
(n
d

)
.

[Note that gcd(z, n) = d forces z to be greater than, or equal to, d!]

Proof. Let n = d`. The multiplication by d define a map

S` = {1 ≤ z′ ≤ ` | gcd(z′, `) = 1} ! {d ≤ z ≤ n | gcd(z, n) = d} = Sn.
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It suffices to establish that this map is bijective (since |S`| = φ(`)). To prove the surjectivity, let
z be an element on the RHS. Since gcd(z, n) = d, we may divide z by d. Call it z′. By definition,
1 ≤ z′ ≤ ` and gcd(z′, `) = 1, hence z′ is an element of S`. The injectivity follows immediately
because dz′ = dz′′ for z′, z′′ ∈ S` immediately implies z′ = z′′. �

Example. Let n = 60. According to the proposition, the number of integers 1 ≤ z ≤ 60 such

that gcd(z, 60) = 4 is φ(
60

4
) = φ(15) = φ(3 · 5) = (3− 1)(5− 1) = 8. They are

{4, 8, 16, 28, 32, 44, 52, 56}.

The number of integers 1 ≤ z ≤ 60 such that gcd(z, 60) = 6 is φ(
60

6
) = φ(10) = φ(2 · 5) =

(2− 1)(5− 1) = 4. They are
{6, 18, 42, 54}.

Definition. Let n ∈ N. If there exists a positive integer d such that zd ≡ 1 (mod n), then the
order of z mod n is the smallest of all such integer d. Alternatively, the order of z may be defined
as the smallest integer d such that [z]dn = [1]n in the set Z/nZ of congruence classes mod n.

Example. Let n = 7.

z mod 7 order mod 7
1 1
2 3
3 6
4 3
5 6
6 2

For example, the following table shows that the order of 3 is indeed 6:

3n 3n (mod 7)
30 1
31 3
32 2
33 6
34 4
35 5
36 1

Lemma 19. Suppose z has order d. If ze ≡ 1 mod n, then d|e.

Proof. Write e = dq + r with 0 ≤ r ≤ d − 1. It suffices to show that r = 0. It then follows
that

1 ≡ ze = zdq+r = zdqzr ≡ zr

mod n. But by definition, d is the smallest power for which zd ≡ 1. Since r ≤ d − 1, the only
possibility is that r = 0. �
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The following proposition explains ‘when’ it makes sense for us to talk about the order of an
integer mod n:

Proposition 20. For an integer z, there exists d ∈ N such that zd ≡ 1(mod n) if and only if
gcd(z, n) = 1. If so, the order of z divides φ(n).

Proof. If zd ≡ 1 mod n holds, then gcd(zd, n) = 1 (if not, i.e., if gcd(zd, n) > 1, then it would
have to divide 1, which is absurd). Evidently, gcd(z, n) = 1 (because gcd(r, n)|gcd(rd, n). To see
this, obverse that if r|gcd(z, n), then r|z and r|n, hence r|zd and r|n. As a result, it follows that
r|gcd(zd, n)).

Conversely, if gcd(z, n) = 1, then zφ(n) ≡ 1 mod n (Theorem 15), hence there do exist such
integers. The order d is the smallest among them.

The last assertion follows from the lemma. �

Example. Let n = 12. In this case, φ(12) = 4 with the integers between 1 and 12 coprime to
12 are 1, 5, 7, 11. We have 11 ≡ 1, 52 ≡ 1, 72 ≡ 1 and 112 ≡ 1 modulo 12. They have orders
1, 2, 2, 2 respectively and they divide 4. Note that not every divisor of φ(n) necessarily occurs as the
order of an element.

4.2 Primitive roots

While we are still on the subject of mod n orders of integers, we specialise n to be a prime number
p and spotlight a class of integers of order p− 1 mod p.

Definition. Let p be a prime number. An integer z is said to be a primitive root mod p if z has
order p−1(mod p). Note that, sinceφ(p) = p−1, a primitive root has themaximumpossible order.

In terms of congruence classes, this is paraphrased as follows: an integer z is a primitive root
mod p if its mod p congruence class [z]p has order p − 1 in the multiplicative group F×

p , i.e., the
smallest positive integer N such that [z]N = [zN ] = [1] holds is N = p− 1; a slick way of saying
this is that [z] generates the multiplicative group F×

p , i.e. {[z], [z]2, . . . , [z]p−1} = F×
p .

Since F×
p = {[1], . . . , [p − 1]} and if z′ ≡ z mod p then [z′] = [z], it is only necessary to

understand the orders of 1, . . . , p− 1 mod p to spot all primitive roots.

Example. What are the primitive roots mod p = 7? Looking at the table above, every integer
that is congruent to 3 or 5 mod 7 is a primitive root mod 7.

Example. Is it possible to find a primitive root mod p = 17? Since 28 ≡ 1 mod 17, 2 is not
a primitive root. In fact 3 is a primitive root mod 17. It seems rather laborious to check all 3r for
1 ≤ r ≤ 15 is not congruent to 1 mod 17 and only 316 is. However, Lemma 19 and Theorem 15
show that if d is the order of 3 mod p, then d has to divide φ(17) = 16. Since 1, 2, 4, 8, 16 are the
divisors of 16, the order d has to be one of them. To determine d exactly, we need do try-and-error:

31 = 3, 32 = 9, 34 = 81 ≡ 13 ≡ (−4), 38 ≡ (−4)2 = 16 ≡ (−1), 316 ≡ (−1)2 = 1; hence
16 is the order of 3 mod 17 and 3 is a primitive root mod 17. Here we are using the trick that if
a ≡ b mod n, then ar ≡ br mod n for any integer r ≥ 1.

Lemma 21. Let p be a prime and d be a divisor of p − 1. Then the number of elements in
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{1, . . . , p− 1} of order d mod p is either 0 or φ(d).

Proof. Suppose that the number of such elements is non-zero. So there is at least one element z
of order d mod p.

the numbers 1, z, z2, . . . , zd−1 are all distinct mod p For if zi = zj mod p with 0 ≤ i < j ≤
d − 1, then zj−i ≡ 1 mod p. But j − i < d and this contradicts the minimality of d.

these 1, z, . . . , zd−1 all have order at most d mod p For every 1 ≤ j ≤ p− 1,

(zj)d = (zd)j ≡ 1j = 1

mod p, the order of zj is at most d.
for 0 ≤ j ≤ d − 1, that zj has order d if and only if gcd(j, d) = 1

Firstly, suppose gcd(j, d) > 1. The goal is to show that zj does not order d; since we know that
zj has order at most d, this is equivalent to asserting that the order of zj is < d.

In this case, there exists g > 1 that divides gcd(n, d). Let j = gi and d = ge. In particular,
since g > 1, we have e < d. Observe zje = zdi ≡ 1, hence zj has order at most e < d.

Conversely, suppose that gcd(j, d) = 1. The goal is to show that zj has order exactly d. Let r
be the order of zj mod p; in particular, zjr ≡ 1 mod p. On the other hand, since zd ≡ 1 mod p, it
follows from Lemma 19 that d|jn. Since gcd(j, d) = 1, it follows that d|r; in particular, d ≤ r. We
already know that the order r of zj is at most d. Hence d = r. �

The proof of the lemma actually explains how to find all elements in {1, . . . , p− 1} of order d
mod p, as soon as we find an element ‘z’ of order d to go on with. Let us work out examples.

Example. Let p = 17. To find the elements of order d = 16, i.e., the primitive roots in
{1, . . . , p − 1}, firstly we find ‘z’. For example, 3 is a primitive root mod 17. According to the
proof, the elements of order d = 16 in {1, . . . , 16} therefore are

{3j | 1 ≤ j ≤ 16 and gcd(j, 16) = 1} = {3, 33, 35, 37, 39, 311, 313, 315} ≡ {3, 10, 5, 11, 14, 7, 12, 6}.

The right-most is worked out by finding rj which is congruent to 3j mod 17 satisfying 0 ≤ rj ≤ 16.

To find the elements of order d = 8, we use 2 which has order 8mod 17. Then the elements of
order 8 in {1, . . . , 16} are

{2j | 1 ≤ j ≤ 7 and gcd(j, 8) = 1} = {21, 23, 25, 27} ≡ {2, 8, 15, 9}.

As is more or less clear from the proof of the lemma and the examples that we do not know yet

if there is indeed an element in {1, . . . , p − 1} of order d mod p exists at all or not (to start the
process). The following proves the ‘existence’.

Theorem 22. Let p be a prime. For every number d dividing p − 1, let Sdp−1 denote the set of
elements in {1, . . . , p− 1} of order d mod p. Then

|Sdp−1| = φ(d).
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In particular, there are φ(p− 1) primitive roots mod p.

Proof. Let ϕ(d) denote the number |Sdp−1| of elements in {1, . . . , p− 1} of order d mod p. The
goal is to show that ϕ(d) = φ(d). We show

(a)
∑
d|(p−1)

φ(d) = p− 1,

(b)
∑
d|(p−1)

ϕ(d) = p− 1,

(c) For any d, we have ϕ(d) ≤ φ(d).

It follows immediately from these that ϕ(d) = φ(d) for d|(p− 1).

(a) We have

{1, . . . , p− 1} =
⋃

d|(p−1)

{1 ≤ z ≤ p− 1 | gcd(z, p− 1) = (p− 1)/d }

since every 1 ≤ z ≤ p− 1 satisfies that gcd(z, p− 1) = (p− 1)/d for some d.

By Proposition 18, |{1 ≤ z ≤ p− 1 | gcd(z, p− 1) = (p− 1)/d }| is indeedφ
(
(p− 1)/

(p− 1)

d

)
=

φ(d). Hence (a) follows.

(b) We have

{1, . . . , p− 1} =
⋃

d|(p−1)

{1 ≤ z ≤ p− 1 | z has order d mod p} =
⋃

d|(p−1)

Sdp−1

since, by Fermat’s LittleTheorem, every integer 1 ≤ z ≤ p−1 has somemod-p order d that divides
p− 1. Hence (b) follows.

(c) Lemma 21 shows the stronger result that, for every d|(p − 1), we have either ϕ(d) = 0 or
ϕ(d) = φ(d). �

Example. p = 7.

d 1 2 3 6
Sd {1} {6} {2, 4} {3, 5}
ϕ(d) 1 1 2 2
φ(d) 1 1 2 2

Theorem 23 Let z be a primitive root mod p. Then the order mod p of zn is equal to (p −
1)/gcd(n, p− 1).

Proof (NON-EXAMINABLE). It is possible to tinker the proof of Lemma 21 to prove this, but
we will provide a direct proof. Let gcd(n, p− 1) = r and write n = rk and (p− 1) = r`. We let d
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denote the order of zn mod p. The goal is to show that d = ` .

d|` By definition, gcd(k, `) = 1. We have

(zn)` = zn` = zrk` = z(p−1)k ≡ 1k = 1

mod p (the last congruence follows because the order of z is p− 1). Hence it follows from Lemma
19 that d|`.

`|d Since z has order p− 1, it follows from Lemma 19 that p− 1 divides nd (as we know that

the order of zn is d, hence znd ≡ 1 mod p). In other words, r` = (p− 1) divides rkd = nd, hence
` divides kd. On the other hand, ` is coprime to k, hence ` divides d. Combining d|` and `|d, we
obtain d = ` as desired. �

5 Quadratic residues and non-residues, Gauss reciprocity law

The goal of this section is to decide, when p is an odd prime, whether the congruence equation

x2 ≡ a (mod p)

has integer solutions or not, for any integer a not divisible by p.

Definition. Let a be an integer not divisible by p. It is a quadratic residue (mod p) if there
exists an integer z with z2 ≡ a(mod p); and a is a quadratic non-residue if no such z exists.

Remark. It makes sense to define an integer a, divisible p, to be a quadratic residue mod p. As
a ≡ 0 mod p by assumption, for any z divisible by p (e.g. z = 0), we have z2 ≡ 0 ≡ a mod p. On
the other hand, this ‘exceptional’ case breaks ‘symmetry’ and we will not lose much by excluding it
from the mix.

Remark. If a ≡ b (mod p), then a is a quadratic residue if and only if b is. Therefore, it suffices
to consider a ∈ {1, . . . , p− 1}.

To work out which integers 1 ≤ a ≤ p − 1 are quadratic residue mod p or not, one way of
doing it is to list all square integers mod p.

Example Let p = 3.

a mod 3 a2 mod 3
1 1
2 1

So, the quadratic residues are the integers congruent mod 3 to

1,
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while the quadratic non-residues are the integers congruent mod 3 to

2

Example. Let p = 7.

a mod 7 a2 mod 7
1 1
2 4
3 2
4 2
5 4
6 1

So, the quadratic residues are (the integers congruent mod 7 to)

1, 2, 4,

while the quadratic non-residues are (the integers congruent mod 7 to)

3, 5, 6.

Example. Let p = 11.

a mod 11 a2 mod 11
1 1
2 4
3 9
4 5
5 3
6 3
7 5
8 9
9 4
10 1

So, the quadratic residues are (the integers congruent mod 11 to)

1, 3, 4, 5, 9

while the quadratic non-residues are (the integers congruent mod 11 to)

2, 6, 7, 8, 10

Remark. Have you noticed that a2 ≡ (p− a)2 ≡ (−a)2 mod p? Because of this, one only has

to check up to a ≤ p
2
in general.

Let p be an odd prime number. By Theorem 22, there exists a primitive root z mod p (in fact
there are φ(p− 1) primitive roots mod p exist). Consider the the set

{1, z, z2, . . . , zp−2}.
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Firstly, none of the elements is congruent to 0 mod p. If it were, say zj ≡ 0 mod p for some
1 ≤ j ≤ p− 2 (if j = 0, then zj = 1 and this is clearly not congruent to 0mod p), then z ≡ 0mod
p. This follows since z has (multiplicative) inverse (more precisely zp−2).

Secondly, the set {1, z, z2, . . . , zp−2} is is in bijection with

{1, . . . , p− 1}.

An alternative way of phrasing this is that {[1], [z], . . . , [zp−2]} = {[1]p, . . . , [p − 1]}. To see the
bijection, it suffices to show that the zj’s are all distinct mod p, as this implies that the residues of
zj are all distinct and {1, 2, . . . , p− 1} is the set of all possible residues (for integers not divisible
by p). To show that the zj are distinct mod p, suppose that they are not distinct and that there exist
integers 0 ≤ i < j ≤ p− 2 such that zi ≡ zj mod p. Then, since z has multiplicative inverse mod
p, we see that zj−i ≡ 1 mod p. However, 1 < j − i < p− 1 and this contradicts the minimality of
the order p− 1 of z mod p.

It follows from this discussion that

if a is an integer not divisible by p, then a ≡ zj for some 0 ≤ j ≤ p− 2

because the residue of awhen divided by p defines an element of {1, . . . , p−1}. With this in mind:

Proposition 24. a is a quadratic residue mod p if and only if a is an even power of z; and is a
quadratic non-residue if and only if it is an odd power of z.

Proof. We show that zj is a quadratic residue if and only if j is even .

Suppose, firstly, that j is even and let j = 2i. Then zj = (zi)2, hence zj is clearly a quadratic
residue. Conversely, suppose that a ≡ zj is a quadratic residue, hence there exists an integer b such
that a ≡ b2 mod p. Replace b by its residue if necessary, we may assume that 1 ≤ b ≤ p − 1. As
observed earlier, there must exist 0 ≤ i ≤ p − 2 such that b ≡ zi mod p. Substituting, we have
zj ≡ a ≡ b2 ≡ z2i. Since z is primitive and has inverse, we deuce that z2i−j ≡ 1 mod p. It then
follows from Lemma 19 that p − 1 divides 2i − j. Since 2i and p − 1 are both even [this is where
the assumption that p is odd is used!], we then conclude that j is even, as desired. �

Example. Let p = 7. We know that z = 3 is a primitive root mod 7.

3j 3j mod 7
30 1
31 3
32 2
33 6
34 4
35 5
36 1

So any integer congruent to 1, 2 or 4mod 7 is a quadratic residue, while any integer congruent
to 3, 5 or 6 is a quadratic non-residue. This is consistent with the example earlier.
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5.1 the Legendre symbol

Definition. The Legendre symbol is defined by

(
a
p

)
=


0 if p|a
+1 if p does not divide a and a is quadratic residue mod p
−1 if p does not divide a and a is quadratic non-residue mod p

Remark. By definition, for any integer a not divisible by p, we have
(
a
p

)(
a
p

)
= 1.

Theorem 25.

(Rule 0) If a ≡ b mod p, then
(
a
p

)
=

(
b
p

)
.

(Rule 1) If p is an odd prime and a, b ∈ Z, then(
ab
p

)
=

(
a
p

)(
b
p

)
(Rule 2) If p is an odd prime, then(

−1

p

)
= (−1)(p−1)/2 =

{
+1 if p ≡ 1 mod 4
−1 if p ≡ 3 mod 4

(Rule 3) If p is an odd prime, then(
2

p

)
= (−1)(p

2−1)/8 =

{
+1 if p ≡ 1 or 7 mod 8
−1 if p ≡ 3 or 5 mod 8

(Rule 4) (Quadratic Reciprocity) For any pair of distinct odd primes p and q,(
p
q

)(
q
p

)
= (−1)(p−1)(q−1)/4 =

{
−1 if p ≡ q ≡ 3 mod 4
+1 otherwise

Before proving these assertion,

Example.

