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1 Introduction

Number theory can be thought of as having its roots in the study of Diophantine equations. Di-
ophantine equations are polynomial equations with rational coefhicients which we seck to solve
while we insist the solutions should again be rational numbers.

Number theory has a long history. The Greeks knew, by about 400BC, that X? — 2 = 0 has no
solution in rational numbers (the solutions defines a parabola).
Babylonians before 1600BC were already interested in rational solutions to the equation X? +
3 4 5 12
Y2=1(co (X.Y)=(1,0).(=, =), (—,—=),...
(Cf(D ( Y ) ( ) )7(575)7(13713)7

many of them!), with a stone tablet to prove it.

and the Greeks knew that there are infinitely

An Arab manuscript around 972 AD, more or less, asks, for which integer NV, is there a right
angled triangle with area N whose sides have rational length? Algebraically, this amounts to solving
the simultaneous equations

X2+Y2:ZZ

and
XY =2N

in positive rational numbers. In fact, the problem boils down to solving the equation
Y?=X* - N°X
in non-zero rational numbers, and the equation defines an example of what we call elliptic curves.

Number theory is full of surprises and one does not have to be an expert in number theory to
witness them. Let me give you another example. Let E denote the equation

Y24+ Y =X - X?
and N, denote the number of solutions to
Y24+ Y =X — X?mod p.
Here is a table

p |2 3 5 7 11 13 17 19
p—N,[-2 -1 1 -2 1 4 -2 0




On the other hand, consider the following infinite product in ¢
f=q]J -1 —q¢")?
n=1

and it is an exercise in binomial expansions to find it equals
q_2q2_q3+2q4+q5+2q6_2q7_2q9_2q10+q11_2q12+4q13+4q14_q15_4q16_2q17+4q18+. .

Can you see a pattern? The number p — N, is just the coefhicient of the p-th power of ¢. Is this
a coincidence, or is there any explanation for it? The Shimura-Taniyama conjecture (it is a theorem
of C. Breuil, B. Conrad, F. Diamond, R. Taylor and A. Wiles) asserts that any equation of the form

Y24+aY = X3+ bX? +cX +d,

where a, b, ¢,d € Q, corresponds to a power series like f in a similar manner.

Number Theory has become an extremely technical subject drawing on techniques from all
over mathematics. Nonetheless, it retains, at the heart of the subject, a particular beauty and
clegance in its simplicity of messages it inspires in people (Gauss called number theory the ‘queen
of mathematics’): you might have heard the following:

« Fermat’s Last Theorem (P. Fermar, L. Euler, ..., A. Wiles): the equation X" 4+ Y" = Z" has
no solutions in integers whenn > 3.

+ the Twin prime conjecture (..., Y. Zhang, ]. Maynard, T. Tao, B. Green, ... not completely
proved yet): there exist infinitely many pairs of primes that differ by 2 (e. g {3,5} and
{17,19}).

« the Goldbach conjecture (open): every integer (> 2) is the sum of two primes.

+ the Riemann hypothesis (open): the “non-trivial” zeros of the Riemann zeta function ((s) =
oo

1 1
Z —ins € C all have real part 3 (this is one of the seven Millennium problems; if you

n
n=1

solve one of these, you will receive one million dollars from the Clay Maths Institute).

They are extremely hard to prove. For example, it took about 350 years for the FLT to be
proved completely and this is the only one in the list that has been proved! David Hilbert, one of
the greatest mathematicians in the 19th and early 20th centuries, famously said “If T were to awaken
after having slept for a thousand years, my first question would be: has the Riemann Hypothesis
been proven?”.

Topics such as the Langlands program, the Birch-Swinnerton-Dyer conjecture, the Fontaine-
Mazur conjecture and the abc conjecture are right at the centre of very active research in number
theory that continues to inspire many researchers in mathematics.

There are a lot of number theorists in

heeps://www.bbe.co.uk/programmes/b00srz5b/episodes/player



In my youth, I spent a lot of time reading entries in

heeps://mathshistory.st-andrews.ac.uk

[ occasionally stumble upon articles from

hetps://www.quantamagazine.org/tag/number-theory/

2 Samplers

So what exactly are we going to learn? Inevitably, they are all about numbers (by which I normally

mean integers/natural numbers). Let p be an odd prime number. We will answer questions such as

(quadratic reciprocity) Given a number @, is it congruent to the square of an integer mod p
(g —1= 52 mod 13 but no square is congruent to —1 mod 19)? Is there an casy way (i.c.,
casier than checking all p mod p residues) to figure this out?

(Continued fraction and Diophantine approximation) How closely can /p be approxim-

141421 1393
ated by a rational number (e.g V2 is approximately 150000 burt 085 is an even better

approximation with much smaller numeracor and denominator)? What do we mean exactly

by ‘good” approximation?

(Pell equations) Does the equation 22 — py* = 1 have a solution? What about 2% —py* = —1
(e.g. 18% — 13- 5% = —1 bur there is no solution to % — 19y* = —1)?

(Representations of primes as sums of squares) Can we express p in the form 22 +y? for some
natural numbers x and y (e.g. 13 = 32 4+ 22 bur 19 cannot be)?

3 Revision

Let N ={1,2,...} be the set of natural numbers. Let Z = {--- ,—2,—1,0,1,2,...} be the set
of integers.
3.1 Euclid’s algorithm

We all know by experience that if a pair of non-negative integers @ and b with b > 0, there exist
integers ¢ > 0 and 7 > 0 such thac 0 < r < b and

a=bg+r.

The ¢ (resp. ) is often referred to as the quotient (resp. remainder) when we divide a by b.

In fact, something more general is true (See Appendix): for integers @ and b with b > 0 (ic. a

can be negative!), there exist unique integers ¢ and 7 such that 0 < 7 < b and

a=bg+r.

When the residue 7 = 0, we say b divides @, we often write

bla.

4



Though b has been assumed to be positive, this definition of ‘division” holds more generally for
b =0, ic, 0 divides a if there exists an integer ¢ such that @ = Og. And this forces @ = 0. In other
words, the only integer which 0 divides is 0! Note that we are only considering ‘0 divides 07, and

0

. a . . o _
not considering the fraction - = — (which makes sense it & > 0 divides a). Indeed, it also works

for negative b!: for integers a and b, we say that b divides a (and write b|a) if there exists an integer
q such that a = bq.

Remark. Note that a|b means different from bla. Also do not confuse this with b/a which is a

rational number with numerator b and denominator a (I will typically write — though).
a

Definition. The highest common factor, or the greatest common divisor in this course, d =
ged(a, b) of two integers (not necessarily positive!) @ and b is a non-negative integer d characterised
by the following properties:

+ d|a and d|b,
« if e is a natural number satisfying e|a and e|b, then e|d.

When gcd(a, b) = 1, we often say that @ and b are relatively prime, or coprime.

Example. gcd(4,6) = 2. The only integers that divide 4 and 6 are £1 and £2. They all divide
2. The point is that ged is defined to be non-negative.

Remark. Note that, by definition, ged is a non-negative integer. It is certainly possible to define
it to be merely an integer satisfying the properties above (in which case 2 and —2 are both ged(4, 6)
) but it would be more convenient for everyone to talk about the ged.

Example. ged(0,0) = 0. Indeed, for any integer n > 0, ged(n, 0) = n.

To prove the latter (which specialises ton = 0), we use the definition of ged. Let g = ged(n, 0)
for brevity. Firstly, g divides n by definition. Therefore there exists an integer 7 such that n = rg.
On the other hand, since n|n and 7|0 (because 0 = n0), it follows from the second property of ged
that n|g, i.c., there exists an integer s such that ¢ = sn. Combining, n = rg = rsn. It follows that
cither n is zero or n is non-zero with rs = 1. If m is zero, g is zero (since g = s0 = 0) and we are
done. If n is non-zero, rs = 1, hence (r,s) = (1,1) or (—1, —1). However, since both g and n are
non-negative, the only possibility is (r,s) = (1,1), ie.,n =g

Remark. Do you know ged(a, b) = ged(—a, b) = ged(a, —b) = ged(—a, —b)?

Let us prove the first equalicy (NON-EXAMINABLE). Observe that if d is an integer, then
dla and d|b is equivalent to d| — @ and d|b. 1f ged(a,b) = 0, thena = 0 and b = 0, and
both ged’s are 0. 1f ged(a,b) > 0, then ged(—a, b) is also > 0. For if it were zero, it would
implya = 0 and b = 0 and ged(a, b) = 0 which is a contradiction. The aforementioned equi-
valence shows that ged(a, b)|ged(—a, b) and ged(—a, b)|ged(a, b). Since both ged’s are positive,
ged(a, b) = ged(—a, b). The other equalities can be proved similarly.



Euclid’s algorithm is a procedure to find the ged systematically, given a pair of integers a, b with
b > 0. The algorithm is based on the observation that

gcd(a, b) = gcd(b, r)

where 7 is the unique integer satistying a = bg + r with 0 < r < b. See Appendix 2.

Note that Euclid’a algorithm computes ged(a, b) when at least only one of them, often labelled
as ‘0", is positive, but Remark above shows that ged of two negative integers, @ and b say, can be
computed by ged(—a, —b) for example. The latter can be computed via Euclid’s algorichm.

Exercise. Find ged(225, 157).

225 = 157-1+68
157 = 68-2421
68 = 21-3+5
2 = 5-4+1

5 = 1-5+0

Repeatedly applying the ‘key observation’, one sees ged(225, 157) = ged(157, 68) = ged(68,21) =
ged(21,5) = ged(5,1) = 1.

Exercise. What is ged (123, 456)? What is ged(123, —456)?

456 = 123-3 487

123 = 87-1+36
87 = 36-2+15
36 = 15-246
15 = 6-2+3
6 = 3-2+0

On the other hand,

—456 = 123-(—4)+ 36
123 = 36-3+15

36 = 15-2+6

15 = 6-2+3

6 = 3-240

Euclid’s algorithm also finds a pair of integers r and s such that
ar + bs = ged(a, b).
In the first example above, we work back up the chain:

1 = 21-5-4
= 21—-(68—-21-3)-4=21-13—-68-4
= (157 —-68-2) —68-4=157-13 — 6830
= 157-13 — (225 —157) - 30 = 157 - 43 — 225 - 30

Sor = —30 and s = 43 work. In fact:



Proposition 1. Foranyd € Nanda,b € 7Z, the following are equivalent:

« the equation ax + by = d is soluble (in integers) in & and y.
- ged(a, b) divides d.

Proof. For brevity, let g denote ged(a, b). Firstly, suppose that there exist 7,s in Z such that
ar + bs = d. Since any common divisor of @ and b divides the LHS, it divides d on the RHS. In
particular, g, the greatest common divisor of @ and b, divides d.

Conversely, suppose that g divides d. Let d = zg for some 2 € Z. By Euclid’a algorithm, one
can find 7, s in Z such that ar + bs = g. Multiplying the equation by 2, we have

zg = z(ar + bs) = a(zr) + b(zs).
Since d = 2g, the pair (x,y) = (27, 2s) defines a solution for the equation ax + by = d.00

Example. We know ged (225, 157) = 1,50 225x+157y = d is soluble in integers for any integer
d > 0. Indeed, the proof explains how to find a solution: using Euclid’s algorithm, find integers 7, s

such that 2257 +157s = 1. Then (x,v) = (rd, sd), as 225rd + 157sd = (225r +157s)d = 1d = d.

Example. We know ged(123, —456) = 3. It follows from the proposition that 123x +
(—456)y = 2 s not soluble. On the other hand, 123x+ (—456)y = 6 is soluble, because Euclid’s al-

gorithm find a pair of integers 7 and s such that 123r4(—456)s = 3 and therefore (x,y) = (2r, 2s)
does the job.

One can extend these concepts to more than two numbers: if ay,...,ay € N, then we have a
P ) y N )
ged d = ged(ay, . . . ,ay) such thatayx; + - -ayxy =d.

3.2 Primes and factorisation
A natural number p € N U {0} is said to be prime if
- p>1,

« if p = ab holds for some a,b € Z, then we either have (a,b) = (p,1), (—p, —1), (1,p) or

We are going to show that every positive integer greater than 1 can be factored into primes,
and the factorisation is unique up to the possibility of writing the factors in a different order (e.g.
12=2-2-3=2-3-2=23-2-2). This innocuous ‘fact’ is in fact known as the Fundamental
Theorem of Arithmetic. We will prove this rather carefully.

Proposition 2. (Bezout’s identity) Given a, b € Z, there exist integers r, s such that
ar + bs = ged(a, b).
Proof. See Example sheet 1. [

Lemma 3. Let a and b be integers and p be a prime. If plab, then cither p|a or p|b holds.



Proof. Suppose that p does not divide a. It suffices to prove, assuming p divides ab, that p divides
b. Since p does not divide a, ged(a, p) = 1 [this is where we use the assumption that p is prime;
since p is a prime, it follows from the definition that a divisor of p is either 1 or £p and it is clear
that only £1 commonly divides a as p does not divides a by assumtion]. It therefore follows that
there exists 7, s in Z such that ar + ps = 1 by Bezout. Multiplying both sides by b, we obtain

b = b(ar + ps) = abr + pbs.

Since p divides ab, it divides the term abr. Also p certainly divides pbs. It therefore follows that p
divides b. [

Remark. The lemma shows that p is prime (in the sense defined above) if and only if the as-

sertion | if plab for some integers @ and b then either pla or p|b holds | holds. So it is possible to use

as the definition of a prime number!- in fact the latter definition is more amenable to gen-
eralisations and is used to define prime elements/prime ideals in number fields (algebraic number
theory).

To see the equivalence advertised above, we argue as follows:

Suppose firstly that holds. And suppose that p = af for some integer a and B. By
assumption, p|af. It then follows from that either p|a or p|B. If it is the former, then a must
be either p or —p (hence B is either 1 or —1), while if it is the latter, 8 must be either p or —p (in
which case a is either 1 or —1). It follows that p is prime.

On the other hand, suppose that p is a prime number. The lemma proves that holds.
Lemma4. Let ay, . .., ay beintegers and p be a prime. If play - - - ay, then pla, for some 1 < n < N.

Proof. By the lemma, p divides ay or the product as - - - ay. If p divides ay, we are done. Other-
wise p divides ag - - - ay. Using the lemma again, p therefore divides either ay or as - - -ay. Repeat
the argument. [J

Theorem 5. (The Fundamental Theorem of Arichmetic) Any natural number greater than 1 can be written
asa product of prime numbers, and this product expression is unique apart from Ve—ordering of the facrors‘

Proof. We prove the existence of prime factorisation by induction. Let N be a natural number.
Suppose that the statement of the theorem holds for any natural number < N — 1. If N icself is
a prime, then there is nothing to prove. If N is not a prime, it is a product of two integers each of
which is < N. For these integers, we know from the inductive hypothesis that these two numbers
are indeed product of prime numbers. Putting them together, N is a product of prime numbers.

To prove the uniqueness of prime factorisation, let N = py---p, = ¢1 - - ¢ be prime fac-
torisations of N. Since p; divides ¢ . .. g, it follows from the lemma above that p; divides g, for
some 1 < n <'s. By re-ordering ¢'s if necessary, we may assume that pq divides ¢;. Since they are
both positive integers, p1 = ¢1. Repeat the argument, starting with py -+ - p, = g2+ - - ¢,. O

33 Appendix: Euclidian algorithm (PROOFS NON-EXAMINABLE)

Proposition. Let @, b € Z and suppose b > 0. There exist unique ¢,7 € Z such that 0 <7 < b.



Proof. Let S = {a+=2b|z € Z,a+zb > 0}. Since a € S, it follows that S is

non-empty, and let 7 be the smallest element of S. Necessarily, 7 is of the form

r=a+(—q)b>0

for some ¢ € Z.

If r > b, then

0<r—b=a—(q+1)b<a—qgb=r

contradicting the minimality 7. Hence r < b.

Uniqueness | Suppose @ = ¢b + r with 0 <7 < b;and a = ¢'b + 7" with 0 < 7" < b. Observe

that ¥ = a — bg' € S, hence v’ > r (by the minimality of 7). It follows from

rr=a—byd >a—bg=r

that ¢ > ¢’. We may let ¢’ = ¢ — s for some s > 0. It follows that

rr=a=bf =a—blqg—s)=a—bq+bs=r+bs.

It then follows that s = 0, therefore ¢ = ¢’ and r = /. O

Corollary. If a = gb + r as above, then

ged(a, b) = ged(b, 7).

Proof. Let g = ged(a, b) and b = ged(b, 7).

Firstly suppose that g = 0. Since g divides @ and b, and 0 is the only integer 0 can divide,a = 0
and b = 0. Therefore g = 0. It also follows that 7 = 0, hence h = 0.
On the other hand, if g > 0, then so is &. If & was 0, an argument similar to the one above

would show that ¢ = 0 which contradicts the assumption.

glh

Since gla and g|b, g|(a — bq), i.e., g|r. Since g|b by defition, it follows from the second

property of ged that g|h. By the minimality of &, we then conclude that g < 4.

Similarly,

hlg

Since A|b and h|r, h|(ghb + ), i.c., h|a. Since h|b by definition, it follows from the second

property of ged that A|g.

Combining, g = h as both g and & are positive integers. [

3.4 Congruences and modular arichmetic

Let n be a positive natural number. We say that @, b € Z are congruent mod n if n|(a — b) and

write

Oor even

a = b (modn)

9



if ‘mod 7’ is clear from the conrtext.

Fact. Congruence mod 7 is an equivalence relation; the equivalence classes (there are n of
them, corresponding to the n possible remainders, 0,1, ..., 7 — 1, when we divide a number by n)
are called congruence classes modulo n. We denote by [a],, the congruence class modulo 7 that is
represented by a. As a set

lal, ={z € Z|z=amodn} ={...,a—2n,a —n,a,a+n,a+2mn,...}.

By definition, any member of [a], can represent the class. To put it simply,

a = bmod n if and only if [a], = [b],

We let Z/nZ denote the set of all congruence classes mod n (I would write it F, if n is a prime
number p); it is a ring (see Supplementary notes 1) with addition

la], + [b], = [a + b],

and multiplication:
[a]n : [b]n = [ab]n-
Remark. Strictly speaking, one needs to check that these operations are independent of rep-

resentatives one chooses, i.e., if « = @’ mod 7', is it true that [a], + [b], =[], + [b].?

Example. The set Z/4Z has 4 classes:

0, = {...,—-12,-8,-4,0,4,8,12,...}
M, = {...,-11,-7,-3,1,5,9,13,...}
2L = {..,-10,-6,-2,2,6,10,14,...}
Bl = {...—9,-5,-1,3,7,11,15,...}
and they add:
+ | [0)a | [1a | [2]4 | [3la
0] | [0]4 | [1]a | [2a | [3]4
[Ua | (1| [2]a | [3]a | [0]4
2] | [2]a | [3]a | [0a | [1]4
[3]a | [3]a | [O]a | [1a | [2]4
and multiply:
X | [0]s | [1]a | [2]4 | [3a
[0]4 | [0]4 | [O]4 | [0]4 | [O]4
[1a | [0]a | [1]a | 2 | [3]4
[2]4 | [0]4 | [2]4 | [0]a | [2]4
34 | [0]4 | [3]a | [2]a | [1]4

Proposition 6. 1f p is a prime, then F, is a field.