(
13

17

)
= 1. Firstly, Rule 4 asserts that

(
13

17

)(
17

13

)
= (−1)

13−1
2

17−1
2 = 1, hence(

13

17

)
is computed by

(
17

13

)
. We then make appeal to Rule 0 to deduce that

(
17

13

)
=

(
4

13

)
since 17 ≡ 4 mod 13. On the other hand, Rule 1 says

(
4

13

)
=

(
2

13

)(
2

13

)
= 1.

Example. 38 is a quadratic residue mod 43. One way of checking this, of course, is to solve the

congruence equation x2 ≡ 38 mod 43. We will use Theorem 25 to prove

(
38

43

)
= 1:
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(
38

43

)
=

(
2

43

)(
19

43

)
(Rule 1)

= −
(
19

43

)
(Rule 3)

=

(
43

19

)
(Rule 4)

=

(
5

19

)
(Rule 0)

=

(
19

5

)
(Rule 4)

=

(
4

5

)
(Rule 0)

= +1 (4 ≡ 22 mod 5)

Of course, this not the only way to get to

(
38

43

)
= 1. For example,

−
(
19

43

)
= −

(
−24

43

)
(Rule 0)

= −
(
−1

43

)(
2

43

)2(
6

43

)
(Rule 1)

=

(
6

43

)
(Rule 2)

=

(
49

43

)
(Rule 0)

=

(
7

43

)2

(Rule 1)

= +1

Remark. Even if we know that 38 is a quadratic residue mod 43 in terms of the Legendre sym-
bol, we still do not know the solutions to the congruence equations x2 ≡ 38mod 43. We will come
back to this issue shortly.

Corollary 26. If p is an odd prime and not equal to 3, then(
3

p

)
=

{
+1 if p ≡ 1 or 11 mod 12
−1 if p ≡ 5 or 7 mod 12

Proof. By Rule 4, it follows that

(
3

p

)(p
3

)
= (−1)

p−1
2

3−1
2 = (−1)

p−1
2 , hence

(
3

p

)
=

 +
(p
3

)
if p ≡ 1 mod 4,

−
(p
3

)
if p ≡ 3 mod 4.

Also (p
3

)
=

{
+1 if p ≡ 1 mod 3
−1 if p ≡ 2 mod 3
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since 1 is a quadratic residue mod 3 while 2 is not (see Example above). Combining these:

(
3

p

)
=


+
(p
3

)
if p ≡ 1 mod 4, which yields

{
+1 if p ≡ 1 mod 3,
−1 if p ≡ 2 mod 3,

−
(p
3

)
if p ≡ 3 mod 4, which yields

{
−1 if p ≡ 1 mod 3,
+1 if p ≡ 2 mod 3,

hence(
3

p

)
=

{
+1 if (1) p ≡ 1 mod 4 & p ≡ 1 mod 3 or (2) p ≡ 3 mod 4 & p ≡ 2 mod 3,
−1 if (3) p ≡ 1 mod 4 & p ≡ 2 mod 3 or (4) p ≡ 3 mod 4 & p ≡ 1 mod 3.

For example, (2) amounts to finding the prime numbers in the solutions of the system of con-
gruence equations x ≡ 3 mod 4 & x ≡ 2 mod 3. By the Chinese Reminder Theorem, its unique
solution is x ≡ (−1) ≡ 11 mod 12. Hence (2) is equivalent to p ≡ 11 mod 12. Do similar calcu-
lations to this for (1), (3) and (4). �

Let us prove Rule 1 and Rule 2.

Proof of Rule 1. If either a or b is divisible by p, the assertion follows immediately. We therefore
assume that both a and b are not divisible by p.

Let z be a primitive root mod p (it exists byTheorem 22). As we saw in the proof of Proposition
24, a (being not divisible by p) is congruent to zj mod p for some 0 ≤ j ≤ p− 2 and it follows that(
a
p

)
= (−1)j. On the other hand, we may also let b ≡ zi for some 0 ≤ i ≤ p− 2, and therefore(

b
p

)
= (−1)i. Then ab ≡ zi+j and therefore

(
ab
p

)
= (−1)i+j = (−1)j(−1)i =

(
a
p

)(
b
p

)
. �

Proof of Rule 2. Let z be a primitive rootmod p and let ζ = z(p−1)/2. We then have ζ2 = zp−1 ≡ 1
mod p, but ζ is not congruent to 1 mod p (if it were, z would have order (p − 1)/2 < (p − 1),
contradicting the minimality of the order p− 1), so it has to be congruent to−1mod p. It follows
that −1 is a quadratic residue (resp. non-residue) if (p − 1)/2 is even (resp. odd), i.e., if p ≡ 1
(resp. p ≡ 3) mod 4. �

Proposition 27 (Euler’s Criterion). Let a be an integer not divisible by p. Then(
a
p

)
≡ a(p−1)/2 (mod p).

Proof. Let z be a primitive root mod p and let a ≡ zj mod p for some 0 ≤ j ≤ p− 2 (as seen in
the proof of Proposition 24). Since zp−1 ≡ 1 mod p, we have

a(p−1)/2 ≡ zj(p−1)/2 ≡
{

1 if j is even
z(p−1)/2 if j is odd

On the other hand, we know from the proof of Rule 2 that z(p−1)/2 ≡ −1 mod p. Combining
this into the mix, we have

a(p−1)/2 ≡
{

1 if j is even
−1 if j is odd
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By Proposition 24, the RHS is exactly the Legendre symbol

(
a
p

)
. �

Remark. One can indeed use this proposition to prove Rule 1.

5.2 Solving the equation x2 ≡ a mod p

Using Legendre symbol and the quadratic reciprocity, it is possible to quickly determine whether
or not the equation

x2 ≡ a (mod p)

has a solution, when p is an odd prime and a is not divisible by p. It only tells us the existence, or
non-existence of a solution, and does not tell us how to find it.

Before we delve into the subject, let us ask ourselves: how many solutions are we expected to
find (mod p)? It is the quadratic equation, so there should be max two solutions (mod p). Can we
have all the solutions? Suppose x = z is a solution for the equation above. Then −z will automat-
ically be the other solution. To see this, firstly observe that (−z)2 = z2 ≡ a mod p. Note that
−z is distinct from z mod p; for if it were, then 2z ≡ 0 mod p and therefore z ≡ 0 (since p and
2 are coprime); and 0 ≡ z2 ≡ awould be a contradiction to the assumption that p does not divide a.

Proposition 28. Let p be a prime congruent to 3mod 4 (hence (p+1)/4 is an integer). Suppose

that

(
a
p

)
= 1. Then z = a(p+1)/4 is a solution to the equation x2 ≡ a mod p.

Proof. By Euler’s criterion,

z2 = a(p+1)/2 = a(p−1)/2+1 ≡
(
a
p

)
a = a.

�

Example. Find all solutions z to each of the following equations with 1 ≤ z ≤ p = 131:

1. x2 ≡ 2 mod 131,

2. x2 ≡ 3 mod 131.

Proof. 1) Firstly, we need to know if there are solutions. To this end, we compute the Legendre
symbol: (

2

131

)
= −1

since 131 ≡ 3 mod 8 (Rule 3). Hence there are no solutions.

2) Since (
3

131

)
R4
= −1

(
131

3

)
R0
= −1

(
2

3

)
= 1,

the equation does have (two) solutions. Using Proposition 28, the solutions are

x ≡ ±3(131+1)/4 ≡ ±333
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mod 131. We compute 333 mod 131. To see this, 34 = 81, hence 38 = 812 ≡ 11 mod 131. As
316 ≡ 112 ≡ −10, 332 ≡ (−10)2 = 100 mod 131. Finally,

333 ≡ 100 · 3 ≡ 38

mod 131. On the other hand,

−3333 ≡ −300 ≡ −38 ≡ 93

mod 131. The solutions for x2 ≡ 3 mod 131 are 38 and 93 mod 131.

Proposition 29. Let p be a prime congruent to 1 mod 4. Suppose that

(
a
p

)
= −1. Then

z = a(p−1)/4 is a solution to the equation x2 ≡ −1 mod p.
Proof. By Euler’s criterion,

z2 = a(p−1)/2 ≡
(
a
p

)
= −1.

�

Example. Find all solutions z to the equation

x2 ≡ −1 (mod 229)

with 1 ≤ z ≤ 229. The first step is to find a quadratic non-residue ‘a’. This is done by trial and
error. Note that 1 is always a quadratic residue. So let’s try 2:(

2

229

)
R3
= −1

since 229 ≡ −3 mod 8. Hence, using Proposition 29,

z = 2(229−1)/4 = 257

mod 229 is a solution to the equation. To compute 257, we observe

28 ≡ 27,

216 ≡ 272 ≡ 42

and
232 ≡ 422 ≡ 161.

It therefore follows that

257 = 232+16+8+1 ≡ 161 · 42 · 27 · 2 ≡ 122

mod 229. So 122 mod 229 is a solution. Since −122 ≡ 107 mod 229, 107 is also a solution.
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5.3 Hensel’s lemma

If P(x) is a polynomial in Z[x], then let P ′(x) ∈ Z[x] denote its first (formal) derivative with
respect to x.

Theorem 30. Let p be a prime and N ≥ 1 be an integer. Suppose that there exists z ∈ Z such
that P(z) ≡ 0mod pN . If P ′(z) is not congruent to 0mod p, then there exists an integer r, unique
mod p, such that z′ = z+ rpN satisfies that P(z′) ≡ 0 mod pN+1.

Remark. If z satisfies P(z) ≡ 0 mod pN+1, it certainly satisfies P(z) ≡ 0 mod pN . The the-
orem proves, under certain conditions, that one can prove the converse, i.e., one can ‘lift’ a mod pN

solution of the polynomial P to a mod pN+1 solution.

Proof. Suppose that P has degree d. Let z be an integer such that P(z) ≡ 0 mod pN .
Firstly, the Taylor expansion with respect to z finds d + 1 integers c0, . . . , cd (some of them

could be zero) such that

P(x) =
d∑
j=0

cj(x − z)j.

For 0 ≤ j ≤ d, it is easy to check P (j)(z) = cjj! and cj = P (j)(z)/j! is an integer. Substituting back
into the expansion, we therefore get

P(x) =
d∑
j=0

P (j)(z)
j!

(x − z)j.

Substituting x = z+ rpN , we then get

P(z+ rpN ) =
d∑
j=0

P (j)(z)
j!

(rpN )j.

It therefore follows that
P(z+ rpN ) ≡ P(z) + P ′(z)rpN

mod p2N . It follows that

P(z+ rpN ) ≡ 0 mod pN+1 if and only if P(z) ≡ −rpNP ′(z) mod pN+1

(because terms divisible by p2N are certainly divisible by pN+1). Since P(z) ≡ 0 mod pN by
assumption, we may cancel a factor of pN from this equation so that

P(z+ rpN ) ≡ 0 mod pN+1 if and only if
P(z)
pN

≡ −rP ′(z) mod p.

By assumption, gcd(P ′(z), p) = 1 and P ′(z) therefore has an inverse mod p; we shall call it Q ′(z).
It follows that

P(z+ rpN ) ≡ 0 mod pN+1 if and only if r ≡ −P(z)
pN

Q ′(z) mod p.
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This proves the existence and uniqueness of r mod p. �

Remark. The proof explicitly constructs a lift of the mod pN solution P(zN ) ≡ 0 to a mod
pN+1 solution zN+1 by defining it to be

zN+1 ≡ zN − P(zN )Q ′(zN )

mod pN+1 (whereQ ′(zN ), as in the proof, is the inverse of P ′(zN )mod p). Since pN divides P(zN )
by assumption,

zN+1 ≡ zN

mod pN . It is in this sense that zN+1 is a lift of zN .

Example. Find all solutions to x2 + 1 ≡ 0 mod 53.

(Step 1) Find a solution mod 5. By trial and error,±2mod 5 are the solutions to x2+1mod 5.

(Step 2) Let z = 2 and see if it is possible to lift this mod 5 solution to a mod 52 solution, using
the ‘algorithm’ in the proof. Firstly, since P ′(x) = 2x, we have P ′(z) = 4 which is manifestly not
congruent to 0mod 5. As a result, P ′(z) has an inverse Q ′(z); indeed Q ′(z) ≡ 4mod 5. We know

z1 ≡ z− P(z)Q ′(z) ≡ 2− 5 · 4 = −18 ≡ 7 mod 52

is a mod 52 solution.

(Step 3) See if we can lift the mod 52 solution z1 to a mod 53 solution. We observe P(z1) =
P(7) = 72+1 = 50 and the inverseQ ′(z1) of P ′(z1) = P ′(7) = 2 · 7 ≡ 4 is, for example, 4mod
5. We then know that

z2 ≡ z1 − P(z1)Q ′(z1) ≡ 7− 50 · 4 ≡ 57 mod 53

is a mod 53 solution.

To find the other solution, we start with z = −2 and we would get z2 ≡ −57 ≡ 68 mod
53.(Exercise to fill in the argument).

To sum up, 57 and 68 mod 53 are the (two) solutions to x2 + 1 ≡ 0 mod 53, since the Hensel
lift is unique and any solution to x2 + 1 ≡ 0 mod 53 is a solution to x2 + 1 ≡ 0 mod 5.

Remark. This process can be iterated to find roots of P(x) mod 5r for any r.

Example. Find all solutions to x3 + 10x2 + x + 3 ≡ 0 mod 33.

(Step 1) Find a solution mod 3. Since x3 +10x2 + x+3 ≡ x3 + x2 + x mod 3, it is easy to see
0 and 1 mod 3 are the solutions (mod 3).
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(Step 2) Let z = 0 and see if it is possible to lift the mod 3 solution z to a 32 solution z1. As
P ′(z) ≡ 1 mod 3, we can lift the mod 3 solution z = 0 to a mod 32 solution

z1 = z− P(z)Q ′(z) ≡ 0− 3 · 1 ≡ 6 mod 32.

(Step 3) See if mod 32 solution z1 = 6 lifts to a 33 solution. As P(z1) = 63+10 · 62+6+3 =
585 ≡ 18 mod 33 and P ′(z1) = 3 · 62 + 20 · 6 + 1 ≡ 1 mod 3,

z2 ≡ z1 − P(z1)Q ′(z1) ≡ 6− 18 · 1 ≡ 15 mod 33

does the trick.

We would be tempted to carry out the same process starting with z ≡ 1mod 3, but P ′(z) ≡ 0
in this case, and we need to argue differently. If z1 were a mod 32 lift of z ≡ 1 mod 3, then z1
would have to be 1 mod 3. Therefore z1 would be either 1, 4, 7 mod 32. However, none of these is
a solution to P mod 32:

P(1) ≡ P(4) ≡ P(7) ≡ 6 mod 32

We therefore conclude that there is no mod 32 lift. There is no mod 33 lift either, for if there
were, it would define a mod 32 lift, which, we know, does not exist. In summary, the equation
x3 + 10x2 + x + 3 ≡ 0 mod 33 has only one solution 15 mod 33.

Remark. There is no general behaviour to determine when P ′(x) ≡ 0 mod p.

6 Continued fractions

6.1 Finite continued fractions

Recall the calculation of gcd(225, 157) = 1 in terms of Euclid’s algorithm:

225 = 157 · 1 + 68
157 = 68 · 2 + 21
68 = 21 · 3 + 5
21 = 5 · 4 + 1
5 = 1 · 5 + 0

We may interpret these steps into the following:

21
5

= 4 + 1
5

68
21

= 3 + 1
4+ 1

5
157
68

= 2 + 1
3+ 1

4+1
5

225
157

= 1 + 1
2+ 1

3+ 1

4+1
5

These expressions are called continued fractions.

Definition. ForN ≥ 1, α, α1, . . . , αN−1 ∈ Z and αN ∈ R, we will write

[α; α1, . . . , αN−1, αN ]

32



to mean

α +
1

α1 +
1

. . . +
1

αN−1 +
1

αN

.

When ‘N = 0’, we only allow [α; ] to mean α for α ∈ Z.

By definition,

[α; α1, . . . , αN ] = [α; α1, . . . , αN−2, αN−1+
1

αN
] = [α; α1, . . . , αN−3, αN−2+

1

αN−1 +
1

αN

] = · · · .

For example,

21

5
= [4; 5]

68

21
= [3; 4, 5]

157

68
= [2; 3, 4, 5]

225

157
= [1; 2, 3, 4, 5]

Remark. Note you cannot ‘add’ continued fractions: for example, [1; 1] = 1 +
1

1
= 2, so

[1 : 1] + [1 : 1] is 4 (or [4; ]). On the other hand [1 + 1; 1 + 1] = [2; 2] = 2 +
1

2
=

5

2
.

Proposition 31. Let r = s/t be a rational number r > 1 in its lowest terms, in the sense
that gcd(s, t) = 1. Then r can be written as a continued fraction [α; α1, α2, . . . , αN ] for some
α, α1, . . . , αN ∈ N with αN > 1. If t = 1 (i.e. r = s is an integer), then the continued faction is
just [s; ].