10



Proof. The hardest part is to show that any non-zero element of F,, has multiplicative inverse.
Let [a] be a non-zero element (the zero element being [0]); this amounts to assuming that p does
not divide a. Since ged(a,p) = 1, there exists r,s in Z such that ar + ps = 1 (Bezout). This
means that ar = 1 mod p. Phrased in terms of the corresponding congruence classes, it follows
that [a][r] = [1], i.e. [a] has an inverse [r]. O

Remark. Observe that this proof is constructive, and the key input is Bezout’s identity/Euclid’s
algorithm.

Remark. Note that if 7 is not a prime, Z/nZ is not necessarily a field. For example, when
n = 4, the class [2]4 in Z/4Z does not have multiplicative inverse, i.e. there is no integer 2 such
that [2]4[2]4 = [1]4. This can be check from the multiplication table above and see the row/column
of [2]4. Whether zis 0,1, 2, 3. [2]4]r]4 is never [1]4.

Note that ‘division’ makes sense only over a field- in a ring R (e.g. Z,7Z/nZ,...), ‘division’ by
an clement 7 of R is nothing other than ‘multiplication by the (multiplicative) inverse of 7, and
this operation inherently assumes that the inverse exists in R in the first place (i.c. an element s
of R such that7s = sr = 1 in R). It is only when we know it exists in R that one can write s as

1

—. For example, in Q, it is not possible to divide a rational number by 0, because 0 does not have
r

.
multiplicative inverse; any non-zero rational number —, where 7 and s are both non-zero integers,
A

s
do have mulciplicative inverse inverse (which we know is as —). On the other hand, the ring Z is

r
not closed under ‘division’, because almost all elements do not have their multiplicative inverses in

Z. For example, 2 does not have multiplicative inverse— indeed 5 is the inverse, but it is not an

element of Z.
What Proposition 6 ascertains is that one can perform division in I, or equivalently ‘mod p’-
in fact, the proof demonstrates how to find the multiplicative inverse of [a], or, equivalently the

inverse of @ mod p (an integer 2 such that ar = 1 mod p). On the other hand, it is not possible to
do so in Z/4Z.

Example. If IF, is a field, any non-zero element has an inverse. Let p = 157. Then the congru-
ence class [225]157 defines a non-zero element in Z/1577Z. What is the inverse? In other words,
what is& € Z such that [225]57[x]157 = [1]1577 Recall from earlier that Euclid’s algorithm gave us
157-43—225-30 = 1. Reducing mod 157, we have [—30]157[225]157 = [1]157, sox = —30 works.

One of my favourite theorems in number theory:

Theorem 7 (Fermat's Lictle Theorem). Let p be a prime number. Then 2# = 2z mod p for any

z e N.

Remark. Do not confuse this with Fermat's Last Theorem! In theory, both can be abbreviated

as ‘FLT".

Proof. 1t p divides 2, or equivalently 2 is congruent to 0 mod p, the assertion clearly holds. We

11



therefore suppose that 2 is not congruent to 0 mod p. Consider the set

{2,22,...,(p— 1)z}
and the set
{7"1, Ce ,Tp_l}

of ‘residues’ where 1 < r; < p — 1 is defined to be the residue (in the range [1,p — 1]) of jz when
divided by p.

{ri,...,r,21} ={1,...,p — 1} | By definition, we only know that {ry, ..., 7,1} is a subset
of {1,...,(p—1)} but they are indeed equal. To see this, it suffices to establish if 1 <i,j <p—1
are distinct, then 7; and 7; are distinct. This is equivalent to proving that if r; = 7; (i.c. iz = jz mod
p), theni =jmod p (so thati =jsince 1 <i7,j <p—1).

Suppose that r; = 7. By definition, we have iz = pg; + r; and jz = pg; + r; for some integers

¢; and g;. Subtracting one from the other, we have

(i—jz=p(qi—q)+ (ri—n)=p¢—¢)=0

mod p. Since 2 has inverse mod p (for 2 is coprime to p), it is possible to divide the congruence by
2 and we have
(i—j)=0
mod p as desired.
The upshot of this observation is that, for every 1 <j < p — 1, there exists a unique 1 <7 <
p — 1such thatjz = 7;.

In particular, the product of all elementsin {2, 2z, . .., (p—1)z} and {ry,..., 1m0} ={1,...,p—
1} must coincide mod p. This therefore results in

r—1 p—1 P

—1
HjEHZj:ZP_l j.
=1 j=1

i1

Everyj (1 <j < p—1)hasinverse mod p; therefore, by multiplying both sides of the congruence
identity by these inverses, we obtain 1 = 2?~! mod p. Multiplying z on both sides, 2 = 2 mod p. [

Here's another proof.

Proof. We may suppose that 2 is not congruent to 0 mod p. The congruence class [z] is a non-zero
element of IF,. It then follows from the Lagrange’s theorem (see the Introduction to Algebra notes)
that the order of [z] divides the order, p — 1, of the multiplicative group of F,,. It therefore follows
that [1] = [z~ = [2*7Y]. In other words, 227 = 1 mod p. Multiplying both sides by 2, we have
2 =z mod p. [

Example. Letp = 7. If @ = b mod p, i.c., @ and b belong to the same congruence class, then
a’ = b. So it suffices to check on representatives 0 < r < p — 1.

z 0 1 2 3 4 o 6
2’ 0 1 128 2187 16384 78125 279936
2l —2|7-0 7-0 7-18 7-312 7-234 7-11160 7-39990
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One possibly surprising application of Fermat’s Little Theorem is that, given a number N, there
is a chance that we will know N is composite (i.e. not a prime). All one has to do is spot a natural

N would be

number z such that 2V is not congruent to z mod N. For if N were a prime, then z
congruent to g mod N for any z.

Be careful that it is certainly possible that 2V = 2 mod N holds for some  even if N is not a
prime number. For example, 3% =729 = 3 mod 6 (see Example Sheet 1). What if 2V = gmod N

holds for any 2? Does it mean that N is a prime number?

Example. 3247 = 992 (mod 2047), hence 2047 is not a prime number.

3.5 Congruence equations

Proposition 8. Let @, n be natural numbers and let b be an integer. The congruence equationax = d

mod 7 is soluble if and only if ged(a, n) divides d.

Proof. Suppose that ax = d mod n is soluble inz, i.e., there exists an integer 7 such thatar = d
mod 7. In other words, ar + zn = d for some 2 € Z. A common divisor of @ and n, in particular,
ged(a, n), divides the LHS and therefore the RHS.

Conversely, suppose that ¢ = ged(a,n) divides d. We may then let a = ga’,d = gd’ and
n = gn'. It suffices to see that the congruence equation @’x = d’ mod n’ is soluble.

[Why does this suffice? Suppose that 7 is an integer such that a'r = d’ mod n'. Evidently,
r + sn’ for any integer s is also a solution for the congruence equation, because @' (r +sn’) —d' =
a'r —d' +d'sn’ and both a'r — d and @'sn’ are divisible by n’. With this in mind, let ¢ be an integer
such that @' (r +sn') — d" = tn’. Tt then follows that

a(r+sn')=gd(r+sn')=gld +m')=d+m=d

mod 7. This shows that any integer congruent to 7 mod n’ is a solution to the congruence equation
ar = d mod n.]

Since ged(@’,n") = 1, it follows from Bezout that there exists 7, s € Z such that a'r +n's = 1.
Multiplying the both sides by d’, we find @'(d'r) + n'(d's) = d’ and the congruence equation
a'x = b’ mod n’ has a solutionx = d'r mod n’.

Remark. In the lecture, I did not talk about solving ¢’ = d’ mod n'. T simply made appeal
to ged(a’,n') = 1 and Bezout to find 7 and s such that a'r + n's = 1 and multiply 1 = a'r +n's
byd = d'g to getd = d(a'r + n's) = bdg(a'r + n's) = a(d'r) + n(d's). This establishes, rather
quickly, that ax = d mod n has a solution x = d'r mod n. This is correct in terms of proving the
proposition, but the proof above actually shows something stronger(!), namely that d'r is a solution
mod 7', not just modulo 7.

Example. Leta = 2,n = 3,b = 5. Since ged(2,3) = 1 and this divides 5, the theorem
asserts that the congruence equation 2¢ = 5 mod 3 is soluble (of course, it is possible to rewrite

the congruence equation as 2¢ = 2 mod 3 but it is more instructive to keep ‘0" in its original form).

A dogged approach (effective when n is very small):

13



x mod 3 01 2
2r mod 3 0 2 4
2r —5mod3 |1 0 2

Hence x = 1 mod 3 is a solution.

Aslick approach (effective when 7 is large). While the theorem itself does not say ‘how to solve
the congruence equation’, the proof is constructive and one can follow it to find a solution. Since
ged(2,3) = 1,d =a =20 =n =3and ¥ = b = 5 Apply Euclid’s algorithm to find
1=(-1)-2+1-3. Hence (—1) -5 mod 3, i.e., 1 mod 3 is the solution for 2¢ = 5 mod 3.

Example. Leta = 2,n = 4,0 = 5. Since ged(2,4) = 2, the theorem says the congruence
equation 2¢ = 5 mod 4 is not soluble. For any £ mod 4, 2x is always even mod 4 and cannot
possibly be congruent to 5.

3.6 'The Chinese Remainder Theorem

The CRT is about solving simultancous congruences to different moduli. We say that m and n are
coprime if ged(m,n) = 1.

Theorem 9. Let m, n be coprime natural numbers. Then there is a solution to the simultaneous
congruence equations:
x = a (mod m)

x = b (mod n).

Indeed the solution is unique modulo mn in the sense that if & and y are both solutions, thenx =y
mod mn holds.

Proof. We firstly show the existence. Since ged(m,n) = 1, there are integers r,s such that
mr + ns = 1. We therefore have
mr = 0 mod m,

mr = 1 mod n,
ns = 1 mod m,
ns = 0 mod n.

Leta = mrb+nsa. This is what we are looking for. Indeed, x = nsa = a mod m whilex = mrb = b
mod 7.

To prove the uniqueness, suppose that & and y are solutions. On one hand, it follows from
x = a = y mod m that m|(x — y). On the other hand, x = b = y mod n implies that n|(z — y).
Since m and n are coprime, we may then conclude mn|(x — y), in other words, x = y mod mn. O

More generally,

Theorem 10. Let 7y, ..., 7, be pairwise coprime natural numbers. Then there is a solution,
unique modulo 7y - - - n,, to the congruences

x = a; (mod n;).

14



Example. Find z satisfying the following simultaneous equations:

2 = 2 (mod 3),
=1 (mod4),
x =3 (mod 5).

The CRT theorem says that there is a unique solution mod 60 which can be found cither by
trial-and-error, or following the systematic argument in the proof.

Firstly, we solve the fist two equations— we apply the argument in the proof of CRT with
m=3,n=4,a=2and b = 1. By Euclid’s algorithm, we find 3 - (—=1) + 4 -1 =1 = gcd(3, 4)
and

x=3-(—-1)-144-1-2=5

define a solution mod 12. We need to solve the following simultancous equations
y =5 (mod 12),

y =3 (mod 5).

Since ged(12,5) = 1, we may apply CRT withm = 12,n = 5,a = 5 and b = 3. By Euclid’s
algorithm, we find 12+ (=2) +5-5 = 1 = ged(12,5) and

y=12-(-12)-3+5-5-5=53

defines a solution mod 60.

3.7 Prime numbers

Not that, apart from 2, every prime is congruent to either 1 or —1 = 3 mod 4. Indeed,
Theorem 11. There are infinitely many primes congruent to —1 mod 4.

Proof. Suppose that there are only finitely many such primes, say ¢1, ..., ¢ Consider N =
4q1 ...q, — 1. Itis congruent to —1 mod 4.

N is not a prime | Indeed if it were a prime, it would be one of the ¢’s but N is clearly bigger

than any one of them.

If N is not a prime, then it is composite. However,

’2 is not a factor of N ‘ If it were, N would be even, but it is not (since N is congruent to —1

mod 4, it is congruent to —1 mod 2).

Similarly,

q€{q1,...,q} isnotafactor of N either|If'it were, N = 0 mod ¢, but by definition N =

4g1...¢, — 1 = —1modgq.
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We may then conclude

any prime factor of N is congruent to 1 mod 4| We have established that any prime factor of

N is not congruent to —1 mod 4. On the other hand, a prime factor cannot be congruent to 0 nor
2 mod 4 (if it were, 2 would be a prime factor of N which, we know, is not true).

However, the product of integers (we only need to observe it for primes numbers though) that
are congruent to 1 mod 4 again is congruent to 1 mod 4 and this contradicts N = —1 mod 4.
Therefore, there are infinitely many primes congruent to —1 mod 4. O

Remark. It is true that there are infinitely many primes congruent to 1 mod 4, but what goes
wrong with the argument if we run it for primes congruent to 1 mod 4?

4 Euler’s totient function and primitive roots

4.1 Euler’s totient function

Definiton. Euler’s totient function, or Euler’s ¢-function, is the function ¢ : N — N that sends n
in N to the number of natural numbers 1 < 2 < n coprime ton (i.c. ged(z,n) = 1).

Example. If p is a prime, ¢(p) = p — 1, since 1,2,...,p — 1 are all coprime to p.

Example. ¢(8) = 4; the odd numbers 1,3,5,7 are coprime to 8, while the even numbers
2,4,6,8 are not.

Definition. If R is a commutative ring with identity, then an element 7 in R is said to be a unit
if there exists s in R such that s = 1. The units in R form a group under multiplication.

Proposition 14. The number |(Z/nZ)*| of elements in the group (Z/nZ)* of units in Z/nZ
is ¢(n).

Proof. Tt suftices to establish that [z] is a unit in Z/nZ if and only if z is relatively prime to n.

Suppose that z is relatively prime to n, i.c., ged(z,n) = 1. It then follows that there exists 7, s
in Z such that 2r + ns = 1. Hence 27 = 1 mod N and this is nothing other than saying that
2][r] = [1] and [2] is a unit.

Conversely, suppose that [2] is a unit. Then there exists a congruence class [r] € Z such that
2][r] = [2r] = [1]. It follows that 27 = 1 mod n and we may write 2r +ns = 1 for some r in Z. Let
= ged(z,n). By definition, d divides z and divides n, and therefore it divides zr + ns. Therefore

1.0

From this, we can deduce

Theorem 15. Let 7 be a positive integer and z be an integer such that ged(z,n) = 1. Then
2?M =1 mod n.
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Proof. Compare this proof with the proof of Fermat’s Little Theorem. For brevity, let N =

¢(n) and let 21, ..., 25 be the integers in {0,1,...,n} that are relatively prime to n. Consider
the set {ry,...,ry} where 7; is defined to be the residue 1 < 75 < m — 1 of zz; when divided
by n. Tn‘deed, {ri,...,rn} = {z1,..., 25} To sece this, it suffices to establish that if r; = r;
mod n for 1 < 4,j < N, ie, 22; = 2z mod n, then i = j mod n (hence i = j). But this
follows by multiplying both sides by the inverse of z (it exists because z is coprime to n). Since
{z12,...,en2} ={r1,...,rn} = {21,...,2n} mod n, we have
N N
N _ _
P4 HZ]' = HZJ'Z = Zj
Jj=1 Jj=1 Jj=1
N
Since g; for every 1 <j < N is invertible, so is sz, and it follows that 1 = 2 mod n. O
=1

Corollary 16. Let p be a prime. Then 2 = 2z mod p for any integer z.

[This is Fermat's Little Theorem. In other words, Theorem 15 generalises the FLT. |

Proof. Let n = p in the theorem. Then 2#~! = 1 mod p for 2 not divisible by p. Multiplying the
both sides by 2, we have 2 = 2 mod p. On the other hand, if p divides 2, then 2 = 0 mod p and
2 =0=zmodp. O

Theorem 17.
L Ifpisaprime and r > 0, then ¢(p") = p"1(p — 1).
2. Ifged(k, £) = 1, then ¢(kl) = p(k)p(L).

$
~ T . . .
3. fn=pit - pl = | | p;, where py, ..., py are distinct primes and 7y, ..., 7, > 0, then
=1

o) =112/ & = 1) =n]JO = 1/p)

Proof. Non-examinable. [
Examp]e. 720 =2%.32.5
$(720) = 2°(2 - 1)3'(3 - 1)5°(5—1) =8 -6 -4 = 192.

Proposition 18. Let d be a divisor of n. Then the number of integers z with 1 < 2z < n and

ged(z,n) =dis ¢ (3)
[Note that ged(z,n) = d forces 2 to be greater than, or equal to, d!]

Proof. Let n = d{. 'The multiplication by d define a map
Se={1<2 </l]ged(z',0) =1} = {d <z <n|ged(z,n) =d} = §,.
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[t suffices to establish that this map is bijective (since | S¢| = ¢(¢)). To prove the surjectivity, let
z be an element on the RHS. Since ged(2,n) = d, we may divide 2 by d. Call it 2’. By defiition,
1 <2 < /{andged(2/,0) = 1, hence 2’ is an element of S;. The injectivity follows immediately
because d2’ = dz" for 2/, 2" € §; immediately implies 2’ = 2. [J

Example. Let n = 60. According to the proposition, the number of integers 1 < z < 60 such

that ged(z,60) = 4 is gzﬁ(%) =¢(15) = ¢(3-5) = (3 —1)(5 — 1) = 8. They are

{4,8,16,28,32,44, 52,56}

The number of integers 1 < 2 < 60 such that ged(z,60) = 6 is gzﬁ(%) = ¢(10) = ¢(2-5) =
(2—1)(5—1) = 4. They are
(6,18, 42, 54).

Definition. Let n € N. If there exists a positive integer d such that 2 = 1 (mod n), then the

order of 2 mod 7 is the smallest of all such integer d. Alternatively, the order of £ may be defined
d

¢ = [1], in the set Z/nZ of congruence classes mod n.

as the smallest integer d such that [z]

Example. Letn = 7.

zmod 7 | order mod 7
1 1
2 3
3 6
4 3
5 6
6 2

For example, the following table shows that the order of 3 is indeed 6:

3" | 3" (mod 7)
30
31
32
33
34
35
36

= Otk OO N W=

Lemma 19. Suppose z has order d. If 2 = 1 mod n, then d|e.

Proof. Write e = dg + r with 0 < r < d — 1. It suffices to show that 7 = 0. It then follows

that

dg+r dgr — r

1l=2"=¢ =My =2

mod n. But by definition, d is the smallest power for which 2zt = 1. Sincer < d — 1, the only
possibility is that 7 = 0.

18



The following proposition explains ‘when’ it makes sense for us to talk about the order of an
integer mod 7n:

Proposition 20. For an integer 2, there exists d € N such that 2! = 1(mod n) if and only if
ged(z,m) = 1. Ifso, the order of z divides ¢(n).

Proof. If ¢ = 1 mod n holds, then ged(24,n) = 1 (if not, ie., if ged(2?, n) > 1, then it would
have to divide 1, which is absurd). Evidently, ged(z,n) = 1 (because ged(r,n)|ged(r?, n). To sce
this, obverse that if 7|ged(z,n), then r|z and r|n, hence r|z? and r|n. As a result, it follows that
r|ged (2, n)).