Remark. Conversely, any sequence α, α1, . . . , αN of positive integers with αN > 1, defines a
unique rational number > 1: whenN = 0,

[α; ] = α = αN > 1

and, whenN > 0,
[α; α1, . . . , αN ]

may be defined inductively

[αj; αj+1, . . . , αN ] = αj +
1

[αj+1; αj+2, . . . , αN ]

33



as j assumesN −1,N −2, . . . , 0, starting with [αN−1; αN ] = αN−1+
1

αN
. By induction, for every

0 ≤ j ≤ N−1, [αj; αj+1αj+1, . . . , αN ] is a rational number> 1. Indeed, since αN−1 ≥ 1 and
1

αN
>

0, it follows that [αN−1; αN ] = αN−1 +
1

αN
> 1 and it is evidently a rational number. Suppose

that [αj+1; αj+1, . . . , αN ] is a rational number > 1. Then since αj ≥ 1 and
1

[αj+1; αj+1, . . . , αN ]
, it

follows that [αj; αj+1, . . . , αN ] = αj +
1

[αj+1; αj+1, . . . , αN ]
> 1.

Proof. We run the Euclid’s algorithm:

s = αt + t1  
s
t
= α +

t1
t

t = α1t1 + t2  
t
t1

= α1 +
t2
t1

t1 = α2t2 + t3  
t1
t2

= α2 +
t3
t2

· · ·
tN−2 = αN−1tN−1 + 1  

tN−2

tN−1

= αN−1 +
1

tN−1

tN−1 = αN · 1  tN−1 = αN

We have
1 < tN−1 < · · · < t1 < t < s,

and substituting these all, we deduce

r =
s
t
= α +

1

α1 +
1

. . . +
1

αN−1 +
1

αN

,

in other words, r = [α; α1, . . . , αN ]. �

The following algorithm may be more useful: following the notation from the proof of Propos-
ition 31, we firstly let

ρ =
s
t
(= r), ρ1 =

t
t1
, . . . , ρj =

tj−1

tj
, . . . , ρN−1 =

tN−2

tN−1

, ρN = tN−1

and strive to relate ρj to ρj+1; this leads to an algorithm computing αj’s and ρj’s without involving
tj’s (this somehow knocks off repeated/redundant tj’s in the process).

Firstly, note that, by definition, apart from j = N , ρj is NOT an integer; it is a rational number

strictly greater than 1 (because ρj =
tj−1

tj
and tj < tj−1).

Secondly, as we have
tj−1

tj
= αj +

tj+1

tj
,
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i.e.,

ρj = αj +
1

αj+1

for 0 ≤ j ≤ N − 1 (where we let t−1 = s, t0 = t, α0 = α). It therefore follows that

ρj+1 =
1

ρj − αj

for 0 ≤ j ≤ N − 1.
The following algorithm bypasses the Euclid’s algorithm and only keeps track of the ρj’s (with

the goal of computing αj’s); and the process stops when it reaches an integer ρN .
Definition. For ρ in R, we let bρc denote the largest integerN satisfyingN ≤ ρ.

Example. For 0 ≤ j ≤ N − 1,
αj = bρjc.

This follows simply from ρj = αj +
1

ρj+1

and ρj+1 > 1. Furthermore,

αN = bρNc = ρN .

Then

α = brc = bρc ⇒ ρ1 =
1

ρ − α
↙

α1 = bρ1c ⇒ ρ2 =
1

ρ1 − α1

↙
...
↙

αN−1 = bρN−1c ⇒ ρN =
1

ρN−1 − αN−1

∈ N

↙
αN = bρNc = ρN

Example. r =
87

38
.

α = b87
38

c = 2 ⇒ ρ1 =
1

87
38

− 2
=

38

11
↙

α1 = b38
11

c = 3 ⇒ ρ2 =
1

38
11

− 2
=

11

5
↙

α2 = b11
5
c = 2 ⇒ ρ3 =

1
11
5
− 2

=
5

1
∈ N

↙

α3 = b5
1
c = 5 = ρ3
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Hence r = [α; α1, α2, α3] = [2; 3, 2, 5].

Remark. This algorithm allows us to compute the continued fraction for a non-positive rational number–
the only difference from ones for positive rational number is that we need to allow non-positive

α’s as a result): let us compute r = −3

5
following the algorithm:

α = b−3

5
c = −1 ⇒ ρ1 =

1

−3
5
− (−1)

=
5

2
↙

α1 = b5
2
c = 2 ⇒ ρ2 =

1
5
2
− 2

=
2

1
∈ N

↙

α2 = b2
1
c = 2 = ρ2

Hence −3

5
= [−1; 2, 2]. On the other hand, r =

3

5
is computed by

α = b3
5
c = 0 ⇒ ρ1 =

1
3
5
− 0

=
5

3
↙

α1 = b5
3
c = 1 ⇒ ρ2 =

1
5
3
− 1

=
3

2
↙

α2 = b3
2
c = 1 ⇒ ρ3 =

1
3
2
− 1

=
2

1
∈ N

↙

α3 = b2
1
c = 2 = ρ3

Hence
3

5
= [0; 1, 1, 2].

When the last term of the continued fraction expression satisfies αN > 1, it is possible to prove
the uniqueness of the expression:

Theorem 32 If r is a rational number with

r = [α; α1, . . . , αk] = [β; β1, . . . , β`]

where α, α1, . . . , αk, β, β1, . . . , β` are non-negative integers such that αk > 1 and β` > 1, then
k = ` and αj = βj for every j.

Proof. We prove this by induction on k.

Suppose k = 0. Then r = α is an integer. If ` > 0, then r = β +
1

[β1; β2, . . . , β`]
with its

fraction 0 <
1

[β1; β2, . . . , β`]
< 1 (this is where β` > 1 is used); this is impossible. It therefore

follows that k = ` and r = α = β.
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Suppose that the assertion holds, with k− 1 in place of k. By assumption, we know

α +
1

[α1; α2, . . . , αk]
= β +

1

[β1; β2, . . . , β`]
.

Since αk > 1 and β` > 1, the fractions are both less than 1 (this follows from Proposition 31) and
we may deduce α = brc = β. It then follows that

[α1; α2, . . . , αk] = [β1; β2, . . . , β`]

and it follows from the inductive hypothesis that k− 1 = `− 1 and αj = βj for every 1 ≤ j ≤ k.
�

Following Proposition 31, we define:

Definition. Let α be an integer and α1, . . . , αN be integers > 1. For 0 ≤ n ≤ N ,

rn = [α; α1, . . . , αn].

is a rational number and {r0, . . . , rN} are called the convergents of the continued fraction r =
[α; α1, . . . , αN ].

Remark. This seems like a misnomer to call them ‘convergents’, but we will see in the next
section that the convergents do converge when r is an irrational number.

From the definition, you might be tempted to think that the rn’s are increasing sequence. They
are NOT! On the other hand, it is very hard to keep track of how the rn behave in terms of the
definition we have just seen. To this end, we introduce the following:

Definition. Given an integer α and integers α1 > 1, . . . , αN > 1, we define: s−2 = 0, s−1 =
1, s0 = α and, for n = 1, . . . ,N ,

sn = αnsn−1 + sn−2

and define: t−2 = 1, t−1 = 0, t0 = 1 and, for n = 1, . . . ,N ,

tn = αntn−1 + tn−2.

Remark. If α > 0, then the sn and tn are both strictly increasing sequences of positive integers.
One can see this by induction on n. Suppose that every sj, for j ≤ n − 1, is a positive integer. It
then follows from αn > 1 that

sn = αnsn−1 + sn−2 > αnsn−1 > sn−1.

Similarly for the tn.

Proposition 33. rn =
sn
tn

for every 0 ≤ n ≤ N .

Remark Even if both the sn’s and the tn’s are strictly increasing, it does not mean that their
ratios rn’s are!
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Proof. We prove this by induction on n. By definition, r0 =
s0
t0

= α. Suppose that rn =
sn
tn

holds (we would like to establish that rn+1 =
sn+1

tn+1

). By definition,

rn = [α; α1, . . . , αn] =
αnsn−1 + sn−2

αntn−1 + tn−2

.

It then follows that

rn+1 = [α; α1, . . . , αn+
1

αn+1

] =

(
αn +

1

αn+1

)
sn−1 + sn−2(

αn +
1

αn+1

)
tn−1 + tn−2

=
αn+1(αnsn−1 + sn−2) + sn−1

αn+1(αntn−1 + tn−2) + tn−1

=
αn+1sn + sn−1

αn+1tn + tn−1

=
sn+1

tn+1

.

�
We may now compute the convergents rn in terms of the sn’s and tn’s.

Example. Compute the convergents of [3; 7, 15, 1] = 3.1415929203 . . . (this is actually a
‘truncated’ infinite continued fraction [3; 7, 15, 1, 292, 1, . . . ] of π = 3.141592653589793 . . . ).

On one hand,

s−1 = 1
s0 = 3
s1 = α1s0 + s−1 = 7 · 3 + 1 = 22
s2 = α2s1 + s0 = 15 · 22 + 3 = 333
s3 = α3s2 + s1 = 1 · 333 + 22 = 355.

On the other hand,

t−1 = 0
t0 = 1
t1 = α1t0 + t−1 = 7 · 1 + 0 = 7
t2 = α2t1 + t0 = 15 · 7 + 1 = 106
t3 = α3t2 + t1 = 1 · 106 + 7 = 113.

Hence r1 =
22

7
= 3.14285714 . . . , r2 =

333

106
= 3.1415094 . . . , r3 =

355

113
= 3.141592...

Theorem 34. Following the notation above,

• sntn−1 − tnsn−1 = (−1)n−1 for n ≥ 1,

• rn − rn−1 =
(−1)n−1

tn−1tn
for n ≥ 1,

• gcd(sn, tn) = 1.
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Proof. To prove the first assertion, we use induction on n. To recall,

s0 = α,
s1 = αα1 + 1,
t0 = 1,
t1 = α1.

Hence s1t0 − t1s0 = (αα1 + 1)− α1α = 1 = (−1)0.
Suppose that sn−1tn−2 − tn−1sn−2 = (−1)n−2 holds (we would like to prove sntn−1 − tnsn−1 =

(−1)n−1). Since sn = αnsn−1 + sn−2 and tn = αntn−1 + tn−2, we have

sntn−1 − tnsn−1 = (αnsn−1 + sn−2)tn−1 − (αntn−1 + tn−2)sn−1

= sn−2tn−1 − tn−2sn−1

= −(−1)n−2

= (−1)n−1.

The second assertion follows immediately from rn =
sn
tn
, rn−1 =

sn−1

tn−1

and the first assertion.

The third assertion follows immediately from the first. �

Corollary 35. The convergents rn’s satisfy

r0 < r2 < r4 < · · · < r5 < r3 < r1.

Proof. Applying Theorem 34 twice, we get

rn+2−rn = (rn+2−rn+1)+(rn+1−rn) =
(−1)n+1

tn+2tn+1

+
(−1)n

tn+1tn
=

(−1)n

tn+2tn+1tn
(tn+2−tn) =

(−1)nαn+2

tn+2tn

since, by definition, αn+2 =
tn+2 − tn
tn+1

at the last equality.

If n is even (resp. odd), the RHS is positive (resp. negative), so rn+2 > rn (resp. rn > rn+2).
It remains to show that

r2i < r2j−1

for every i ≥ 0 and j ≥ 1. Since the ‘even’ convergents increase, while ‘odd’ ones decrease, it follows
fromTheorem 34 to get rN − rN−1 = (−1)N−1/tN−1tN < 0 whenN = 2i+ 2j is evidently even,
which yields

r2i < r2i+2j < r2i+2j−1 < r2j−1,

as desired. �

6.2 Infinite continued fractions

As promised:

Theorem 36. Let α, α1, . . . be a sequence of integers such that αn > 0 if n ≥ 1. Define, for
every n ≥ 0,

rn = [α; α1, . . . , αn].
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Then the sequence r0, r1, r2, . . . , of rational numbers converges to a limit (not necessarily a rational
number).

Proof. Since the r0, r1, . . . , rn are the convergents to the finite continued fraction [α; α1, . . . , αn]
for any fixed n ≥ 0, all the results in the preceding section apply results of the preceding section:

• rn =
sn
tn
,

• (Corollary 35) r0 < r2 < r4 < · · · < r5 < r3 < r1,

• (Theorem 36) rn − rn−1 =
(−1)n−1

tn−1tn
.

Since the even terms
r0, r2, r4, . . . ,

form an increasing sequence bounded above by r1, it tends to a limit ρ. On the other hand, the odd
terms

r1, r3, r5, . . . ,

form a decreasing sequence bounded below by r0 and it tends to a limit ρ′. Since r2j < r2j+1

(Theorem 34),
ρ = lim

j!∞
r2j ≤ lim

j!∞
r2j+1 = ρ′.

[Note that≤ is not a typo; even if r2j < r2j+1 is maintained for every j, there is no way of knowing
a priori this continues to hold in the limit] On the other hand,

|rN − rN−1| = |(−1)N−1

tN−1tN
| ! 0

asN = 2j tends to∞. It therefore follows

|ρ− ρ′| = |(ρ− rN ) + (rN − rN−1) + (rN−1 − ρ′)| ≤ |ρ− rN |+ |rN − rN−1|+ |ρ′ − ρN−1| ! 0

and one can deduce ρ = ρ′. �

Definition. We define the limit of the sequence of convergents to be the value of the infinite
continued fraction [α; α1, . . . ].

We show that every real number (not just a rational number) has a continued fraction expan-
sion:

Theorem 37. For every irrational number r, there exists a sequence of integers α0, α1, . . . with
αn > 0 if n ≥ 1 such that the value of [α; α1, . . . ] is r.

Proof. Let ρ0 = r and α = bρ0c ∈ Z so that 0 < ρ0 − α < 1. The number ρ1 =
1

ρ0 − α
> 1 is

irrational (if not, r would be rational). We may continue this process: starting with an irrational

number ρn > 1, we let αn = bρnc ∈ N and let ρn+1 denote the irrational number
1

ρn − αn
> 1.

Then

40



α1, α2, . . . ,

are positive integers and
ρ1, ρ2, . . . ,

are irrational numbers > 1. The process continues without an end and [α; α1, . . . , ] define an in-
finite continued fraction (This ‘algorithm’ is called the continued fraction algorithm). It remains to
check that the value of this continued fraction is indeed r (that we started with).

We prove by induction on n ≥ 1 that

[α; α1, . . . , αn−1, ρn] = r.

When n = 1, r = α + ρ0 − α = α +
1

ρ1

= [α; ρ1].

Suppose that [α; α1, . . . , αn−1, ρn] = r holds for n ≥ 1 (wewould like to show [α; α1, . . . , αn, ρn+1] =

r holds). Since
1

ρn+1

= ρn − αn,

[α; α1, . . . , αn, ρn+1]

= α +
1

α1 +
1

. . . αn−1 +
1

αn +
1

ρn+1

= α +
1

α1 +
1

. . . αn−1 +
1

αn + ρn − αn

= α +
1

α1 +
1

. . . αn−1 +
1

ρn
= [α; α1, . . . , αn−1, ρn]
= r,

the claim thus follows.

Let
{rn = [α; α1, . . . , αn]}

be the convergents of [α; α1, . . . , ]. We know that the convergents tend to a limit ρ (byTheorem 36).
We need to show that ρ = r, i.e., the continued fraction algorithm correctly defines the continued
fraction of r. We know from the proof of Theorem 36 that

ρ ≥ r2j

and
r2j+1 ≥ ρ,
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it suffices to establish the same set of inequalities with ρ replaced by r holds. Indeed, if this is the
case, lettingN = 2j for example,

|r − ρ| ≤ |rN − rN−1| ! 0

as j ! ∞.
To prove that r ≥ r2j and r2j+1 ≥ r, we argue as follows.
Suppose n is even. From the algorithm, we see that bρnc = αn so αn < ρn. It therefore follows

from the lemma below that

rn = [α; α1, . . . , αn−1, αn] < [α; α1, . . . , αn−1, ρn] = r.

Then case when n is odd follows similarly. �

Lemma 38. Suppose that γ < γ′ for positive real numbers γ, γ′. Then, for n ≥ 1,

• [α; α1, . . . , αn−1, γ] < [α; α1, . . . , αn−1, γ
′] when n is even,

• [α; α1, . . . , αn−1, γ] > [α; α1, . . . , αn−1, γ
′] when n is odd.

Proof. Prove by induction on n. When n = 1,

α +
1

γ
= [α; γ] > [α; γ′] = α +

1

γ′

holds because of the assumption γ < γ′. Suppose that the assertion holds with n− 1 in place of n.
Suppose firstly that n is even (i.e. n− 1 is odd). It then follows that

[α; α1, . . . , αn−1, γ] = α+
1

[α1; α2, . . . , αn−1, γ]
< α+

1

[α1; α2, . . . , αn−1, γ′]
= [α; α1, . . . , αn−1, γ

′]

because by the inductive hypothesis we know

[α1; α2, . . . , αn−1, γ] = [β; β1, . . . , βn−2, γ] > [β; β1, . . . , βn−2, γ
′] = [α1; α2, . . . , αn−1, γ

′].

The case n is odd is similar. �

Remark. The proof is constructive. The algorithm is exactly the same as the one for finite con-
tinued fractions (for positive/negative rational numbers).

Example. What is the continued fraction of π = 3.141592653589793? Applying the contin-
ued fraction algorithm to get
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α = b3.141592653589793c = 3 ⇒ ρ1 =
1

0.141592653589793
= 7.062513305931046

↙

α1 = b7.062513305931046c = 7 ⇒ ρ2 =
1

0.06251330593104577
= 15.99659440668572

↙

α2 = b15.99659440668572c = 15 ⇒ ρ3 =
1

0.99659440668572
= 1.003417231013372

↙

α3 = b1.003417231013372c = 1 ⇒ ρ4 =
1

0.003417231013372
= 292.6345910144503

↙

α4 = b292.6345910144503c = 292 ⇒ ρ5 =
1

0.6345910144503
= 1.575818089492172

↙
...

so the continued fraction looks like [3; 7, 15, 1, 292, 1, . . . ]. The convergents are

3,
22

7
,
333

106
,
355

113
,
103993

33102
, . . .