Conversely, if ged(z,n) = 1, then 2?™ = 1 mod n (Theorem 15), hence there do exist such
integers. The order d is the smallest among them.

The last assertion follows from the lemma. O

Example. Let n = 12. In this case, ¢(12) = 4 with the integers between 1 and 12 coprime to
12 are 1,5,7,11. We have 1' = 1,52 = 1, 72 = 1 and 112 = 1 modulo 12. They have orders
1,2,2,2 respectively and they divide 4. Note that not every divisor of ¢(n) necessarily occurs as the
order of an element.

4.2 Primitive roots

While we are still on the subject of mod 7 orders of integers, we specialise 7 to be a prime number
p and spotlight a class of integers of order p — 1 mod p.

Definition. Let p be a prime number. An integer 2 is said to be a primitive root mod p if z has
order p—1(mod p). Note that, since ¢(p) = p—1, a primitive root has the maximum possible order.

In terms of congruence classes, this is paraphrased as follows: an integer 2 is a primitive root
mod p if its mod p congruence class [z], has order p — 1 in the multiplicative group F), i.e., the
smallest positive integer N such that 2]V = [z¥] = [1] holds is N = p — 1; a slick way of saying

this is that [z] generates the multiplicative group F ie. {[2], [2]?, ..., [2]/'} = F).
Since F)' = {[1],...,[p — 1]} and if 2 = 2 mod p then [¢'] = [2], it is only necessary to
understand the orders of 1,...,p — 1 mod p to spot all primitive roots.

Example. What are the primitive roots mod p = 7? Looking at the table above, every integer
that is congruent to 3 or 5 mod 7 is a primitive root mod 7.

Example. Is it possible to find a primitive root mod p = 17?7 Since 2° = 1 mod 17, 2 is not
a primitive root. In fact 3 is a primitive root mod 17. It seems rather laborious to check all 3" for
1 < r < 15 is not congruent to 1 mod 17 and only 316 is. However, Lemma 19 and Theorem 15
show that if d is the order of 3 mod p, then d has to divide ¢(17) = 16. Since 1,2, 4, 8, 16 are the
divisors of 16, the order d has to be one of them. To determine d exactly, we need do try-and-error:

31=3,32=9,3"=81=13=(-4),33=(-4)?=16 = (—1),39 = (-1)? = 1; hence
16 is the order of 3 mod 17 and 3 is a primitive root mod 17. Here we are using the trick that if
a = bmod n, then " = b" mod n for any integer r > 1.

Lemma 21. Let p be a prime and d be a divisor of p — 1. Then the number of elements in
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{1,...,p — 1} of order d mod p is either 0 or ¢(d).

Proof. Suppose that the number of such elements is non-zero. So there is at least one element 2

of order d mod p.

the numbers 1, 2,22, ..., 2% are all distinct mod p | For if 2 = & mod p with0 < i < j <

d —1,then 2™ = 1 mod p. Butj — i < d and this contradicts the minimality of d.

these 1,2, ..., 2% ! all have order at most d mod p | For every 1 <j<p-—1,

(@)Y= (Y =V =1

mod p, the order of & is at most d.
for 0 <j < d — 1, that & has order d if and only if ged(j,d) = 1

Firstly, suppose ged(j,d) > 1. The goal is to show that 2/ does not order d; since we know that
2 has order at most d, this is equivalent to asserting that the order of & is < d.

In this case, there exists ¢ > 1 that divides ged(n,d). Letj = gi and d = ge. In particular,
since g > 1, we have e < d. Observe #° = 2% = 1, hence @/ has order at most e < d.

Convurscly, suppose that ged(j,d) = 1. The ;Doal is to show that #/ has order exactly d. Let r
be the order of 2 mod p; in particular, #” = 1 mod p. On the other hand, since 2 = 1 mod p, it

follows from Lemma 19 that d|jn. Since ged(j, d) = icular,d <r. We
already know that the order r of # is at most d. Hence d = r. O
The proof of the lemma actually explains how to find all elementsin {1,...,p — 1} of order d

mod p, as soon as we find an element ‘2’ of order d to go on with. Let us work out examples.

Example. Let p = 17. To find the elements of order d = 16, i.c., the primitive roots in
{1,...,p — 1}, firstly we find ‘2. For example, 3 is a primitive root mod 17. According to the
proof, the elements of orderd = 16 in {1,...,16} therefore are

{31 <j<16and ged(j, 16) = 1} = {3,3%,3°,37,3° 3 313 3'°} = {3,10,5,11,14,7,12,6}.

The right-most is worked out by finding r; which is congruent to 3 mod 17 satisfying 0 < r; < 16.

To find the elements of order d = 8, we use 2 which has order 8 mod 17. Then the elements of
order 8 in {1,...,16} are

{21 <j<T7andged(j,8) = 1} = {2',2%,2° 27} = {2,8,15,9}.

As is more or less clear from the proof of the lemma and the examples that we do not know yet

if there is indeed an element in {1,...,p — 1} of order d mod p exists at all or not (o start the
process). The following proves the ‘existence’.

Theorem 22. Let p be a prime. For every number d dividing p — 1, let S;Ll denote the set of
elementsin {1,...,p — 1} of order d mod p. Then

1S3l = o(d).

20



In particular, there are ¢(p — 1) primitive roots mod p.

Proof. Let ¢(d) denote the number |8y, | of elements in {1,...,p — 1} of order d mod p. The
goal is to show that ¢(d) = ¢(d). We show

(a) Z o(d) =p—1,

d|(p—1)

0 3 ) =p-1

d|(p—1)
(¢) For any d, we have p(d) < ¢(d).
It follows immediately from these that ¢(d) = ¢(d) for d|(p — 1).

(a) We have
{L.p-1p=|J {1<2<p—1gedlzp—1)=(p—1)/d }
d|(p-1)
since every 1 < z < p — 1 satisfies that ged(z,p — 1) = (p — 1) /d for some d.
By Proposition 18, [{1 <z <p —1|ged(z,p — 1) = (p — 1)/d }| isindeed ¢ ((p - 1)/
(d). Hence (a) follows.

(P;U)

(b) We have

{1,....p—1} = U {1 <z<p—1|zhasorderd modp} = U Sg_l
d|(p=1) d|(p=1)

since, by Fermat’s Little Theorem, every integer 1 < 2 < p—1 has some mod-p order d that divides
p — 1. Hence (b) follows.

(¢) Lemma 21 shows the stronger result that, for every d|(p — 1), we have either p(d) = 0 or

p(d) = ¢(d). O

Example. p = 7.
d 1 2 3 6
Se [{1} {6} {2,4} {3,5}
S 1 1 2 2
od)| 1 1 2 2

Theorem 23 Let 2 be a primitive root mod p. Then the order mod p of 2" is equal to (p —

1)/ged(n,p —1).

Proof (NON-EXAMINABLE). It is possible to tinker the proof of Lemma 21 to prove this, but
we will provide a direct proof. Let ged(n,p — 1) = r and writen = rk and (p — 1) = rl. Weletd
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denote the order of 2" mod p. The goal is to show that .

d|¢|By defimition, ged(k, ) = 1. We have

(zn)é _ znﬁ _ zr/ef _ z(p—l)k = 1k -1

mod p (the last congruence follows because the order of z is p — 1). Hence it follows from Lemma

19 that d|¢.

|d | Since z has order p — 1, it follows from Lemma 19 that p — 1 divides nd (as we know that
the order of 2" is d, hence 2 = 1 mod p). In other words, 70 = (p — 1) divides rkd = nd, hence
¢ divides kd. On the other hand, £ is coprime to &, hence £ divides d. Combining d|¢ and ¢|d, we
obtaind = £ as desired. OJ

5 Quadratic residues and non-residues, Gauss reciprocity law
The goal of this section is to decide, when p is an odd prime, whether the congruence equation
2

x=a (modp)

has integer solutions or not, for any integer @ not divisible by p.

Definition. Let @ be an integer not divisible by p. It is a quadratic residue (mod p) if there
exists an integer 2 with 22 = a(mod p); and @ is a quadratic non-residue if no such z exists.

Remark. [t makes sense to define an integer a, divisible p, to be a quadratic residue mod p. As
a = 0 mod p by assumption, for any z divisible by p (c.g. = = 0), we have 22 = 0 = a mod p. On
the other hand, this ‘exceptional’ case breaks ‘symmetry” and we will not lose much by excluding it
from the mix.

Remark. If @ = b (mod p), then @ is a quadratic residue if and only if b is. Therefore, it suffices
to considera € {1,...,p—1}.

To work out which integers 1 < a < p — 1 are quadratic residue mod p or not, one way of
doing it is to list all square integers mod p.

Example Let p = 3.

a mod 3 ‘ a® mod 3
1 1
2 1

So, the quadratic residues are the integers congruent mod 3 to

1

Y
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while the quadratic non-residues are the integers congruent mod 3 to
2

Example. Letp = 7.

amod 7 | a®> mod 7
1 1
2 4
3 2
4 2
5 4
6 1

So, the quadratic residues are (the integers congruent mod 7 to)
12,4,

while the quadratic non-residues are (the integers congruent mod 7 to)
3,5,6.

Example. Let p = 11.

amod 11 | a®> mod 11
1 1
2 4
3 9
4 5
5 3
6 3
7 5
8 9
9 4
10 1

So, the quadratic residues are (the integers congruent mod 11 to)
1,3,4,5,9

while the quadratic non-residues are (the integers congruent mod 11 to)
2,6,7,8,10

Remark. Have you noticed that a® = (p — a)? = (—a)? mod p? Because of this, one only has
to checkup toa < g in general.

Let p be an odd prime number. By Theorem 22, there exists a primitive root 2 mod p (in fact
there are ¢(p — 1) primitive roots mod p exist). Consider the the set

{1,2,2%,...,227%}.
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Firstly, none of the elements is congruent to 0 mod p. If it were, say ¥ = 0 mod p for some
1<j<p—2(fj=0,then? =1 and this is clearly not congruent to 0 mod p), then 2 = 0 mod
. 'This follows since 2 has (multiplicative) inverse (more precisely 272).

Secondly, the set {1,2,2%,...,2272} is is in bijection with

{1,...,p—1}.

An alternative way of phrasing this is chac {[1], [2], ..., [&* 2]} = {[1],, .-, [p — 1]} To see the
bijection, it suffices to show that the s are all distinct mod p, as this implies that the residues of
2 are all distinct and {1,2,...,p — 1} is the set of all possible residues (for integers not divisible
by p). To show that the #/ are distinct mod p, suppose that they are not distinct and that there exist
integers 0 <7 <j < p — 2 such that 2 = 2 mod p. Then, since 2 has multiplicative inverse mod
p, we see that 7 = 1 mod p. However, 1 <j —i < p — 1 and this contradicts the minimality of
the order p — 1 of 2 mod p.

It follows from this discussion that

if @ is an integer not divisible by p, then @ = & for some 0 <j < p — 2 ‘

because the residue of @ when divided by p defines an element of {1, ..., p—1}. With this in mind:

Proposition 24. a is a quadratic residue mod p if and only if @ is an even power of 2; and is a
quadratic non-residue if and only if it is an odd power of z.

Proof. We show that|#/ is a quadratic residue if and only if; is even |

Suppose, firstly, that j is even and let j = 2i. Then 2 = (2')?, hence # is clearly a quadratic
residue. Conversely, suppose that @ = 2/ is a quadratic residue, hence there exists an integer b such
that @ = b% mod p. Replace b by its residue if necessary, we may assume that 1 < b <p — 1. As
observed earlier, there must exist 0 < 7 < p — 2 such that b = 2/ mod p. Substituting, we have
¥ =a = b* = 2% Since z is primitive and has inverse, we deuce that 27 = 1 mod p. It then
follows from Lemma 19 that p — 1 divides 2 — j. Since 27 and p — 1 are both even [this is where
the assumption that p is odd is used!], we then conclude thatj is even, as desired. O

Example. Let p = 7. We know that 2 = 3 is a primitive root mod 7.

|3 mod7
EXE

31
32
33
34
35
36

= O O N W

So any integer congruent to 1, 2 or 4 mod 7 is a quadratic residue, while any integer congruent
to 3, 5 or 6 is a quadratic non-residue. This is consistent with the example carlier.
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5.1 the Legendre symbol
Definition. The Legendre symbol is defined by

0 ifpla
(%) = ¢ +1 ifp doesnot divide @ and a is quadratic residue mod p

—1 if'p does not divide @ and @ is quadratic non-residue mod p

Remark. By definition, for any integer @ not divisible by p, we have (g) (%) =1
Theorem 25.

(Rule 0) If'a = b mod p, then (C—Z) = (é)
p p

(Rule 1) Ifp is an odd prime and a, b € Z, then

-1 = (—1)0-1/2 = +1 ifp=1mod4
p —1 ifp =3 mod4

(Rule 3) Ifp is an odd prime, then

2 o (_1)(}72—1)/8 o _|_1 1f‘p = 1 or 7 mOd 8
p) | =1 itp=3or5Hmod8

(Rule 4) (Quadratic Reciprocity) For any pair of distinct odd primes p and ¢,

AN (—1)e=De=D/4 = -1 ifp=¢g=3mod4
q p +1 otherwise

Before proving these assertion,

13 13 17 —117—
Example. (ﬁ) = 1. Firstly, Rule 4 asserts that (1—7> (E) = (—1)132 PR 1, hence
13 17 17 4
(1—7) is computed by ) We then make appeal to Rule 0 to deduce that =)=\

4 2 2
since 17 = 4 mod 13. On the other hand, Rule Isays [ — | = [ — — =1
13 13 13
Example. 38 is a quadratic residue mod 43. One way of checking this, of course, is to solve the

38
congruence equation 22 = 38 mod 43. We will use Theorem 25 to prove <E) =1:
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BY (2 () raen
13) — \13)\13 e

19
= — (E) (Rule 3)

43
= E (Rule 4)
5
= T (Rule 0)
= % (Rule 4)
= %1) (Rule 0)
= 41 (4 = 22 mod 5)

38
Of course, this not the only way to get to (E) = 1. For example,

19 —24
_(E) _ _(_43) 2 (Rule 0)
—1 2 6
= —(—43> (@) (E) (Rule 1)

= % (Rule 2)
49

= — (Rule 0)
473 )

= (E) (Rule 1)

= +1

Remark. Even if we know that 38 is a quadratic residue mod 43 in terms of the Legendre sym-
bol, we still do not know the solutions to the congruence equations #? = 38 mod 43. We will come
back to this issue shortly.

Corollary 26. If p is an odd prime and not equal to 3, then

§ +1 itp=1orll mod12
—1 ifp=>5or7mod 12

Proof. By Rule 4, it follows that ) = [)T%l = (—1)P : , hence
=) ifp=1mod4,
=) itp =3 mod4.

Also
(2) | +1 ifp=1mod3
3/ | -1 ifp=2mod3
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since 1 is a quadratic residue mod 3 while 2 is not (see Example above). Combining these:

p . o +1 itp =1mod 3,
+ (§> if p = 1 mod 4, which yields { 1 ifp=2mad3,

3
(;) a AN s —1 itp =1 mod 3,
(3) 1fp_3mod4,whlch>1elds{ 1 i =2mod 3.

hence

3y _J +1 if(Dp=1mod4&p=T1mod3or(2)p=3modd&p=2mod3,
p) | -1 ifBG)p=1mod4d&p=2mod3or(4)p=3mod4&p=1mod3.

For example, (2) amounts to finding the prime numbers in the solutions of the system of con-
gruence equations £ = 3 mod 4 & & = 2 mod 3. By the Chinese Reminder Theorem, its unique
solution isx = (—1) = 11 mod 12. Hence (2) is equivalent to p = 11 mod 12. Do similar calcu-

lations to this for (1), (3) and (4). O
Let us prove Rule 1 and Rule 2.

Proof of Rule 1. If either a or b is divisible by p, the assertion follows immediately. We therefore
assume that both @ and b are not divisible by p.

Let 2 be a primitive root mod p (it exists by Theorem 22). As we saw in the proof of Proposition
24, a (being not divisible by ) is congruent to & mod p for some 0 <j < p — 2 and it follows that

(g) = (—1). On the other hand, we may also let b = 2/ for some 0 < i < p — 2, and therefore

(g) = (=1)". Then ab = 2% and therefore <%b> = (-1 = (-1y(-1)' = (2%> <§) -

Proof of Rule 2. Let 2 be a primitive root mod p and let ¢ = 2~1/2 We then have (2 = 2~ =
mod p, but ¢ is not congruent to 1 mod p (it it were, z would have order (p — 1)/2 < (p — 1),
contradicting the minimality of the order p — 1), so it has to be congruent to —1 mod p. It follows
that —1 is a quadratic residue (resp. non-residue) if (p — 1)/2 is even (resp. odd), ic., it p =1
(resp. p = 3) mod 4. OJ

Proposition 27 (Euler’s Criterion). Let @ be an integer not divisible by p. Then

(%) = a®"V/2 (mod p).

Proof. Let z be a primitive root mod p and let @ = 2 mod p for some 0 <j < p — 2 (as seen in
the proof of Proposition 24). Since 2! = 1 mod p, we have

. 1 if 7 is even
(r—1)/2 — i(p—1)/2 — J
¢ =7 - { 2P7D/2if s odd

On the other hand, we know from the proof of Rule 2 that 2#~1/2 = —1 mod p. Combining
this into the mix, we have

a(P,l)/Q — 1 1£] 1% cven
—1 ifjisodd
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a
By Proposition 24, the RHS is exactly the Legendre symbol (1—)) U

Remark. One can indeed use this proposition to prove Rule 1.

5.2 Solving the equation 2 = a mod p

Using Legendre symbol and the quadratic reciprocity, it is possible to quickly determine whether
or not the equation
2 _

x=a (modp)

has a solution, when p is an odd prime and @ is not divisible by p. It only tells us the existence, or
non-existence of a solution, and does not tell us how to find it.

Before we delve into the subject, let us ask ourselves: how many solutions are we expected to
find (mod p)? It is the quadratic equation, so there should be max two solutions (mod p). Can we
have all the solutions? Suppose £ = z is a solution for the equation above. Then —z will automat-
ically be the other solution. To see this, firstly observe that (—2)? = 2* = a mod p. Note that
—z is distinct from 2 mod p; for if it were, then 22 = 0 mod p and therefore £ = 0 (since p and

2

2 are coprime); and 0 = 2 = a would be a contradiction to the assumption that p does not divide a.

Proposition 28. Let p be a prime congruent to 3 mod 4 (hence (p+1)/4 is an integer). Suppose
a
that { = ) = 1. Then z = a®*Y/4 is a solution to the equation % = @ mod p.

Proof. By Euler’s criterion,

22 — 0 tD/2 _ 0-1)/2+1 — (E) 0=a

P
O
Example. Find all solutions 2 to each of the following equations with 1 <z <p = 131:
1. 22 = 2mod 131,
2. 2% = 3 mod 131.
Proof. 1) Firstly, we need to know if there are solutions. To this end, we compute the Legendre
symbol:

(3)--

since 131 = 3 mod 8 (Rule 3). Hence there are no solutions.