The numbers are
22

7
and

355

113
are well-known approximations to π!

Example r = 1 +
1

2

√
2.

α = b1 + 1

2

√
2c = 1 ⇒ ρ1 =

1

(1 +
1

2

√
2)− 1

=
√
2

↙

α1 = b
√
2c = 1 ⇒ ρ2 =

1√
2− 1

= 1 +
√
2

↙

α2 = b1 +
√
2c = 2 ⇒ ρ3 =

1

(1 +
√
2)− 2

= 1 +
√
2 = ρ2

↙
α3 = α2 ⇒ ρ4 = ρ3 = ρ2

↙
...

Hence 1 + 1 +
1

2

√
2 is the value of [1; 1, 2, 2, . . . ].

Example. r =
√
15− 3.
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α = b
√
15− 3c = 0 ⇒ ρ1 =

1√
15− 3

=

√
15 + 3

6
↙

α1 = b
√
15 + 3

6
c = 1 ⇒ ρ2 =

1

(
√
15+3
6

)− 1
=

√
15 + 3

↙

α2 = b
√
15 + 3c = 6 ⇒ ρ3 =

1

(
√
15 + 3)− 6

=
1√

15− 3
= ρ1

↙
α3 = α1 ⇒ ρ4 = ρ2

↙
α4 = α2 ⇒ ρ5 = ρ3 = ρ1

↙
...

Hence
√
15− 3 is the value of [0; 1, 6, 1, 6, . . . ].

Example. The golden ratio r =
1 +

√
5

2
. This is the value of [1; 1, 1, . . . ].

Finally, we show that the continued fraction expression is unique:

Theorem 39. Every irrational number is the value of a unique infinite continued fraction.

Proof. Let r be an irrational number. By Theorem 37, we may write r as [α; α1, . . . , ]. The goal
is to show that α, α1, . . . are uniquely determined by r.

Then r = α +
1

ρ1

with ρ1 > 1 is irrational; so α = brc and ρ1 =
1

r − α
are uniquely determ-

ined by r. Similarly, α1 = bρ1c and ρ2 =
1

ρ1 − α1

are uniquely determined, and so on. �

Remark. Given Theorem 37, the proof of Theorem 39 seems redundant but note that Theorem
37 only proves that there is a way (an algorithm) to find a continued fraction expression for r (but
it fails to prove that it is the way). Even though α is obtained as brc in Theorem 37, it does not
automatically mean that, whatever method we come up with or decide to take, α– the first integer
its expression– should always be brc. Theorem 39 proves that it always should be.

To sum up, there is a bijection between

• the set of irrational numbers

• the set of infinite continue fractions [α; α1, . . . ], where α ∈ Z and α1, · · · ∈ N.

Given an irrational number, the continued fraction algorithm (See the proof ofTheorem ??) defines
an infinite continued fraction. Conversely, given a continued fraction [α; α1, . . . , ], we may calcu-
late the convergents rn = [α; α1, . . . ] and their limit gives the corresponding irrational number.
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6.3 Periodic continued fraction

Definition. An infinite continued fraction [α; α1, . . . ] is periodic if there exists l,N with l > 0 such
that the sequence stabilizes at theN -th repeats itself with cycle of length l:

αN = αN+l = αN+2l = · · · ,
αN+1 = αN+l+1 = αN+2l+1 = · · · ,
...

...
... · · ·

αN+l−1 = αN+2l−1 = αN+3l−1 = · · · ,

or more succinctly
αn+l = αn

for all n ≥ N ; and we write the continued fraction as

[α; α1, . . . , αN−1, αN , αN+1, . . . , αN+l−1]

It is said to be purely periodic ifN = 0, i.e.,

αn+l = αn

for all n ≥ 0.

Example. [2; 1, 2, 1, 2, 1, 2, . . . ] = [2; 1]. What (irrational) real number r does this continued
fraction represent? By definition, it suffices to solve the equation

x = [2; 1, x] = 2 +
1

1 + 1
x

= 2 +
x

x + 2
=

3x + 2

x + 1
,

which is x2−2x−2 = 0. The solution (inR) of the equation is 1±
√
3 but the expression suggests

r > 2. So r = 1 +
√
3.

Example. What about s = [3; 5, 2, 1, 2, 1, 2, 1, 2, . . . ] = [3; 5, 2, 1]? Let r denote the 2, 1-bit
which we know, from the first example, to be 1 +

√
3, so that

s = [3; 5, r]

= 3 +
1

5 +
1

r
= 3 +

r
5r + 1

=
16r + 1

5r + 1

=
126−

√
3

39

These two real numbers are irrational while satisfying quadratic equations (s satisfies (39s −
126)2 = 3).

It does not have be concrete numbers:
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Example. Let n be a positive integer. Then

√
n2 + 1 = [n; 2n].

To see this, we simply run the algorithm:

α = b
√
n2 + 1c = n ⇒ ρ1 =

1√
n2 + 1− n

=
√
n2 + 1 + n

↙

α1 = b
√
n2 + 1 + nc = 2n ⇒ ρ2 =

1

(
√
n2 + 1 + n)− 2n

=
1√

n2 + 1− n
=

√
n2 + 1 + n = ρ1

↙
α2 = α1 ⇒ ρ3 = ρ2 = ρ1

↙
...

hence
√
n2 + 1 = [n, 2n, 2n, . . . ] = [n, 2n].

Conversely, if we are given [n, 2n], can we work out the value r of the continued fraction? Let
s = [2n] = [2n, 2n, . . . ]. By definition,

s = 2n+
1

s
,

i.e., s2 − 2ns − 1 = 0. Solving this equation in r, we have s =
2n±

√
4n2 + 4

2
= n ±

√
n2 + 1.

Since s > 0, it follows that s = n+
√
n2 + 1. To compute r, we compute

r = n+
1

s
= n+

1

n+
√
n2 + 1

=
n2 + n

√
n2 + 1 + 1

n+
√
n2 + 1

=

√
n2 + 1

(
n+

√
n2 + 1

)
n+

√
n2 + 1

=
√
n2 + 1.

6.4 Diophantine approximation

We have seen that if r is the value of [α; α1, . . . ] and rn = [α; α1, . . . , αn] is the n-th convergent to
r, then the numbers rn are rational numbers that tend to the limit r. In this section, we establish
that they give best possible approximations to r.

What should be a good rational approximation
s
t
to r?

• it should be close to r (of course),

• the denominator t is relatively small; there should be no rational number, with smaller de-
nominator, that is close to r.

The goal of this section is to establish that the convergents to the continued fraction for r in-
deed satisfy these properties.

To this end, recall:
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•
rn =

sn
tn
,

where
sn = αnsn−1 + sn−2

for n ≥ 1, s0 = α, s−1 = 1, s−2 = 0,

tn = αntn−1 + tn−2,

for n ≥ 1, t0 = 1, t−1 = 0, t−2 = 1;

• (Corollary 35) r0 < r2 < r4 < · · · < r < · · · < r5 < r3 < r1;

• if ρ (resp. ρ′) is the limit lim
j!∞

r2j (resp. lim
j′!∞

r2j′+1) of the strictly increasing (resp. decreasing)

sequence {r2j} (resp. {r2j′+1}), then
ρ = ρ′.

• |r−rn| < |rn+1−rn| for every n. To see this, note that if n is even, then rn < r < rn+1, hence
|r − rn| < |rn − rn+1|; similarly if n is even, then rn+1 < r < rn and |r − rn| < |rn − rn+1|.

Since Theorem 34 asserts |rn+1 − rn| =
1

tntn+1

, it follows that

|r − rn| < |rn+1 − rn| =
1

tntn+1

.

Example. We saw that r =
√
15 − 3 is the value of [0; 1, 6, 1, 6, . . . ]. The convergents for√

15− 3 are

r0 =
0

1
, r1 =

s1
t1

=
1

1
, r2 =

s2
t2

=
6

7
, r3 =

7

8
, r4 =

s4
t4

=
48

55
, r5 =

s5
t5

=
55

63
, r6 =

s6
t6

=
378

433
, . . . .

How good is r6, as a (rational) approximation to r?

|r − r6| ≤
1

t6t7
=

1

433 · 496
=

1

214768
<

1

104
,

hence accurate to the four decimal places.

We know that rn is always a better approximation to r than rn−2 is (recall rn−2 < rn < r if n
is even and r < rn < rn−2 if n is odd). What about rn vs rn−1? We will answer the question by
showing that, after the first step, the approximation always gets better as n increases.

When r is the value of the continued fraction, [α; α1, . . . ], we let rn denote the n-th convergent
[α; α1, . . . , αn]; let ρn ∈ R be the output of the continued fraction algorithm after n-steps:

αn−1 = bρn−1c ⇒ ρn =
1

ρn−1 − αn−1

and
r = [α; α1, . . . , αn−1, ρn]
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(see the proof of Theorem 33) and we may see ρn as

ρn = [αn; αn+1, . . . ].

Proposition 33 shows that for the finite continued fraction rn+1
def
= [α; α1, . . . , αn+1] equals

sn+1

tn+1

which, by definition, is
αn+1sn + sn−1

αn+1tn + tn−1

. Something similar holds for an infinite continued

fraction:
Lemma 40. Let r be an irrational number.

r = [α; α1, . . . , αn, ρn+1] =
ρn+1sn + sn−1

ρn+1tn + tn−1

.

Proof. The first equality is established in the proof ofTheorem 37. We prove the second equality
by induction on n.

By definition, r = α + r − α = α +
1

ρ1

=
αρ1 + 1

ρ1

.

Suppose that [α; α1, . . . , αn−1, ρn] =
ρnsn−1 + sn−2

ρntn−1 + tn−2

holds. Since [α; α1, . . . , αn, ρn+1] = [α; α1, . . . , αn−1, αn+

1

ρn+1

] and

(αn +
1

ρn+1

)sn−1 + sn−2

(αn +
1

ρn+1

)tn−1 + tn−2

=
ρn+1(αnsn−1 + sn−2) + sn−1

ρn+1(αntn−1 + tn−2) + tn−1

=
ρn+1sn + sn−1

ρn+1tn + tn−1

.

�
It follows

r− sn
tn

= [α; α1, . . . , αn, ρn+1]−
sn
tn

=
ρn+1sn + sn−1

ρn+1tn + tn−1

− sn
tn

=
tnsn−1 − sntn−1

tn(ρn+1tn + tn−1)
=

(−1)(−1)n−1

tn(ρn+1tn + tn−1)
,

by Theorem 34 and therefore

|r − sn
tn
| = |(−1)n|

|tn(ρn+1tn + tn−1)|
=

1

tn(ρn+1tn + tn−1)
<

1

tntn+1

as
ρn+1tn + tn−1 > αn+1tn + tn−1 = tn+1

(recall that αn+1 = bρn+1c, hence ρn+1 > αn+1).

Proposition 41. For every n ≥ 2, we have

• |tnr − sn| < |tn−1r − sn−1|,

• |r − rn| < |r − rn−1|.

Proof. Using the argument above, we have

|tnr − sn| = tn|r −
sn
tn
| = 1

ρn+1tn + tn−1
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and

|tn−1r − sn−1| = tn−1|r −
sn−1

tn−1

| = 1

ρntn−1 + tn−2

.

To prove the first assertion, it therefore suffices to establish

ρn+1tn + tn−1 > ρntn−1 + tn−2.

By definition, αn = bρnc, thus ρn < αn + 1. It follows that

ρntn−1 + tn−2 < (αn + 1)tn−1 + tn−2 = αntn−1 + tn−2 + tn−1 = tn + tn−1 < ρn+1tn + tn−1,

since ρn+1 > 1 by definition– recall that ρn+1 =
1

ρn − αn
=

1

ρn − bρnc
where 0 ≤ ρn−bρnc < 1.

To prove the second assertion, we firstly observe from the first assertion, combined with tn >
tn−1 ≥ 1, that

|tnr − sn|
tn

<
|tn−1r − sn−1|

tn
<

|tn−1r − sn−1|
tn−1

.

The LHS is |r − sn
tn
| = |r − rn|, while the RHS is |r − sn−1

tn−1

| = |r − rn−1|. �

Definition. We say that a rational number
s
t
is a good approximation to r if

|r − s
t
| < |r − s′

t′
|

for any rational number
s′

t′
with t′ < t.

In other words, there is no rational number closer to r than
s
t
with smaller denominator; if

s′

t′

has smaller denominator than
s
t
, then it has to be further from r than

s
t
is to r.

Theorem 42. Let r be an irrational number, [α; α1, . . . ] be the continued fraction for r, and
rn = [α; α1, . . . , αn] =

sn
tn

be the n-th convergent. Let ρ =
s
t
be a rational number in its lowest

terms. If t < tn whenever n > 1, then

|r − sn
tn
| < |r − s

t
| = |r − ρ|

holds.

Remark. The theorem asserts that the convergents rn, for n ≥ 2, are good approximations to
r.

We need a lemma.

Lemma 43. Let r be an irrational number, [α; α1, . . . ] be its continued fraction, rn = [α; α1, . . . , αn] =
sn
tn

be the n-th convergent. If s and t are integers satisfying gcd(s, t) = 1 and t < tn, then

|tr − s| ≥ |tn−1r − sn−1|
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holds, with equality if and only if
s
t
=
sn−1

tn−1

.

Proof of the lemma. This is due to Lagrange. Consider the following system of equations

sn−1x + sny = s
tn−1x + tny = t.

Since sn−1tn − sntn−1 = (−1)n (Theorem 34), we see that it has a unique integer solution

(x, y) = ((−1)n(stn − tsn), (−1)n(tsn−1 − stn−1)).

x is non-zero Suppose x = 0. This is equivalent to stn − tsn = 0, i.e.
s
t
=
sn
tn
. While

sn
tn

is

in its lowest terms (Theorem 34), the equality express the same rational number with two distinct
denominators (recall t < tn by assumption). This is a contradiction.

y is non-zero or (s, t) = (sn−1, tn−1) Similar to the argument above. If y = 0, then tsn−1 −

stn−1 = 0, hence
s
t
=
sn−1

tn−1

; note that as ‘t < tn−1’ is NOT assumed, it is not possible to eliminate

this case. To sum up, y is either non-zero, or zero in which case
s
t
=
sn−1

tn−1

and therefore s = sn−1

and t = tn−1 (again, because ‘t < tn−1’ is NOT assumed, this is allowed!) and consequently

|tr − s| = |tn−1r − sn−1|.

Suppose that y is non-zero. Our goal then is to establish that

|tr − s| > |tn−1r − sn−1|.

x and y have opposite signs Suppose that y < 0. If n is odd, then y = −(tsn−1 − stn−1) < 0,

i.e., tsn−1 − stn−1 > 0, i.e.,
s
t
<

sn−1

tn−1

= rn−1. On the other hand, Theorem 34 proves that

rn − rn−1 > 0 (since n − 1 is even), hence
s
t
<

sn−1

tn−1

<
sn
tn
, i.e., stn − tsn < 0. As a result,

x = (−1)n(stn−tsn) (since n is odd). Similarly, if n is even, tsn−1−stn−1 < 0, i.e.,
s
t
>
sn−1

tn−1

= rn−1.

As Theorem 34 proves that rn − rn−1 < 0 (since n− 1 is odd), it follows that
s
t
>
sn−1

tn−1

>
sn
tn
, i.e.,

stn − tsn > 0. As a result x = (−1)n(stn − tsn) > 0 (since n is even).
One can similarly show that if y > 0, then x < 0 (whether n is odd or even).

tn−1r − sn−1 and tnr − sn have opposite signs Observe that r lies between rn−1 =
sn−1

tn−1

and

rn =
sn
tn
, hence tn−1r − sn−1 and tnr − sn have opposite signs. For example, if n is even, then we

have sn
tn

= rn < r < rn−1 =
sn−1

tn−1

.

The first inequality yields tnr − sn > 0, while the second yields tn−1r − sn−1 < 0. If n is odd, then
we have rn−1 < r < rn and this yields tnr − sn < 0 and tn−1r − sn−1 > 0.
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Combining the last two items, we may then deduce that x(tn−1r − sn−1) and y(tnr − sn) have
the same signs. It hence follows that

|tr − s| = |(tn−1x + tny)r − (sn−1x + sny)|
= |x(tn−1r − sn−1) + y(tnr − sn)|
= |x(tn−1r − sn−1)|+ |y(tnr − sn)|
= |x||tn−1r − sn−1|+ |y||tnr − sn|
> |tn−1r − sn−1|.

The last (strict) inequality follows since |x| ≥ 1 (this follows since x is a non-zero integer), |tn−1r−
sn−1| > 0 and |tnr − sn| > 0. �

Proof of Theorem 42. Suppose t < tn. Then it follows from Lemma 43, Proposition 41

|r − s
t
| = 1

t
|rt− s|≥1

t
|rtn−1 − sn−1| >

1

t
|rtn − sn| >

1

tn
|rtn − sn| = |r − sn

tn
|.

�

Theorem 44. Let r be an irrational number, and let s, t ∈ Z with t > 0 and gcd(s, t) = 1.

Suppose that |r − s
t
| < 1

2t2
. Then

s
t
is a convergent to r.