3 M4 131 R _q 2 =1,
131 3 3

the equation does have (two) solutions. Using Proposition 28, the solutions are

2) Since

r = :i:3(131+1)/4 = i333
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mod 131. We compute 3% mod 131. To see this, 3* = 81, hence 3% = 81 = 11 mod 131. As
316 = 112 = —10,3% = (—10)% = 100 mod 131. Finally,

3% =100-3 =38
mod 131. On the other hand,
—33%¥ = —-300= —38 =93

mod 131. The solutions for 22 = 3 mod 131 are 38 and 93 mod 131.

Proposition 29. Let p be a prime congruent to 1 mod 4. Suppose that <§) = —1. Then

z = a®~V/* is a solution ro the equation 22 = —1 mod p.

22 = qV/2 = (C_l> = —1.
p

Example. Find all solutions 2 to the equation

Proof. By Euler’s criterion,

2? = —1 (mod 229)

with 1 <z < 229. The first step is to find a quadratic non-residue ‘a’. This is done by trial and
error. Note that 1 is always a quadratic residue. So let’s try 2:

2\,
229

since 229 = —3 mod 8. Hence, using Proposition 29,

o — 9(220-1)/4 _ 957
mod 229 is a solution to the equation. To compute 257 we observe
28 =27,

216 = 972 = 49

and
232 = 492 = 161.

It therefore follows that
95T — 932F16+8+1 — 161 .42.927.2 =122

mod 229. So 122 mod 229 is a solution. Since —122 = 107 mod 229, 107 is also a solution.
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5.3 Hensel’s lemma

If P(x) is a polynomial in Z[z], then let P'(x) € Z[x] denote its first (formal) derivative with
respect to &.

Theorem 30. Let p be a prime and N > 1 be an integer. Suppose that there exists € Z such
that P(z) = 0 mod pV. If P'(z) is not congruent to 0 mod p, then there exists an integer 7, unique
mod p, such that 2’ = 2 + rp" satisfies that P(2') = 0 mod pN 1.

Remark. If 2 satisfies P(z) = 0 mod p¥™, it certainly satisfies P(z) = 0 mod p». The the-
orem proves, under certain conditions, that one can prove the converse, i.e., one can ‘lift’ a mod p»

N+1

solution of the polynomial P to a mod p solution.

Proof. Suppose that P has degree d. Let 2 be an integer such that P(z) = 0 mod p».
Firstly, the Taylor expansion with respect to z finds d + 1 integers co, . . ., ¢4 (some of them
could be zero) such that

d
P(x) = ch(x —zY.
j=0
For 0 <j < d, it is easy to check PV (z) = ¢j! and ¢; = P () /j! is an integer. Substituting back
into the expansion, we therefore get

Substituting x = 2 + rpY, we then get

PU) (2)

f (Y.

d
=0

P(z+mp") = Z

~

It therefore follows that
P(z+rpYN) = P(2) + P'(2)rp™

mod p?V It follows that
P(z +rpY) = 0 mod pN ! if and only if P(z) = —rp™N P'(2) mod pN !

(because terms divisible by p?V are certainly divisible by pV*1). Since P(z) = 0 mod pV b
Y Y Y y

assumption, we may cancel a factor of pV from this equation so that

P(z)

PN

P(z 4+ rpY) = 0 mod pV ! if and only if = —rP'(z) mod p.
By assumption, ged(P’(2),p) = 1 and P’(z) therefore has an inverse mod p; we shall call it Q’(z).
It follows that

P(z+ ™) = 0mod pV ! if and only if r = — Z(j) Q'(z) mod p.
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This proves the existence and uniqueness of 7 mod p. [J

Remark. The proof explicitly constructs a lift of the mod p* solution P(zy) = 0 to a mod

N+L solution 241 by defining it to be
N+1 D) )

2yl =2y — Plzy) Q' (2n)
mod pV ! (where Q' (zx), as in the proof, is the inverse of P'(zx) mod p). Since p™ divides P(zxn
P p P P

by assumption,

IN+1 = 2N

mod p™. Tt is in this sense that 2y is a lift of zy.
Example. Find all solutions to2? + 1 = 0 mod 5°.
(Step 1) Find a solution mod 5. By trial and error, £2 mod 5 are the solutions to 22+ 1 mod 5.
(Step 2) Let 2 = 2 and see if it is possible to lift this mod 5 solution to a mod 52 solution, using

the ‘algorithm’ in the proof. Firstly, since P'(x) = 2z, we have P’(z) = 4 which is manifestly not
congruent to 0 mod 5. As a result, P'(2) has an inverse Q'(z); indeed Q’(2) = 4 mod 5. We know

z1=2—P()Q' () =2—5-4=—18 = 7T mod 5
is a mod 52 solution.

(Step 3) See if we can lift the mod 5% solution 21 to a mod 5% solution. We observe P(z1) =
P(7) = 741 = 50 and the inverse Q(z;) of P'(z1) = P'(7) = 2-7 = 4 is, for example, 4 mod
5. We then know that

22 =21 — P(21)Q'(21) =7 — 504 = 57 mod 5

is 2 mod 53 solution.

To find the other solution, we start with 2 = —2 and we would get 29 = —57 = 68 mod
53 (Exercise to fill in the argument).

To sum up, 57 and 68 mod 53 are the (two) solutions to 22 + 1 = 0 mod 53, since the Hensel
lift is unique and any solution to 22+ 1= 0mod 5% is a solution tox? + 1 = 0 mod 5.

Remark. This process can be iterated to find roots of P(x) mod 5" for any r.
Example. Find all solutions to 2% + 102 + x + 3 = 0 mod 33

(Step 1) Find a solution mod 3. Since 22 4+1022 + 2+ 3 =23+ 22 + 2 mod 3, it is easy to see
0 and 1 mod 3 are the solutions (mod 3).
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(Step 2) Let 2 = 0 and see if it is possible to lift the mod 3 solution 2 to a 32 solution 21. As
P'(z) = 1 mod 3, we can lift the mod 3 solution 2 = 0 to a mod 3? solution

21=2— P(2)Q'(z) =0—3-1=6mod 32

(Step 3) See if mod 32 solution 2; = 6 lifts to a 32 solution. As P(z) = 63+10-624+6+3 =
585 = 18 mod 3% and P'(z1) =3 -6 +20-6+ 1 = 1 mod 3,

22 =21 — P(21)Q'(21) =6 — 18 - 1 = 15 mod 3°

does the trick.
We would be tempted to carry out the same process starting with 2 = 1 mod 3, but P'(z) =0
in this case, and we need to argue differently. If 21 were a mod 32 lift of 2 = 1 mod 3, then 2y

would have to be 1 mod 3. Therefore 21 would be either 1,4, 7 mod 32. However, none of these is
a solution to P mod 3%

P(1) = P(4) = P(7) = 6 mod 32

We therefore conclude that there is no mod 32 lift. There is no mod 32 lift either, for if there
were, it would define a mod 3% lift, which, we know, does not exist. In summary, the equation

22 4+ 1022 + 2 + 3 = 0 mod 32 has only one solution 15 mod 33

Remark. There is no general behaviour to determine when P'(x) = 0 mod p.

6 Continued fractions

6.1 Finite continued fractions

Recall the calculation of ged(225,157) = 1 in terms of Euclid’s algorithm:

225 = 157-1+4 68
157 = 68-2+421

68 = 21-3+5
21 = 5-4+41
5 = 1-5+0

We may interpret these steps into the following:

21 1
g = 4+ )
5 — ot 4+l
157 __ 1
s — 2ta
arl
225 _ 1
= 1+ 2+ —L
3+ —1p
arl
These expressions are called continued fractions.
Defmition. For N > 1, a,aq,...,ay_1 € Z and ay € R, we will write
[a; a1y ..., AN-1, aN]
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O mean

a+ I
ar + i
4

1
anN—1 + —
an

When ‘N = 0", we only allow [a;] to mean a for a € Z.

By definition,
1
[a; ag, ... ,ClN] = [a, ai,...,aN—92, (ZN71+_] = [a; a,...,AN_3, CIN72+—1] =
an
aN-1+ —
an
For example,
21
— = 45
5 [ ’ ]
68
— = [3;4,5
21 13;4,5]
157
— = [2:3,4,5
63 [ ]
225
— = [1;2,3,4,5
157 [ ) ) ) Y ]
. . 1
Remark. Note you cannot ‘add’ continued fractions: for example, [1;1] = 1 + 1= 2, so
1 5
[1:1]4+[1:1]is4 (or [4;]). Onthe other hand [1 + 1;1+ 1] = [2;2] =2+ 3= 5
Proposition 31. Let 7 = s/t be a rational number 7 > 1 in its lowest terms, in the sense
that ged(s,z) = 1. Then 7 can be written as a continued fraction [a; ay, as, ..., ay] for some
a,a1,...,ay € Nwithay > 1. Ift = 1 (i.c. 7 = s is an integer), then the continued faction is
just [s;].
Remark. Conversely, any sequence a, aq, ..., ay of positive integers with ay > 1, defines a

unique rational number > 1. when N = 0,
;] =a=ay >1
and, when N > 0,
[a;aq,...,ay]

may be defined inductively

1

[aj+1§ A2y - - - ,an]