Proof. Let [α; α1, . . . ] be the continued fraction for r (Theorem 37), and define rn =
sn
tn

as

before. Choose n such that
tn−1 ≤ t < tn.

Lemma 43 states |tr − s| ≥ |tn−1r − sn−1|, and it therefore follows that

|tn−1r − sn−1| ≤ |tr − s| = t|r − s
t
| < t

2t2
=

1

2t

implies

|r − sn−1

tn−1

| ≤ 1

2tn−1t
.

On one hand,

| s
t
− sn−1

tn−1

| = | s
t
− r + r − sn−1

tn−1

| ≤ |r − s
t
|+ |r − sn−1

tn−1

| < 1

2t2
+

1

2tn−1t
≤ 2

2tn−1t
=

1

tn−1t
.

On the other hand,

| s
t
− sn−1

tn−1

| = stn−1 − tsn−1

ttn−1

.

It therefore follows that the numerator stn−1 − tsn−1 has to be zero, i.e.
s
t
=
sn−1

tn−1

. �
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6.5 Periodic continue fraction II

A quadratic irrational r is a real number of the form s+ t
√
d where s ∈ Q, t ∈ Q− {0} and d > 1

is a square-free integer.

Quadratic irrationals are precisely the roots of irreducible degree 2 polynomials withQ-coefficients.

Theorem 45. If a real number has a periodic continued fraction, then it is a quadratic irrational.

Proof. We firstly show that a (real) number with a purely periodic continued fraction is a quad-
ratic number. To this end, let

r = [α; α1, . . . , αl−1].

The cases when l = 1 and l = 2 are left as exercises. We henceforth assume l ≥ 3. If r was
rational, the continued fraction would have finite length; hence r is irrational. By assumption,

r = [α; α1, . . . , αl−1, r]

and it follows from Lemma 40 that the RHS equals

rsl−1 + sl−2

rtl−1 + tl−2

,

where
sn
tn

is the n-th convergent of [α; α1, . . . , αl−1]. We then see that

tl−1r2 + (tl−2 − sl−1)r − sl−2 = 0

and therefore that r is a quadratic irrational.
We now show that any number with periodic continued fraction is a quadratic irrational.
Let ρ be the value of [α; α1, . . . , αN , αN+1, . . . , αN+l] for fixed N and l, and let r be the value

of [αN+1; αN+2, . . . , αN+l]. By the first part, r is a quadratic irrational of the form, say, s + t
√
d

with s ∈ Q, t ∈ Q− {0}. We have

ρ = [α; α1, . . . , αN , r] =
rsN + sN−1

rtN + tN−1

by Lemma 40, where
sn
tn

is the n-th convergent of ρ. Substituting r = s+ t
√
d, we have

ρ =
sN s+ sN−1 + sN t

√
d

tN s+ tN−1 + tN t
√
d
= · · ·+ sN−1t(sN − tN )

(tN s+ tN−1)2 − (tN t)2d

√
d ∈ Q+Q

√
d

and ρ is quadratic irrational. �

The converse also holds, but it will not be discussed any further:

Theorem 46. A real number has periodic continued fraction if and only if it is quadratic irra-
tional.

In fact, for a square-free positive integer d,
√
d always has the continued fraction expression of

the form √
d = [α; α1, α2, . . . , α2, α1, 2α].
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7 Pell’s equation

In this section, we will study Pell’s equation:

x2 − dy2 = ±1.

Wewill see that continued fractions give us constructive methods of finding (integer) solutions
to these equations. In doing so, we will describe the solutions in two different ways (in Part I and
Part II).

7.1 Part I

Theorem 47 Suppose that d ∈ N is not a square and suppose that there is a pair of positive integers

s and t satisfying s2 − dt2 = ±1. Then
s
t
is a convergent to

√
d (in the sense that it is of the form

rn =
sn
tn

for some n).

Proof. If s2 − dt2 = ±1, then (s+
√
dt)(s−

√
dt) = ±1, hence

|
√
d − s

t
| = 1

t(s+ t
√
d)

holds. The denominator

t(s+ t
√
d) = t2(

s
t
+
√
d) = t2(

√
d ± 1

t2
+
√
d) ≥ t2(

√
d − 1 +

√
d) > 2t2

since d ≥ 2 (as d is positive and not a square). It then follows fromTheorem 44 that
s
t
is a conver-

gent to
√
d. �

Remark. The theorem asserts that positive integer solutions to Pell’s equation x2 − dy2 = ±1

are necessarily convergents to the continued fraction of
√
d:

{
The positive integer solutions to x2 − dy2 = ±1

}
⊂
{
the convergents rn =

sn
tn

to
√
d
}

(recall that sn and tn are both positive if n ≥ 1) But not all convergents are solutions to the Pell
equation. Do we know which convergents?

Example. x2 − 2y2 = ±1.

The continued fraction of
√
2 is [1; 2]. The convergents are:

r1 =
3

2
, r2 =

7

5
, r3 =

17

12
, r4 =

41

29
, . . .

These, as it turns out, define solutions to x2 − 2y2 = ±1:

32 − 2 · 22 = 1, 72 − 2 · 52 = −1, 172 − 2 · 122 = 1, 412 − 2 · 292 = −1, . . .
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It might be reasonable to expect that the convergent rn, when n is even (resp. odd), define solutions
to x2 − 2y2 = −1 (resp. x2 − 2y2 = 1).

Example. x2 − 3y2 = ±1.

The continued fraction of
√
3 is [1; 1, 2]. The convergents are:

r1 =
2

1
, r2 =

5

3
, r3 =

7

4
, r4 =

19

11
, . . .

This time, not all of them are solutions to the Pell equation:

22 − 312 = 1, 52 − 3 · 32 = −2, 72 − 3 · 42 = 1, 192 − 3 · 112 = −2, . . .

Again, it might not be so far-fetched to conjecture that the rn, where n is odd, define solutions
to x2 − 3y2 = 1, while it is likely that x2 − 3y2 = −1 does not have any solutions. This can be
checked by passing to F3. If there was a solution, say (s, t), then

s2 ≡ −1 ≡ 2

mod 3, however the Legendre symbol

(
2

3

)
= −1, a contradiction!

The following theorem singles out exactly which convergents to
√
d indeed define positive in-

teger solutions to x2 − dy2 = ±1:

Theorem 48 Suppose that d ∈ N is not a square. Suppose that
√
d = [α; α1, . . . , αl]. Let

sn
tn

be

the n-th convergent of the continued fraction of
√
d. Then

s2n − dt2n = ±1

if and only if n = N l − 1 for someN = 1, 2, 3, . . . .
Moreover,

s2N l−1 − dt2N l−1 = (−1)N l.

Remark. As advertised, Theorem 48 proves that, if
√
d = [α; α1, . . . , αl],

{
The positive integer solutions to x2 − dy2 = ±1

}
=
{
the ‘convergents’ (sN l−1, tN l−1),N = 1, 2, . . . , to

√
d
}

Proof. NON-EXAMINABLE. �

Example. x2−2y2 = ±1. In this case, l = 1 and every rn =
sn
tn
is a solution for n = 0, 1, 2, . . . ;

and s2n − 2t2n = (−1)n+1.

Example. x2−3y2 = ±1. In this case, l = 2 and every rn, when n = 2N−1, i.e. when n is odd,
defines a solution to x2 − 3y2 = ±1. In fact s22N−1 − 3t22N−1 = (−1)2N = 1 and x2 − 3y2 = −1
does not have any solutions (as expected).
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As we have seen in the second example, when l is even, (−1)N l = 1, and the following follows
immediately from the theorem:

Corollary 49 Suppose that d ∈ N is not a square. Suppose that
√
d = [α; α1, . . . , αl]. If l is

even, the equation
x2 − dy2 = −1

has no solutions.

7.2 Part II

Definition. We define a partial order on the set of solutions to equation x2 − dy2 = ±1: if (s, t)
and (s′, t′) are two distinct solutions, we then define

(s, t) < (s′, t′)

if x + y
√
d < s′ + t′

√
d in R (SL says this is equivalent to s < s′ and t < t′). The fundamental

solution is the minimum positive solution in this sense.

ByTheorem 48, we know that the fundamental solution to x2−dy2 = ±1 is (x, y) = (sl−1, tl−1)

where
sl−1

tl−1

is the (l − 1)-st convergent.

We will see that the fundamental solution generates all positive integer solutions (x, y).

Example. x2 − 2y2 = ±1. As we saw already, (s0, t0) = (1, 1), (s2, t2) = (7, 5), . . . define
solutions to

x2 − 2y2 = −1,

while (s1, t1) = (3, 2), (s3, t3) = (17, 12), . . . define solutions to

x2 − 2y2 = 1.

An eagle-eyed reader might notice a pattern– if (vn,wn) is the n-th (positive integer) solution, then
(vn+1,wn+1) = (vn + 2wn, vn + wn) is the (n+ 1)-st, and

vn+1 + wn+1

√
2 = (vn + wn

√
2)(1 +

√
2)

in other words,
(vn + wn

√
2) = (v1 + w1

√
2)n = (1 +

√
2)n.

This is not a coincidence, as we shall see shortly.

Example. x2 − 3y2 = ±1. The first few solutions to x2 − 3y2 = 1 are (v1,w1) = (s1, t1) =
(2, 1), (v2,w2) = (s3, t3) = (7, 4), (v3,w3) = (s5, t5) = (26, 15), . . . and solutions necessarily
satisfy

vn + wn
√
3 = (v1 + w1

√
3)n = (2 +

√
3)n.

Lemma 50 Let (s, t) = (v1,w1) be the fundamental solution to the Pell equation

x2 − dy2 = ±1.
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For n = 1, 2, . . . , define (vn,wn) ∈ N× N by the equation

vn + wn
√
d = (s+ t

√
d)n.

Then

vn =
1

2

(
(s+ t

√
d)n + (s− t

√
d)n
)

and

wn =
1

2
√
d

(
(s+ t

√
d)n − (s− t

√
d)n
)
.

Remark. Note that (vn,wn) is different from (sn, tn) that defines the n-th convergent rn any
longer.

Proof. Induction on n. �

Theorem 51 Let (s, t) = (v1,w1) be the fundamental solution to the equation

x2 − dy2 = ±1

and let
ε = s2 − dt2 ∈ {±1}.

As before, for n = 1, 2, . . . , define (vn,wn) ∈ N× N by the equation

vn + wn
√
d = (s+ t

√
d)n.

Then
v2n − dw2

n = εn.

Remark. Theorem 51 proves that{
The positive integer solutions to x2 − dy2 = ±1

}
⊃ {(vn,wn)} .

Proof of Theorem 51. Applying Lemma 50, we obtain

vn−wn
√
d =

1

2

(
(s+ t

√
d)n + (s− t

√
d)n
)
−

√
d

2
√
d

(
(s+ t

√
d)n − (s− t

√
d)n
)
= (s− t

√
d)n.

Hence

v2n − dw2
n = (vn − wn

√
d)(vn + wn

√
d) = (s− t

√
d)n(s+ t

√
d)n = (s2 − dt2)n.

�

The following theorem establishes the ‘converse of Theorem 51’, i.e. {(vn,wn)} sees all the
positive integer solutions to x2 − dy2 = ±1, i.e.{

The positive integer solutions to x2 − dy2 = ±1
}
= {(vn,wn)} .
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Theorem 52 Suppose that d ∈ N is not a square. Suppose that (v,w) is a solution to the Pell
equation

x2 − dy2 = ±1.

Then there exists n ≥ 1 such that (v,w) = (vn,wn) as above.
Proof. Let (s, t) be the fundamental solution to x2 − dy2 = ±1. Suppose there exists a pair

(v,w) of integers such that

• v ≥ 1 and w ≥ 1,

• v2 − dw2 = ±1,

• (v,w) is not (vn,wn) for any n ≥ 1, where (vn,wn) is a pair of integers satisfying

vn + wn
√
d =

(
s+ t

√
d
)n

and
v2n − dw2

n = ±1

The assertion follows if this set of assumption leads to a contradiction.

There exists a uniqueN such that

(s+ t
√
d)N < v+ w

√
d < (s+ t

√
d)N+1,

because the interval (s + t
√
d)N+1 − (s + t

√
d)N = (s + t

√
d)N (s + t

√
d − 1) gets bigger as N

increases [the point is that v + w
√
d is bounded strictly by powers of s + t

√
d; this only occurs if

(v,w) is not (vn,wn)!].

Multiplying all by
1

(s+ t
√
d)N

, we have

1 < V +W
√
d < s+ t

√
d

where

V +W
√
d =

1

(s+ t
√
d)N

(v+ w
√
d) =

1

vN + wN

√
d
(v+ w

√
d) =

vN − wN

√
d

v2N − dw2
N

(v+ w
√
d).

It is straightforward to check that

V −W
√
d =

vN + wN

√
d

v2N − dw2
N

(v− w
√
d).

We check
V 2 − dW 2 = ±1, i.e. (V ,W ) is a solution for x2 − dy2 = ±1 . Simply substituting above,

V 2−dW 2 = (V+W
√
d)(V−W

√
d) =

1

(v2N − dw2
N )

2
(v2−dw2)(v2N−dw2

N ) =
v2 − dw2

v2N − dw2
N

= ±1
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by Theorem 51.

−1 < V −W
√
d < 1 Since |V +W

√
d||V −W

√
d| = | ± 1| = 1 and V +W

√
d > 1,

it follows that |V −W
√
d| < 1.

Consequently,

2V = (V +W
√
d) + (V −W

√
d) > 1− 1 = 0,

hence V > 0 and

2W
√
d = (V +W

√
d)− (V −W

√
d) > 1− 1 = 0,

henceW > 0. This contradicts the minimality of the fundamental solution s+ t
√
d. �

To sum up, we prove that, when
√
d = [α, α1, . . . , αl],{

The positive integer solutions to x2 − dy2 = ±1
}

=

{
{(snl−1,wnl−1)} (Part I)
{(vn,wn)} (Part II)

In particular, we see

• The fundamental solution (s, t) is (v1,w1);

• (vn,wn) = (snl−1, tnl−1) [note that we see this equality rather indirectly, without comparing
(vn,wn) and (snl−1, tnl−1) directly] and v2n − dw2

n = (−1)nl;

and as a result
ε = s2 − dt2 = v21 − dw2

1 = (−1)l.

If l is odd, then

• (vn,wn), for n even, are solutions to the Pell equation

x2 − dy2 = +1

• (vn,wn), for n odd, are solutions to the Pell equation

x2 − dy2 = −1.

Example. x2 − 3y2 = 1. The fundamental solution is (s, t) = (2, 1). Hence

v2 + w2

√
3 = (2 +

√
3)2 = 7 + 4

√
3,

v3 + w3

√
3 = (2 +

√
3)3 = 26 + 15

√
3,

v4 + w4

√
3 = (2 +

√
3)2 = 97 + 56

√
3,

...
...

...

Example. The continued fraction of
√
13 is [3; 1, 1, 1, 1, 6] with l = 5. Hence the positive

integer solutions to x2 − 13y2 = ±1 are the convergent (s5N−1, t5N−1) where r5N−1 =
s5N−1

t5N−1

is
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the 5N − 1-st convergent. The ‘smallest’ solution is (s4, t4) = (18, 5) and 182 − 13 · 52 = −1.

Example. x2 − 41y2 = −1. The fundamental solution to x2 − 41y2 = −1 is (s1, t1) = (32, 5)
and the fundamental solution to x2 − 41y2 = 1 is (s2, t2) is computed by

v2 + w2

√
41 = (32 + 5

√
41)2 = 2049 + 320

√
41.

Example. The continued fraction of
√
61 is [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14] with period l = 11.

It follows fromTheorem 48 that the solutions to x2 −
√
61y2 = ±1 are

(s10, t10) = (29718, 3805), (s21, t21), (s32, t32), . . .

(satisfying s211N−1 − dt211N−1 = (−1)11N ), and the fundamental solution to x2 − dy2 = −1 is

(s10, t10) = (29718, 3805)

while the fundamental solution to x2 − dy2 = 1 is

(s21, t21) = (1766319049, 226153980).

Theorem 51 ascertains that (29718 + 3805
√
61)2 = 1766319049 + 226153980

√
61.

7.3 Appendix: A proof of Theorem 48 (NON-EXAMINABLE)

Let d be a square-free integer. Let {αn} (resp. {ρn}) be positive integers (resp. real numbers)

appearing in the continued fraction algorithm for
√
d, i.e.,

√
d = [α; α1, . . . , αn−1, ρn]

(by definition, αn−1 = bρn−1c and ρn =
1

ρn−1 − αn−1

, hence ρn−1 = αn−1 +
1

ρn
; furthermore,

since
√
d is irrational, ρn is non-zero for any n).

Definition. Define integers Rn and Sn inductively as follows:

• R0 = 1 and S0 = 0,

• Sn+1 = αn−1Rn − Sn,

• Rn+1 =
d − S2

n+1

Rn
.

The following is the key lemma:

LemmaWe have

• Rn and Sn are both integers,

• Rn divides d − S2
n ,

• ρn−1 =
Sn +

√
d

Rn
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Proof of the lemma. We prove this by induction. The case when n = 0 holds trivially. Suppose
that the assertion holds for n.

Sn+1 ∈ Z By definition, Sn+1 = αn−1Rn − Sn where αn−1 is an integer by definition and Rn

and Sn are integers by the inductive hypothesis.

Rn+1 ∈ Z By definition,

Rn+1 =
d − S2

n+1

Rn
=
d − (αn−1Rn − Sn)2

Rn
=
d − S2

n

Rn
+ 2αn−1Sn − αn−1Rn.

The assertion follows since
d − S2

n

Rn
is an integer by the inductive hypothesis.

Rn+1 divides d − S2
n+1 This follows immediately from Rn+1Rn = d − S2

n+1.

ρn =
Sn+1 +

√
d

Rn+1

Since ρn−1 = αn−1 +
1

ρn
, it follows from the inductive hypothesis that

αn−1 +
1

ρn
=

Sn +
√
d

Rn
.

It follows that

ρn =
Rn

Sn +
√
d − αn−1Rn

=
Rn√

d − Sn+1

=
Rn(

√
d + Sn+1)

d − S2
n+1

=
Rn(

√
d + Sn+1)

RnRn+1

=

√
d + Sn+1

Rn+1

,

as desired. �

Proposition A-1 Let d be a square-free integer. Let
sn
tn

be the n-th convergent to
√
d. We then

have
s2n − dt2n = (−1)n+1Rn+1

and Rn+1 > 0.

Proof. Since
√
d = [α; α1, . . . , αn−1, ρn] =

ρnsn + sn−1

ρntn + tn−1

,

√
d (ρntn + tn−1) = ρnsn + sn−1.

Substituting ρn =
Sn+1 +

√
d

Rn+1

from the lemma, we have

√
d

(
Sn+1 +

√
d

Rn+1

tn + tn−1

)
=

Sn+1 +
√
d

Rn+1

sn + sn−1.

Multiplying Rn+1 and rearranging, we have

√
d (Sn+1tn + Rn+1tn−1 − sn) = Sn+1sn + Rn+1sn−1 − dtn.
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Since
√
d is irrational, it follows that

Sn+1tn + Rn+1tn−1 − sn = 0 ⇔ sn = Sn+1tn + Rn+1tn−1,

and
Sn+1sn + Rn+1sn−1 − dtn = 0 ⇔ dtn = Sn+1sn + Rn+1sn−1.

It therefore follows that

s2n−dt2n = sn(Sn+1tn+Rn+1tn−1)−tn(Sn+1sn+Rn+1sn−1) = Rn+1(sntn−1−tnsn−1) = Rn+1(−1)n−1

by Theorem 34. �

Proposition A-2 Suppose that
√
d = [α; α1, . . . , αl] for some l ≥ 1. Let {Rn} be as above.

Then Rn = 1 if and only if l divides n.

Corollary. Theorem 48 follows.

Proof of Corollary (Theorem 48).

s2n − dt2n = (−1)n ⇔ Rn+1 = 1 ⇔ l|(n+ 1) ⇔ n = l − 1, 2l − 1, . . . .

�

Proof of Proposition A-2. Suppose that l divides n. We show that for any multiple kl of l,Rkl = 1.

Firstly, since
√
d = [α; ρ1] by definition, we have ρ1 = [α1; α2, . . . , αl]. Similarly, since

√
d =

[α; α1, . . . , αl, ρl+1], we also have ρl+1 = [α1; α2, . . . , αl]; indeed, for any integer k ≥ 1, we have

ρkl+1 = [α1; α2, . . . , αl] = ρ1

(easy to check by induction). By the lemma above, it therefore follows that

Skl+1 +
√
d

Rkl+1

=
S1 +

√
d

R1

,

and, as a result, that Rkl+1 = R1 and Skl+1 = S1. By definition,

R1 = d − S2
1 = d − S2

kl+1 = RklRkl+1 = RklR1.

Since R1 > 0, we have Rkl = 1 as desired.

Conversely, suppose that Rn = 1. It follows from the lemma that

αn +
1

ρn
= ρn−1 =

Sn +
√
d

Rn
= Sn +

√
d = Sn + α +

1

ρ1

.

While αn (on the leftmost), Sn and α (on the rightmost) are all integers, both
1

ρn
and

1

ρ1

are fractions

< 1 and therefore the equality ρn = ρ1 needs to hold. This implies that l divides n (as l is the period
length). �
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8 Sums of squares

8.1 x2 + y2 = p

Let p be a prime. The basic question we want to understand in this section is whether

x2 + y2 = p

has a solution in (x, y) ∈ N× N. For example,

22 + 12 = 5
32 + 22 = 13
42 + 12 = 17
52 + 22 = 29.

On the other hand,
x2 + y2 = 7

is not soluble in Z× Z; for if it were, there would be (m, n) ∈ Z× Z such that m2 + n2 = 7, but
the table

z (mod 4) z2 (mod 4)
0 0
1 1
2 0
3 1

shows m2 + n2 would never be 7 ≡ 3 mod 4.

In fact,

Proposition 53. Let p be a prime congruent to 3 mod 4. Then

x2 + y2 = p

has no solutions in (x, y) ∈ Z× Z.

Proof. The table above shows that, for any pair of integers r, s, the sum r2 + s2 is congruent to
0, 1, or 2 mod 4. If (r, s) are a solution for x2 + y2 = p, then p would be congruent to 0, 1 or 2,
but this contradicts the assumption that p is congruent to 3. �

On the other hand, the following theorem gives us a good handle on primes representable as
sums of squares:

Theorem 54. If

(
−1

p

)
= 1, then the equation

x2 + y2 = p

is soluble.
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To prove the theorem, we firstly prove

Lemma 55. Let r ∈ R and N ∈ N. Then there exists s/t ∈ Q with gcd(s, t) = 1 and
1 ≤ t ≤ N such that ∣∣∣r − s

t

∣∣∣ ≤ 1

t(N + 1)
.

Remark. Indeed, we show that we may take
s
t
to be a convergent

sn
tn

to r for some n.

Proof. Let r = [α; α1, . . . ] be the continued fraction of r and rn =
sn
tn

be the n-th convergent

(recall that tn is an increasing sequence). It follows fromTheorem 34 that

|r − rn| = |r − sn
tn
| ≤ |rn+1 − rn| ≤

1

tntn+1

.

There are two cases to proceed:

Suppose that tn ≤ N for every n. In this case, the increasing sequence tn is bounded from
above, i.e., tn stabilises for sufficiently large n, i.e., the continued sequence is indeed finite and r is

a rational number r = [α; α1, . . . , αn] for some n. Letting
s
t
=
sn
tn
, we have

|r − s
t
| = 0 ≤ 1

t(N + 1)
.

Suppose that there exists n such that

tn ≤ N < tn+1

(whether r is a rational or not) Since N and tn+1 are both integers, it follows that N + 1 ≤ tn+1.

Letting
s
t
=
sn
tn
,

|r − s
t
| = |r − sn

tn
| ≤ 1

tntn+1

≤ 1

t(N + 1)
.

�

Proof of Theorem 54. Since −1 is a quadratic residue mod p, there exists an integer z such that

z2 ≡ −1 mod p. Applying the lemma with r =
z
p
and N = b√pc, we find s

t
∈ Q such that

1 ≤ t ≤ b√pc < √
p and

|r − s
t
| = |z

p
− s
t
| ≤ 1

t(N + 1)
<

1

t
√
p

sinceN = b√pc < √
p < N + 1.

Let u = ps− zt. Then, since t > 0 and p > 0,

|u| = tp
∣∣∣∣zp − s

t

∣∣∣∣ < tp
t
√
p
=

√
p.
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(u, t) is a solution we are looking for It follows from the last inequality that

0 < u2 + t2 < p+ p = 2p

as we know t ≤ N <
√
p. On the other hand,

u2 + t2 = (ps− zt)2 + t2 ≡ z2t2 + t2 ≡ (z2 + 1)t2

mod p. However, by assumption, z2 ≡ −1 mod p, hence u2 + t2 ≡ 0 mod p. The only possibility
for the ‘real’ value of u2 + t2 therefore is p, i.e., u2 + t2 = p. �

Corollary 56. Let p be a prime congruent to 1 mod 4. Then

x2 + y2 = p

has an integer solution in x and y.

Proof. It follows from the theorem that if

(
−1

p

)
= 1, then x2 + y2 = p is soluble. By

assumption, p is odd and Rule 2 in Theorem 25 asserts that

(
−1

p

)
= 1 if and only if p ≡ 1 mod

4. �

8.2 Hermite’s algorithm

The proof of Theorem 54 can be made into an algorithm for finding x, y such that x2 + y2 = p.

Step 1: find z such that z2 ≡ −1 mod p.

Step 2 (inductive): compute the n-th rn =
sn
tn

and the (n + 1)-th convergents rn+1 =
sn+1

tn+1

of

the continued fraction
z
p
. If

tn <
√
p < tn+1,

then the algorithm stops and (x, y) = (tn, psn− ztn) defines a solution for x2+ y2 = p. If this does
not hold,

Step 3: see if tn+1 <
√
p < tn+2 works. If it does, the algorithm stops. If not...

Example. Let p = 13.

Step 1: we simply spot that 52 ≡ −1 mod 13.

Step 2: To find the convergents of
5

13
, we see
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α = b 5

13
c = 0 ⇒ r1 =

1
5
13

− 0
=

13

5
↙

α1 = b13
5
c = 2 ⇒ r2 =

1
13
5
− 2

=
5

3
↙

α2 = b5
3
c = 1 ⇒ r3 =

1
5
3
− 1

=
3

2
↙

α3 = b3
2
c = 1 ⇒ r4 =

1
3
2
− 1

= 2 ∈ N

↙
α4 = br4c = r4

Hence the convergents are

s0
t0

= 0,
s1
t1

= [0; 2] =
1

2
,
s2
t2

= [0; 2, 1] =
1

3
,
s3
t3

= [0; 2, 1, 1] =
2

5
.

The algorithm stops at n = 2 as

t2 = 3 <
√
13 < t3 = 5

and (x, y) = (3, 13 · 1− 5 · 3) = (3,−2), or (3, 2) defines a solution. Indeed, 32 + 22 = 13.

Example. p = 2017.

Step 1: 2292 ≡ −1 mod 2017.

To do this, we make appeal to Proposition 29. Since

(
5

2017

)
= −1 (trial and error), it follows

from Proposition 29 that 5
2017−1

4 = 5504 defines a solution to x2 ≡ −1 mod 2017. Simplify 5504

mod 2017, we get 229 mod 2017.

Step 2: to find the convergents of
229

2017
, we see that
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α = b 229

2017
c = 0 ⇒ r1 =

1
229
2017

− 0
=

2017

229
↙

α1 = b2017
229

c = 8 ⇒ r2 =
1

2017
229

− 8
=

229

185
↙

α2 = b229
185

c = 1 ⇒ r3 =
1

229
185

− 1
=

185

44
↙

α3 = b185
44

c = 4 ⇒ r4 =
1

185
44

− 4
=

44

9
↙

α4 = b44
9
c = 4 ⇒ r5 = 1

44
9
−4

=
9

8
↙
...

Hence the convergents are

s0
t0

= 0,
s1
t1

=
1

8
,
s2
t2

=
1

9
,
s3
t3

=
5

44
,
s4
t4

=
21

185
, . . .

The algorithm stops at n = 3 as

t3 = 44 <
√
2017 < t4 = 185.

and (x, y) = (44, 2017 · 5− 229 · 44) = (44, 9) is a solution. Indeed, 92 + 442 = 2017.

8.3 More sums of squares

Let n ∈ N. We can write it as n = a2b where a, b ∈ N and b is square free, in the sense that if p is a
prime that divides b, then p2 does not divide b). More precisely, it follows from the Fundamental
Theorem of Algebra that we may write n as

n =
∏
p

prp =
∏
rp=2sp

p2sp
∏

rp=2sp+1

p2sp+1 =

(∏
p

psp
)2 ∏

rp=2sp+1

p

and we may take a =
∏
p

psp (where p ranges over all prime factors of n) and b =
∏

rp=2sp+1

p (where

p ranges over the prime factors of n for which rp is odd).
For example,

1440 = 25325 = 122 · 10.

We shall refer to b as the square-free part of n.

Theorem 57 (Fermat & Euler) A positive integer n is the sum of two squares (of integers) if and
only if the square-free part ρ of n has no prime factors congruent to 3 mod 4.
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Proof. Suppose firstly that ρ has no prime factors congruent to 3 mod 4.

If ρ = ±1, then n is a square and it is evidently a sum of squares (since 02 is a sqaure). We
may then suppose that ρ > 1.Since the product of sums of squares is, again, a sum of squares [if
α = r2 + s2 and β = t2 + u2, then αβ = (r2 + s2)(t2 + u2) = (rt − su)2 + (ru+ st)2], it suffices
to establish that any prime factor p of ρ is a sum of squares. In theory, there are 4 cases mod 4 to
deal with:

p ≡ 0 This can occur since p is a prime.

p ≡ 1 This follows from Corollary 56.

p ≡ 2 The only possibility for p (prime and congruent to 2 mod 4) is 2. Clearly 2 is a sum of

squares 2 = 12 + 12!

p ≡ 3 This is excluded by assumption.

Conversely, suppose that n = r2+ s2 for some integers r, s. It suffices to prove that if p divides
the square-free part of n, then p is not congruent to 3 mod 4. It is equivalent to establishing that
if p is a prime factor of n and is congruent to 3 mod 4, then p is a factor of the ‘square-part’ of n,
i.e. , if p is a prime factor of n, is congruent to 3 mod 4 and pN is the maximal p-power divisor of
n, thenN is even. We shall prove the latter by induction on 1.

If n = 1, then the assertion holds (as n = 1 has no non-trivial divisors).

Suppose that the assertion holds for a positive integer< n. Suppose that p ≡ 3mod 4 and p|n.
The goal is to show that p divides n an even number of times.

p|r and p|s Suppose WLOG that p does not divide r. Therefore there exists t such that rt ≡ 1

mod p. On the other hand, since p|n, it follows from n = r2 + s2 that

r2 + s2 ≡ 0

mod p. Multiplying the congruence by t2, we obtain

0 ≡ t2(r2 + s2) = (rt)2 + (st)2 = 1 + (st)2,

i.e. (st)2 ≡ −1mod p. In other words,
(
−1

p

)
= 1 but this contradicts Rule 2 inTheorem 25 (this

is where we use p ≡ 3 mod 4).

Let r = pu and s = pv. Substitute those back into the equation, we have

n = r2 + s2 = p2(u2 + v2).

Since (u2 + v2) < n, it follows from the inductive hypothesis that p divides (u2 + v2) an even
number of times. The same remains true for p2(u2 + v2). �
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Example. 585 = 32 · 5 · 13. The square-free part is 5 · 13 and both prime factors 5 and 13 are
congruent to 1 mod 4, in particular NOT congruent to 3 mod 4. According to the theorem, we
should be able to express 585 as a sum of four integer squares. In fact,

5 = 22 + 12 = r2 + s2

and
13 = 22 + 32 = t2 + u2

And it follows from the formula in the proof of the theorem that

5 · 13 = (r2+ s2)(t2+ u2) = (rt− su)2+(ru+ st)2 = (2 · 3− 1 · 2)2+(2 · 2+3 · 1)2 = 42+72.

It therefore follows that

585 = 32(42 + 72) = (3 · 4)2 + (3 · 7)2 = 122 + 212.

Remark. We were ‘lucky’ that we could easily spot that squares for 5 and 13 respectively in the
example. What should we do if numbers are much bigger? Note that a positive integer n will NOT
be a sum of squares if there is a prime congruent to 3 mod 4 that divides the square-free part. So
if we know that no prime factor of the square-free part of n is congruent to 3 mod 4 (the theorem
ascertains that n is a sum of squares), what we need to do is to write all prime factors congruent to
1 mod 4 (the only prime congruent to 2 mod 4 is 2 and it is 12 + 12, while there is no prime con-
gruent to 0mod 4) as sums of two squares, for which we may make appeal to Hermite’s algorithm,
and use the product formula in the proof of the theorem.

Theorem 58 (Legendre & Gauss) Every positive integer can be written as a sum of three squares
(of integers) except for those of the form 4r(8z+ 1) for r, z ≥ 0.

Theorem 59 (Lagrange) Every positive integer can be written as a sum of four squares (of in-
tegers).

Proof (NON-EXAMINABLE). I learned the proof from A. Baker; it illustrates Fermat’s ‘infinite
descent argument’.

Firstly, by the formal identity

(x2 + y2 + z2 + w2)(s2 + t2 + u2 + v2) = (xs+ yt + zu+ wv)2 + (xt− ys+ wu− zv)2

+ (xu− zs+ yv− wt)2 + (xv− ws+ zt− yu)2

that the product of two sums of four squares is again a sum of four squares. Therefore the the-
orem follows if we can prove that every prime number is a sum of four squares. In fact, since
2 = 12 + 12 + 02 + 02, it suffice to prove it for an odd prime number.

Consider the set

X = {x2 | 0 ≤ x ≤ p− 1

2
}.

The elements in the set are NOT congruent to each other mod p. Indeed, if s2 ≡ t2 mod p where

0 ≤ s, t ≤ p− 1

2
, then p would divide s2 − t2 = (s+ t)(s− t); however, since 0 ≤ s+ t ≤ p− 1
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and −p− 1

2
≤ s− t ≤ p− 1

2
, it is evident that p does not divide s+ t nor s− t.

Similarly, the elements of the set

Y = {−1− y2 | 0 ≤ y ≤ p− 1

2
}

are NOT congruent to each other neither (this can be proved similarly). Each of these two sets

contain 1 +
p− 1

2
elements and therefore |X | + |Y | = p + 1 elements in total. Therefore if we

consider their residues mod p, there exists at least one pair of elements (x, y) ∈ (X ,Y ) whose
resides mod p coincide (the pigenhole principle), i.e.,

x2 ≡ −1− y2

mod p. Furthermore, since x <
p
2
and y <

p
2
,

0 < x2 + y2 + 1 < 2
(p
2

)2
+ 1 < p2.

We may therefore let x2 + y2 + 1 = kp for some 0 < k < p.

We now define ` to be the least positive integer such that p` = s2 + t2 + u2 + v2 for some
s, t, u, v ∈ Z– we may and will find the smallest positive integer of the form s2 + t2 + u2 + v2 that
is divisible by p, and ` is simply its quotient by p.

Let s, t, u, v be a set of integers satisfying p` = s2 + t2 + u2 + v2.

` ≤ k < p This follows by definition.

` is odd Suppose that ` is even. Then s2 + t2 + u2 + v2 is even, hence either 0, 2, or 4 of
{s, t, u, v} are even. If at least two of them are even, we may relabel them if necessary to assume
that s and t are even. In this case, s+ t, s− t, u+v, u−v are indeed all even! In fact, even if s, t, u, v
are all odd, s+ t, s− t, u+ v and u− v are all even. Granted,(

s+ t
2

)2

+

(
s− t
2

)2

+

(
u+ v
2

)2

+

(
u− v
2

)2

=
s2 + t2 + u2 + v2

2
= p

`

2
∈ N

contradicting the minimality of `. Therefore ` is odd.

It remains to establish that ` = 1 . To this end, suppose that ` > 1. Let s denote the residue
of s by `, i.e., the unique integer 0 ≤ s ≤ ` − 1 congruent to s; in fact, it is possible to choose s

such that 0 ≤ s <
`

2
(since ` is odd, s =

`

2
cannot hold). Similarly define t, u, v, and let

N = s2 + t2 + u2 + v2.

` dividesN Since ` divides s2 + t2 + u2 + v2, it follows that s2 + t2 + u2 + v2 is congruent
to 0 mod `.

69



N > 0 If N = 0, then s = t = u = v = 0, i.e., ` divides s, t, u and v. It would then follow
that `2 divides s2, t2, u2 and v2 and consequently it divides s2 + t2 + u2 + v2. As the latter is `p,
this would mean that ` divides p but by definition ` < p and this cannot possibly happen.

It follows that

N < 4

(
`

2

)2

= `2

and thereforeN = r` for some integer 0 < r < `. By the formal identity, the product (r`)(p`) of
r` = s2 + t2 + u2 + v2 and p` = s2 + t2 + u2 + v2 is again a sum of four squares. As the product
is divisible by `2, it is easy to see that each of the four squares is in fact divisible by `2. Dividing
through by `2, we then see that rp is a sum of four squares, but this contradicts the minimality of
`. �

9 Algebraic number theory

Definition. Let α be a complex number.

• α is an algebraic number if there is a non-zero polynomial f (x) ∈ Q[x] such that f (α) = 0;

• α is an algebraic integer if there is a non-zero monic polynomial f (x) ∈ Z[x] such that f (α) =
0.

• α is a transcendental number if it is NOT an algebraic number.

By a monic polynomial f (x), it means that the coefficient of the highest power (=degree of f )
of x is exactly 1.

Remark. By definition, an algebraic integer is an algebraic number.

Example. A rational number is an algebraic number. A rational number r ∈ Q is a root of the
monic polynomial x − r ∈ Q[x]. Similarly, an integer is an algebraic integer.

Example. α =
√
2 is an algebraic integer. It is a root of the polynomial x2 − 2 which is monic

and has coefficients in Z.

Example. α =
1√
2
is an algebraic number. Is this an algebraic integer? If α =

1√
2
, then

α2 =
1

2
, hence α is a root of the polynomial x2 − 1

2
∈ Q[x] monic but not not all coefficients are

in Z; alternatively, we may think of α as a root of the polynomial 2x2 − 1 with integer coefficients
but it is not monic. It seems likely α is not an algebraic integer (the argument above is not good
enough to conclude α is not an algebraic integer– we have not eliminated the possibility that there
might be a strange monic polynomial with integer coefficients with α its root.

Example. π is a transcendental number, i.e., not an algebraic number. This is a theorem of
Lindermann about 150 years ago. ‘Transcendental number theory’ is what A. Baker got a Fields
medal (1970) for.
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Proposition 60. A rational number is an algebraic integer if and only if it is an integer.

Proof. It suffices to prove that if a rational number r =
s
t
, with gcd(s, t) = 1, is an algebraic

number, then r ∈ Z, i.e., t = 1.
By definition, r satisfies

rn + cn−1rn−1 + · · ·+ c1r + c = 0.

Substituting r =
s
t
and subsequently multiplying by tn, we obtain

sn + cn−1sn−1t + · · ·+ c1stn−1 + ctn = 0.

If we write sn = −(cn−1sn−1t+ · · ·+ c1stn−1 + ctn), one sees that t divides the RHS and there-
fore also divides the LHS, sn.

Suppose that t > 1 (the goal is to deduce a contradiction). Let p be a prime factor of t (which
exists because t > 1). Since t divides sn, the prime factor p divides sn and it follows from Lemma 4
that p divides s. However, since p divides t, it follows that p|gcd(s, t). But gcd(s, t) = 1 and this is
a contradiction. �

Definition. Let α be an algebraic number. The minimal polynomial of α is the non-zero, monic
polynomial f (x) ∈ Q[x] of smallest possible degree, such that f (α) = 0.

Remark. What do we know about the minimal polynomial f of an algebraic number α?

Existence The minimal polynomial exists.

If g(x) is a polynomial in Q[x] such that g(α) = 0, then f necessarily divides g; indeed by
‘division algorithm’, there exist q and r in Q[x] such that g = qf + r with deg r < deg f , and it
follows from g(α) = 0 = f (α) that r(α) = 0, contradicting the minimality of degree of f !

On the other hand, f should be irreducible–it can not be factorised as a product of polynomials
in Q[x] of smaller degrees. Indeed, if it was not irreducible (i.e. reducible) in Q[x], then it would
contradict the minimality of the degree of f .

How do these all add up to explain the existence of f ?
Since α is algebraic, there is a polynomial f (x) = cnxn+ cn−1xn−1+ · · ·+ c1x+ c0 ∈ Q[x] such

that cn is non-zero and f (α) = 0. Then
1

cn
f ∈ Q[x] is a such monic polynomial. So the minimal

polynomial is an irreducible ‘factor/divisor’ of the ‘defining’ polynomial of which α is a root, but
it is not always easy to spot one!

Example. The minimal polynomial of α =
1√
2
is x2 − 1

2
.

Example. The minimal polynomial of α ∈ Q is x − α.

Example. What about the minimal polynomial of α = 3
√
2? It is easy to check that α satisfies

α3 − 2. In order for us to claim that it is indeed minimal for α, we need to know that x3 − 2
irreducible in Q[x].
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(NON-EXAMINABLE) A slick way of saying that, there is a minimal polynomial for an al-
gebraic number, is that the ring Q[x] of polynomials with rational coefficients is a UFD (Unique
Factorisation Domain), hence a PID (Principal Integral Domain))– we can run Euclid’s algorithm

with polynomials with rational coefficients. For example, a 11-th root of unity cos
2π
11

+ i sin
2π
11

is, by definition, a root of the polynomial x11 − 1 but

x11 − 1 = (x − 1)(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1)

suggests that x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1 is a good candidate for a
minimal polynomial. How do we know that it is irreducible?

Uniqueness the minimal polynomial is unique. Indeed, if f and g were two distinct monic

polynomials of α, then αwould be a root of h = f −g with deg h < deg f = deg g. This contradicts
the minimality of the degree of f (and g)– the key point is that the minimal polynomial is monic!

Theorem 61 (Gauss’s lemma) The algebraic number α is an algebraic integer if and only if its
minimal polynomial has integer coefficients.

Example. Indeed, we can make appeal to Gauss’s lemma to establish that α =
1√
2
is NOT an

algebraic integer. As we saw earlier, α is a root of the polynomial x2 − 1

2
. By Gauss’ lemma, we are

home if we show that this is the minimal polynomial of α. In fact, since x2− 1

2
is monic, it suffices

to show that there is no monic polynomial of degree < deg(x2 − 1

2
) = 2 of which α is a root. But

if α is a root of a degree 1 polynomial with rational coefficient, then α should be a rational number.

9.1 Irreducible polynomials over the rationals

I would call the following Gauss’ lemma.

Theorem. Let f be a polynomial in Z[x] and suppose that it is monic. Suppose furthermore
that there exist g, h in Q[x] such that deg g < deg f , deg h < deg f , and

f = gh.

Then there exist g′, h′ ∈ Z[x] such that g′ (resp. h′) is a Q-multiple of g (resp. h) and

f = g′h′.

If f is a polynomial in Z[x], then

f is reducible in Z[x]⇒ f is reducible in Q[x]

This is equivalent to the statement that

f is irreducible in Q[x]⇒ f is irreducible in Z[x]
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Gauss’s lemma proves the (non-trivial) converse, assuming that f is monic. In other words, if f
is a monic polynomial in Z[x],

f is irreducible in Z[x]⇒ f is irreducible in Q[x]

Just because it is not possible to factorise f in Z[x] does not necessarily mean that it is not
possible inQ[x], but Gauss’ lemma asserts this is indeed the case. It asserts equivalently (assuming
f is a polynomial in Z[x] and, in particular, monic) if f is reducible in Q[x], then it is reducible in
Z[x].

A non-monic polynomial which is irreducible in Z[x] but not irreducible in Q[x] (a comple-
ment to Gauss’ lemma) is, for example, 6x2 − 5x + 1. This is evidently irreducible in Z[x] but it

factors as 6(x − 1

2
)(x − 1

3
) in Q[x].

(NON-EXAMINABLE) We will not prove this lemma but we use it to prove Theorem.
Firstly, we show that if the minimal polynomial (in Q[x]) of α is an element of Z[x], then α

is an algebraic number. This follows by definition, as if α is an algebraic number and its minimal
polynomial has integer coefficients, then α is an algebraic integer.

Conversely, we show if α is an algebraic integer, then the minimal polynomial of α is an element
of Z[x]. Suppose that α is an algebraic integer. Let g be its minimal polynomial– we know that it
is an element of Q[x] but the goal is to show that it is indeed an element of Z[x]. By assumption,
there exists a monic polynomial f in Z[x] such that f (α) = 0. Seeing it as an element of Q[x], it
follows that g divides f . To establish the divisibility, suppose that f = gq+ r with deg r < deg g.
If r is non-zero, then it follows from f (α) = 0 that r(α) = 0, contradicting the minimality of g
(you have seen this argument before!).

If deg f = deg g, then, while it is in theory possible that f differs from g by a non-zero scalar
in Q, both f and g are monic and therefore f = g. In particular f is an element of Z[x].

Suppose that deg f > deg g. In this case, there exists h ∈ Q[x] such that deg h < deg f and
f = gh. Since f and g is monic, so is h. On the other hand, it follows from the second Gauss’ lemma
that there exist g′, h′ in Z[x] which differ from g and h by scalars respectively such that f = g′h′.

If we let g′ = cg, then h′ should be of the form
1

c
h and this cannot possibly be an element of Z[x]

(for example, the coefficient of the top degree term in h′ is 1/c) unless c = ±1. This means that
g ∈ Z[x].

It is, hopefully, clear by now that it is important to know whether a polynomial in Q[x] is
irreducible or not. Knowingly, there are two ways of deciding the irreducibility of a polynomial in
Z[x] (if one is lucky).

Let
f = f (x) = xn + cn−1xn−1 · · ·+ c1x + c0 ∈ Z[x]

be a monic polynomial with integer coefficients. We will know that f is irreducible in Z[x] (hence
it is irreducible in Q[x] by Gauss) if we can

• find a prime number p such that if we let f = xn+[cn−1]pxn−1+ · · ·+[c1]px+[c0]p ∈ Fp[x],
then f is irreducible in Fp[x];

• find a prime number p such that p divides all cj but p2 does not divide c0; if this holds, we
say that f is Eisenstein at p.
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The former is useful because it reduces our search for factors to finitely many computations.
The latter is often called Eisenstein criterion. These are not sufficient conditions, i.e. failure to spot
a such p does not mean that f is NOT irreducible in Q[x].

Example. We may reverse-engineer the first criterion and work out all irreducible polynomials
in Z2[x] first.

Degree 1: x and x + 1 = x − 1.
Degree 2: x2 + x + 1. To see this, we firstly observe that the monic polynomials in Z2[x] of

degree 2 are x2 + x, x2 + x + 1, x2, x2 + 1; we may then eliminate the reducible ones.
Degree 3: x3+x+1 and x3+x2+1. To see this, we remove from the list of 8monic polynomials

in Z2[x] of degree 3 all reducible polynomials which are necessarily of the form

• either (irreducible of degree 1)× (irreducible of degree 2)

• or (irreducible of degree 1)× (irreducible of degree 1)× (irreducible of degree 1).

(NON-EXAMINABLE) We may ‘inductively’ complete a list of all monic irreducible polyno-
mials in Fp[x] of degree n as follows. Firstly, we list all pn monic polynomials in Fp[x] of degree n.
For every partition n1+n2+ · · ·+nk = n of n by positive integers, we consider all polynomials of
the form (irreducible of degree n1)× · · · × (irreducible of degree nk) using the list of degree < n
and remove them from the list. We repeat the process for all possible partitions as above and what
remains is the list of irreducible polynomials of degree n. Can you compute how many irreducibles
in the list? Indeed, the number of monic irreducible polynomials of degree n in Fp[x] is computed
by

1

n

∑
d|n

µ
(n
d

)
pd

where d ranges over all integers in [1, n] dividing n and µ is the Möbius function defined for a
positive integer z as

µ(z) =


1 if z is square-free with even number of prime factors,
−1 if z is square-free with odd number of prime factors,
0 if z is not square-free, i.e. has a squared prime factor.

In fact, µ is related to primitive integers earlier!

Anyway, x2 + x+ 1 is irreducible in F2[x]. Any f ∈ Z[x] such that f = x3 + x+ 1 in F2[x] is
irreducible. For example, x3 + x+1, x3 +3x+1, x3 +3x+3, x3 + x+3, . . . (there are of course
infinitely many such polynomials in Z[x]).

Example. Let f (x) = x3 − 2. Then

• f = x3 is reducible in F2[x].

• f = x3 + 1 = (x + 1)(x2 − x + 1) is reducible in F3[x].

• f = (x − 3)(x2 + 3x + 9) is reducible in F5[x].

• f is irreducible in F7[x]. To see this, we argue as follows. If f was reducible in F7[x], then it
would factor as (irreducible of degree 1)×(irreducible of degree 2) or (irreducible of degree 1)×
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(irreducible of degree 1) × (irreducible of degree 1). In either case, f would have a linear
factor i.e. x − α for some α in F7. In other words, it would be the case that f (α) = 0 for
some α in F7. However,

α 0 1 2 3 4 5 6
f (α) 5 6 6 4

hence no α in F7 would be a root of f (x)! This is a contradiction.

Remark. Just because it is not possible to find p such that f ∈ Fp[x] is irreducible does NOT
mean that f is not irreducible! For example, let f (x) = x4 − 10x2 + 1. It turns out (check it if you

are interested!) that f ∈ Fp[x] is reducible for any prime p, but f itself is actually irreducible inZ[x]!

Example. X 3 − 2 is Eisenstein at 2. In fact, xn = 2, for any n ≥ 2, is Eisenstein at 2. It
therefore follows that xn − 2 is irreducible in Z[x].

One can reverse-engineer and come up with Eisenstein polynomials at p (i.e. monic irreducible
polynomials) in Q[x] rather easily. This was important in the development of algebraic number
theory.

Example. x19 + 6x10 − 9x4 + 75 is Eisenstein at 3.

(NON-EXAMINABLE until the end of the section) Let us prove the legitimacy of the two ir-
reducible criteria.

Proposition. (Reduction-mod-p-criterion). Let f be a monic polynomial in Z[x]. If f ∈ Fp[x]
is irreducible, then f is irreducible in Z[x].

Proof. Suppose that f is reducible in Z[x] and there exist g, h in Z[x] such that deg g < def f ,
deg h < deg f and f = gh. Since f is monic, the top degree terms in g and h have coefficients both
1 or both −1. We may therefore assume WLOG that g and h are monic. Since f = gh, we have
f = gh in Fp[x]. However, since f is assumed to be irreducible, either (deg g, deg h) = (0, deg f )
or (deg g, deg h) = (deg f , 0) holds. Since g and h are monic, this implies either deg h = deg f or
deg g = deg h contradicting assumptions on g and h. �

Proposition. (Eisenstein criterion). Let f be a monic polynomial in Z[x]. If f is Eisenstein at
p, then f is irreducible in Z[x].

Proof. Suppose that f is reducible in Z[x] and there exist g, h in Z[x] such that deg g < def f ,
deg h < deg f and f = gh. Since f is monic, we may assume that g and h are monic. If we let

f = xn+ cn−1xn−1 + · · ·+ c1x+ c0, then f = xn and therefore xn = gh in Fp[x]. Since g and h are
still monic in Fp[x], we see that g = xr and h = xs for some integers r and s satisfying r + s = n.
From this, it follows that g should be of the form

g = xr + cr−1(g)xr−1 + · · ·+ c1(g)x + c0(g)

where p divides all cj(g), while h is of the form

h = xs + cs−1(h)xs−1 + · · ·+ c1(h)x + c0(h)
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where p divides all cj(h). However, c0 = c0(g)c0(h) and the RHS is divisible by p2. This contradicts
f being Eisenstein at p. �

Both irreducibility criteria can be generalised slightly where it is no longer necessary to assume
f is monic from the outset. Let f = cnxn + · · · c1x + c0 be a polynomial in Z[x] and assume cn is
non-zero (i.e. f is of degree n).

• Suppose that cn is not divisible by p (e.g. cn = 1, i.e. f is monic). Then if f is irreducible in
Fp[x], then f is irreducible in Z[x].

• Suppose that p - cn. If f is Eisenstein at p, i.e. p|cj for every j but p2 - c0, then f is irreducible.

The proofs in the monic case hold almost verbatim– we just have to multiply f by the inverse
of cn that exists by assumption. In both cases, to deduce the irreducibility of f in Q[x] from that
of Z[x], it is necessary to have Gauss’ lemma that works for non-monic polynomial. We conclude
this section by stating a generalised Gauss.

Definition. A polynomial f = cnxn + cn−1xn−1 + · · · + c1 + c0 ∈ Z[x] is said to be primitive
if gcd(c0, c1, . . . , cn) = 1.

Example. A monic polynomial is primitive.

Theorem. Let f ∈ Z[x] be a primitive polynomial. Suppose that there exist g, h in Q[x] such
that deg g < deg f , deg h < deg f , and

f = gh.

Then there exist g′, h′ ∈ Z[x] such that g′ (resp. h′) is a Q-multiple of g (resp. h) and

f = g′h′.

9.2 Quadratic number fields

Let α be an algebraic number. By definition, there exists a non-trivial polynomial with coefficients
inQ of which α is a root. As an irreducible factor of this polynomial, there exists a minimal poly-
nomial f in Q[x] of degree, say n.

Definition. Let Q(α) ⊂ C denote the smallest field extension of Q containing α.

By definition, Q(α) is a field and therefore closed under addition and multiplication. It con-
tains, for example, elements such as 2α, 3α, . . . and α2, α3, . . . (or any sum/multiple of these ele-
ments!). As a vector space overQ, the fieldQ(α) is generated by the linearly independent elements
1, α, . . . , αn−1.

This is an example of a number field. Algebraic number theory was (initially) defined as the
study of properties/structure of number fields.

In theory, one can keep adding algebraic numbers: let Q denote the field extension of Q con-
taining all algebraic numbers. UnderstandingQ is one of the goals of modern number theory (e.g.
the Langlands program).

In what follows, we consider the case when n = 2.

76



Definition. An integer d is a square-free if p is a prime that divides d, then p2 does not divide
d. Evidently,

√
d is not a rational number.

Definition. Let Q(
√
d) denote the smallest field extension of Q that contains

√
d 6∈ Q. More

concretely,

Q(
√
d) = {s+ t

√
d | s, t ∈ Q}

and it is a field with respect to addition:

(s+ t
√
d) + (s′ + t′

√
d) = (s+ s′) + (t + t′)

√
d ∈ Q(

√
d)

and multiplication

(s+ t
√
d)(s′ + t′

√
d) = (ss′ + dtt′) + (st′ + s′t)

√
d ∈ Q(

√
d);

if s+ t
√
d is a non-zero element ofQ(

√
d) and, in particular if t is non-zero, then it has multiplic-

ative inverse:
s

s2 − dt2
− t
s2 − dt2

√
d ∈ Q(

√
d)

[note that the denominator s2−dt2 is never zero because of the assumption that d is square-free!]

Definition. Let d be a square-free integer. The set of elements α inQ(
√
d) which are algebraic

integers defines a ring. The ring is called the ring of integers of Q(
√
d).

Proposition 62 Let d be a square-free integer. Then the ring of integers of Q(
√
d) is

• Z[
√
d] = {s+ t

√
d | s, t ∈ Z} if d ≡ 2, 3 mod 4,

• Z

[
1 +

√
d

2

]
= {s′ + t′

1 +
√
d

2
| s′, t′ ∈ Z} if d ≡ 1 mod 4.

Proof (NON-EXAMINABLE). Let α be an element s+t
√
d ofQ[

√
d]. It is a root of the polynomial

x2 − 2sx + (s2 − dt2).

For α to be an algebraic integer inQ[
√
d], the coefficients 2s and s2− dt2 both need to be integers.

These conditions boil down to both s and t being integers if d ≡ 2 or 3 mod 4, or (s, t) being of

the form (s′ +
t′

2
,
t′

2
) for some integers s′, t′ if d ≡ 1 mod 4. In the latter case,

s+ t
√
d = (s′ +

t′

2
) +

t′

2

√
d = s′ + t′

1 +
√
d

2
.

To elaboratemore on ‘These conditions boil down to...’, we ask the following question: amongst

the elements in Q(
√
d), which α’s are roots of the monic polynomial in Z-coefficients? The ques-

tion boils down to the following question:

find the set Σ of all pairs (s, t) ∈ Q×Q satisfying 2s ∈ Z and s2 − dt2 ∈ Z simultaneously.

It turns out that
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• if d ≡ 2 or d ≡ 3 mod 4, then

Σ = {(s, t) ∈ Q×Q | s ∈ Z, t ∈ Z}

and therefore the ring of integers in Q(
√
d) is

{s+ t
√
d | (s, t) ∈ Q} =: Z[

√
d],

• if d ≡ 1 mod 4, then

Σ = {(s, t) = (s′ +
t′

2
,
t′

2
) ∈ Q×Q | s′ ∈ Z, t′ ∈ Z}.

and therefore the ring of integers in Q(
√
d) is{

s′ + t′

2
+
t′

2

√
d | s′, t′ ∈ Z

}
=

{
s′ + t′

1 +
√
d

2
| s′, t′ ∈ Z

}
=: Z[

1 +
√
d

2
]

Suppose d ≡ 2 mod 4 or d ≡ 3 mod 4 . The inclusion

Σ ⊃ {(s, t) ∈ Q×Q | s ∈ Z, t ∈ Z}

is clear. To prove
Σ ⊂ {(s, t) ∈ Q×Q | s ∈ Z, t ∈ Z},

we argue as follows. Let 2s = r ∈ Z– we only know that s ∈ Q. One of the goals is to prove that
2|r, in order for us to conclude s ∈ Z. As

s2 − dt2 =
r2 − 4dt2

4
∈ Z,

it follows that r2 − 4dt2 ∈ 4Z. We deduce from this that, while we do not know if t ∈ Z yet,

we do know that t =
u
2
for some u ∈ Z. To see this, we argue as follows. Since r2 − 4dt2 is, in

particular, an integer and r2 is an integer, 4dt2 = d(2t)2 is an integer. It suffices to show that 2t is

an integer. As 2t is a rational, we may write 2t as
a
b
for a pair of integers a, b such that gcd(a, b) = 1

and b is non-zero; the goal is to show that b = 1. Suppose that b > 1. In this case, there exists

a prime number p that divides b. Since
da2

b2
is an integer, it therefore follows that p2 divides da2.

However, since gcd(a, b) = 1, it follows that p2 divides d. This contradicts the assumption that d
is a square-free integer.

Substitute t =
u
2
back into the equation above, we have

r2 − du2 ∈ 4Z.

Recall that
z mod 4 z2 mod 4

1 1
2 0
3 1
4 0

78



We prove u2 ≡ 0 mod 4 . Suppose u2 ≡ 1 mod 4. Then du2 ≡ 2 (resp. du2 ≡ 3) mod 4 if
d ≡ 2 (resp. d ≡ 3). It follows from r2 − du2 ∈ 4Z that r2 ≡ 2 (resp. r2 ≡ 3) mod 4. According
to the table, this is not possible.

r2 ≡ 0 mod 4 This follows immediately from r2− du2 ∈ 4Z and du2 ≡ 0mod 4 from above.

According to the table, r2 ≡ 1mod 4 implies r ≡ 0 or≡ 2mod 4. In either case, 2|r. Similarly
for u.

The case for d ≡ 1 is similar but slightly harder. Suppose d ≡ 1 mod 4 . We show the follow-
ing two sets are equal:

Σ = {(α, β) ∈ Q×Q | α + β ∈ Z, α − β ∈ Z}.

On the other hand, the equality

{(α, β) ∈ Q×Q | α + β ∈ Z, α − β ∈ Z} = {(s′ + t′

2
,
t′

2
) ∈ Q×Q | s′ ∈ Z, t′ ∈ Z}

holds by relating (α − β, α + β) to (s′, s′ + t′), or equivalently relating (α, β) to (s′ +
t′

2
,
t′

2
).

It therefore remains to check the equality Σ = {(α, β) ∈ Q×Q | α + β ∈ Z, α − β ∈ Z}.

The inclusion
Σ ⊃ {(α, β) ∈ Q×Q | α + β ∈ Z, α − β ∈ Z}

is easy. To prove the inclusion

Σ ⊂ {(α, β) ∈ Q×Q | α + β ∈ Z, α − β ∈ Z},

we argue as in the first case. We let 2s = r ∈ Z,

r2 − dt2 ∈ 4Z

forces t to be of the form t =
u
2
for some u ∈ Z. We then have

r2 − du2 ∈ 4Z.

As d ≡ 1 mod 4 this time, r2 ≡ 1 mod 4 if and only if u2 ≡ 1 mod 4. According to the

table, this implies that 2|(r − u) and 2|(r + u). We then observe that α − β =
r − u
2

∈ Z and

α + β =
r + u
2

∈ Z as desired. �

9.3 Units in the ring of integers in Q(
√
d)

Definition. Let R be a ring. An element r in R is said to be a unit if there exists s in R such that
rs = 1.
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Example. The units in Z are ±1. If r and s are integers such that rs = 1, the only possibilities
for (r, s) are (1, 1) or (−1,−1).

Example. ±1,±
√
−1 are units in Z[

√
−1]. This is because 1 · 1 = 1, (−1) · (−1) = 1,√

−1 · (−
√
−1) = 1. Indeed, they are the units in Z[

√
−1] (to be explained shortly).

Remark. It might be useful for us to understand what units in R = Z[
√
d] look like. Let

r = s + t
√
d and R = S + T

√
d where s, t,S,T ∈ Z. The condition rR = 1 would then imply

that (1) sS + tTd = 1 and (2) tS + sT = 0. It follows from (1)× s− (2)× td that S(s2 − dt2) = s
and from (1)× t− (2)× s that T(s2 − dt2) = t. To sum up,

S + T
√
d =

s
s2 − dt2

+
t

s2 − dt2
√
d

and therefore both
s

s2 − dt2
and

t
s2 − dt2

should be integers. In fact, s2 − dt2 should be 1 or −1

because of this. See the forthcoming proposition [it is, of course, possible to prove this directly].

Definition. Given α = s+ t
√
d ∈ Q(

√
d), let

α = s− t
√
d ∈ Q(

√
d)

and we call it the conjugate of α.
Lemma 65. Let d be a square-free integer and α, β ∈ Q(

√
d).

• α = β if and only if α = β.

• αα ∈ Z if α = s+ t
√
d ∈ Z[

√
d].

• αβ = α β.

Proof. This is straightforward. �
Proposition 66 Suppose that d is a square-free integer and d ≡ 2, 3 mod 4 (hence the ring of

integers in Q(
√
d) is Z[

√
d]). An integer α = r + s

√
d ∈ Z[

√
d] is a unit if and only if |αα| = 1,

or equivalently,
s2 − dt2 = ±1,

i.e., (s, t) is a solution of Pell’s equation x2 − dy2 = ±1.

Remark(NON-EXAMINABLE).When d ≡ 1mod 4, the ring of integers inQ(
√
d) isZ[

1 +
√
d

2
].

An element in Z[
1 +

√
d

2
] is of the of form r = s + t

1 +
√
d

2
= s′ + t′

√
d where s′ = s +

t
2
=

2s+ t
2

∈ Q and t′ =
t
2
∈ Q. Analogous to the argument in the previous remark, it follows from

rR = 1 for R = S + T
1 +

√
d

2
= S ′ + T ′

√
d ∈ Z[

1 +
√
d

2
] that

S ′ + T ′
√
d =

s′

s′2 − dt′2
+

t
s′2 − dt′2

√
d =

s
u
+
t
u
1 +

√
d

2
,
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where u =
1

4
((2s + t)2 − dt2) = s2 + st +

1− d
4

t2 ∈ Z (since d ≡ 1 implies
1− d
4

∈ Z).

Demanding
s
u
∈ Z and

t
u
∈ Z simultaneously is equivalent to u = ±1 [if not, there would be a

prime p > 1 that divides u. And any power of p would then divide s and t, which is evidently a
contradiction] which is markedly different from what we get when d ≡ 2 or 3 mod 4. Note that
u = ±1 is equivalent to (2s+ t)2 − dt2 = ±4.

Proof. Suppose that α = s + t
√
d ∈ Z[

√
d] is a unit. Then there exists β ∈ Z[

√
d] such that

αβ = 1. By the first part of Lemma 65, αβ = 1 = 1. It follows from the third part of Lemma 65
then that

1 = (αβ)(αβ) = ααββ.

From the second part of Lemma 65, ββ ∈ Z and αα = s2− dt2 ∈ Z and the equality in fact claims
that αα = r2−ds2 is a unit inZ. Since the units inZ are±1, we then conclude that r2−ds2 = ±1.

Conversely, suppose that r2 − ds2 = ±1. Then (αα)2 = (r2 − ds2)2 = 1. In other words,

α(αα α) = 1,

which says that α is a unit in Z[
√
d]. �

Example. The units in Z[
√
−1] are ±1,±

√
−1. By Proposition 66, the units in Z[

√
−1] are

s + t
√
−1 such that s2 + t2 = 1 for integers s and t. The only possible pairs (s, t) are (±1, 0) and

(0,±1).

Example. Z[
√
3] has infinitelymany units. Indeed, the units inZ[

√
3] are of the form (2+

√
3)n

for n in N. Since we know that the fundamental solution to the Pell’s equation x2 − 3y2 = ±1
is (s, t) = (2, 1) and Theorem 51 asserts that every positive integer solution (vn,wn) is given by

vn + wn
√
d = (s+ t

√
3)n. Can you find more?

Example(NON-EXAMINABLE).The units inZ[
1 +

√
−3

2
] are {s+ t1 +

√
−3

2
| s2+ st+ t2 =

1}. To solve the equation s2 + st + t2 = 1 in s, t ∈ Z, we firstly make appeal to the quadratic for-

mula and see that s =
−t±

√
t2 − 4(t2 − 1)

2
=

−t±
√
−3t3 + 4

2
. For s to be an integer, there

are two cases to follow:

t is even In this case, −3t2 + 4 should be of the form (2α)2 for some α ∈ Z. It then follows
from the equation (2α)2 + 3t2 = 4 that t2 = 0 (as t is meant to be an even integer) and therefore

that −3t3 + 4 = 4 and s =
±
√
4

2
= ±1 as a result.

t is odd In this case, −3t2 + 4 is should be of the form (2α + 1)2 for some α ∈ Z. It then
follows form the equation (2α+1)2 +3t2 = 4 that t2 = 1 (as t is meant to be an odd integer), i.e.

t = ±1. If t = 1, then−3t3+4 = 1 and s =
−1±

√
1

2
= 0 or 1; if t = −1, thenm−3t2+4 = 1

and s =
1±

√
1

2
= 1 or 0.
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In conclusion, the units in Z[
1 +

√
−3

2
] are elements of the form s + t

1 +
√
−3

2
where (s, t)

is (1, 0), (−1, 0), (0, 1), (−1, 1), (1,−1) or (0,−1).

The following theorem proves the structure of solutions of Pell’s equation x2 − dy2 = ±1.

Theorem 67 (Dirichlet’s unit theorem for a real quadratic field; NON-EXAMINABLE) Let d
be a square-free positive integer congruent to 2 or 3 mod 4. The group of units in the ring Z[

√
d]

of integers of Z[
√
d] is isomorphic to

{±1} × Z.

This is a distilled form of what Dirichlet actually proved for F in 1846 (apparently, P. G. L.
Dirichlet came up with a proof during a concert in the Sistine Chapel in Rome).

Theorem 68 (Dirichlet’s unit theorem for a number field; NON-EXAMINABLE) Let F be a
number field. Let rR (resp. 2rC) be the number |HomQ(F ,R)| (resp. |HomQ(F ,C)|) of real em-
beddings (of pairs of complex conjugate embeddings). The group of units in F is finitely generated
by r = rR + rC − 1 generators of infinite order, i.e., the group of units in F is isomorphic to

µ× Zr

where µ is the finite cyclic group of roots of unity.

Remark. If rR > 0, then µ = {±1} as±1 are the only roots of unity in R. Even if rR = 0, we
still have µ = {±1}; for example Z[

√
−1] has units {±1,±

√
−1}.

Remark. The unit group is finite if and only if r = 0, i.e., (rR, rC) = (1, 0) or (0, 1), i.e,

F = Q or Q(
√
d) with d < 0. When d is a negative square-free integer, the group of units in

the ring of integers ofQ(
√
d) is {±1} except when d = −1 in which case it is {±1,±

√
−1} and

when d = −3 and there are 6 units in Z[
1 +

√
−3

2
].
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