[aj;ajﬂ, N ,O.N] = aj +
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asjassumes N —1, N —2,...,0, starting with [ay_1; an] = ay_1 +—. By induction, for every

an
. A . . 1
0<j< N-1a;;ai+10j11,-..,ay]isarational number > 1. Indeed, sinceay_; > 1and — >
ay
. 1
0, it follows that [ay—1;an] = ay—1 + — > 1 and it is evidently a rational number. Suppose
an
1
that [@j41; @jt1, . . ., ay] is a rational number > 1. Then since ¢; > 1 and it
] [aj+1§ i1y - - ;any]
follows that [aj; ajy1, ..., an] = a; + > 1.
[aj+1; Oty -+ - ;an]
Proof. We run the Euclid’s algorithm:
s t
s=al + tl ~ -=a+ 7
t to
t=ail1 +1lo ~~ —=a;+—
i1 t1
1 I3
1 =aglo+1t3 ~» — =a9+ —
Lo Lo
InN_2 1
INg=an_1iy-1+1 ~ =ay-1+—
IN—1 N-1

INci=ay-1 ~ Iy_1=an

We have
I<iyi < < <t<s,

and substituting these all, we deduce

s 1
r:;:a—i- 1 5
oy + i
4 .
aNf1+a
in other words, r = [a;ay,...,ay]. O

The following algorithm may be more useful: following the notation from the proof of Propos-
ition 31, we firstly let

s t

p=-(=1), pr=—,..., Pj:tj;1a~--7PN—1:
t t t;

IN—2
IN-1

yPN = IN—1

and strive to relate p; to pjy1; this leads to an algorithm computing g;'s and p;’s without involving
tj’s (this somehow knocks off repeated/redundant s in the process).
Firstly, note that, by definition, apart fromj = N, p; is NOT an integer; it is a rational number
. L1
strictly greater than 1 (because p; = ]t— and tj < tj_1).

j
Secondly, as we have
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ie.
n 1

P = T

%j+1

for0 <j < N — 1 (where we lett_1 =s,tg = t, a9 = a). It therefore follows that

1

Pi+1 =

Pi—a

for0 <j< N —1.

The following algorithm bypasses the Euclid’s algorithm and only keeps track of the p;'s (with
the goal of computing ;'s); and the process stops when it reaches an integer py.

Definition. For p in R, we let |p] denote the largest integer N satisfying N < p.

Example. For0 <j < N — 1,
o = |pj)-

1
This follows simply from p; = @; + —— and pj41 > 1. Furthermore,
Pi+1

aN = LPNJ = PN-

Then )
a=ll=lp) = ;=
p—a
< 1
ar = [pi1] = p2 =
P1 — Al
/
< 1
ay—1 = |pn-1] = pvn=—"—""——¢€N
PN—-1 — AN-1
/
ay = [pn] =p~
87
Example. r = —.
38
87 1 38
L35 Py n
38 4 1 11
11 < 1 5
==l =2 = = =-N
a2 L 5 J p3 % _ 2 1
/



Hence r = [a; a1, ag, a3] = [2;3,2,5].

Remark. This algorichm allows us to compute the continued fraction for a non-positive rational number—
the only difference from ones for positive rational number is that we need to allow non-positive

a’s as a resulo): let us compute r = s following the algorithm:
3 1 5
A Y
5 I o(C1) 2
/
5 1 2

2
az:LIJZQZM

3 3
Hence 5= [—1;2,2]. On the other hand, r = R is computed by

a=lfl=0 = =gl
y
m=12]=1 = pe=gro=>
/ 3
m=13]=1 = py=g—-=-€N
/ 2
w=151=2=p

3
Hence v = [0;1,1,2].

When the last term of the continued fraction expression satisfies ay > 1, it is possible to prove
the uniqueness of the expression:

Theorem 32 If 7 is a rational number with

r = [a;al,...,ak] = [,8;,817---7:85]

where a,ay, ..., a;, B, B1, ..., Be are non-negative integers such that @y > 1 and By > 1, then
k = { and a; = f; for every .

Proof. We prove this by induction on 4.

1
Suppose £ = 0. Then 7 = a is an integer. If ¢ > 0, thenr = B+ ——————— with its

[/81;327 s 7BZ]

fraction 0 < ———————= < 1 (this is where By > 1 is used); this is impossible. It therefore
[31;527 o 76@]

follows thatk = and r = a = B.
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Suppose that the assertion holds, with £ — 1 in place of k. By assumption, we know

1 1
ot :B+[ﬁ171827a3d

[CLl; az, ... ,CLk]
Since a3 > 1 and B, > 1, the fractions are both less than 1 (chis follows from Proposition 31) and
we may deduce @ = || = B. It then follows that

[01;02,---,%] = [B1§B27~-7/3€]

and it follows from the inductive hypothesis thatk — 1 = ¢ — 1 and a; = B; for every 1 <j <.
O

Following Proposition 31, we define:

Definition. Let a be an integer and a4, ..., ay be integers > 1. For 0 <n < N,
rw=la;al,. .., .
is a rational number and {ry, ..., 7y} are called the convergents of the continued fraction r =
[CL; ag, ... ,(IN].

Remark. This seems like a misnomer to call them ‘convergents’, but we will see in the next
section that the convergents do converge when 7 is an irrational number.

From the definition, you might be tempred to think that the 7,,’s are increasing sequence. They
are NOT! On the other hand, it is very hard to keep track of how the 7, behave in terms of the
definition we have just seen. To this end, we introduce the following;

Definition. Given an integer a and integers ag > 1,...,ay > 1, we define: s_9 = 0,51 =
1,59 =aand, forn=1,..., N,
Sp = QpSp—1 + Sp—2

and define: t_o = 1,11 = 0,1t =l and,forn =1,..., N,
by = aply1 + 2.

Remark. If @ > 0, then the s, and ¢, are both strictly increasing sequences of positive integers.
One can see this by induction on n. Suppose that every s;, forj < n — 1, is a positive integer. It
then follows from a, > 1 that

Sn = ApSp—1 + Sp—2 > ApSp—1 > Sp—1-
Similarly for the t,,.
.« . sn ~
Proposition 33. r,, = ~ for every 0 <n < N.
n
Remark Even if both the s,’s and the 2,’s are strictly increasing, it does not mean that their

ratios r,’s are!
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. . . ~ S0 , s
Proof. We prove this by induction on n. By definition, ry = = Suppose that r,, = =
0 n

holds (we would like to establish that 7,41 = S

). By definition,
tn—‘rl

- [0.' a a ] o ApSp—1 +Sn—2
n — y U1y -y G — .
Qply—1 + )

It cthen follows that

a 1_ 1 _(l 1lapty—1 + t—9 +t_1_a 1t+t_1_z
n—+ (an _'_ )tnl +tnf2 n—+ ( ntn n ) n n+1tn n
Ap41

a, + Sn—1 1 Su—2
T 1 o ( an+1) o aiz—i-l(ansn—l + Sn—2) + -1 o Qpt18n + Sp—1 o $
Tntl = [a,al,...,an—i— ]

OJ

We may now compute the convergents 7, in terms of the s,’s and 2,,’s.

Example. Compute the convergents of [3;7,15,1] = 3.1415929203 ... (chis is actually a
‘cruncated’ infinite continued fraction [3;7,15,1,292,1,...] of m = 3.141592653589793 .. . .).

On one hand,

S_1 = 1
So = 3
1 = a180+871:7'3+1:22

§o = 0281+80:15'22+3:333
s3 = asse+ 51 =1-333 422 = 355.

On the other hand,

i, = 0

tgp = 1

i = aitgp+t1=7-14+40=7

ly = agt1 +tp=15-7+1 =106

l3 = asta+1t;=1-1064+7=113.

333 355

= 3.1415094 . . . ,r3 = —— = 3.141592...

22
Hence r = 7 = 3.14285714 . .. , o = m 113

Theorem 34. Following the notation above,

e Sulp—1 — IpSp—1 = (_1)7171 forn > 17

(_1 n—1

Ty — Ty = forn > 1,

In—1ly

o ged(sy, t,) = 1.
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Proof. To prove the first assertion, we use induction on n. To recall,

So = aQ,
$1 = aay+ 1,
th = 1,
T = aj.

Hence s14g — 1159 = (aa; + 1) —aja = 1 = (=1)°
Suppose that s, 16, 9 — t,_15,_2 = (—1)""? holds (we would like to prove s,t,_1 — £,5,_1 =
(—=1)"1). Since s, = au$u_1 + Su_2 and £, = aul,_1 + L,_o, we have

sntnfl - tnsnfl = (ansnfl + Sn72>tnfl - (an[nfl + tan)snfl
= Sp—2lp—1 — lp—28u—1
= —(—1 n—2
— (_(1)n>1‘

. ~ . . ~ $ Sn—1
The second assertion follows immediately fromr,, = =, 1,1 = =

n n—1

and the f‘ll‘SI‘_ assertion.

The third assertion follows immediately from the first. O
Corollary 35. The convergents 7,,s satisfy

Tg < Ty <1y < -+ <15 <13 <717,

Proof. Applying Theorem 34 twice, we get

(G R G D N Gt O (=1)" a2
Tpy2—Ty = (rn+2 _rn+1) + (rnJrl —7"") = + = (tn+2 _tn) S
tn+2tn+1 tn+1tn tn+2tn+1tn tn+2ln
. ~ L. tn+2 — Iy .
since, by definition, @42 = — at the last equality.
n+1

If n is even (resp. odd), the RHS is positive (resp. negative), so 7,49 > 1, (tesp. 7, > 7y10).
It remains to show that

ro; < To9j—1

for every 7z > 0 andj > 1. Since the ‘even’ convergents increase, while ‘odd’ ones decrease, it follows

from Theorem 34 to get ry —ry—1 = (—1)N_1/ZN,1I?N < 0 when N = 2i 4 2j is evidently even,
which yields

roi < Toiqo < Ti49j—1 < Toj—1,
as desired. (J

6.2 Infinite continued fractions
As promised:
Theorem 36. Let a, ay, ... be a sequence of integers such that a, > 0ifn > 1. Define, for

everyn > 0,

= la;ay, ..., a,l
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Then the sequence rg, 71, 79, . . . , of rational numbers converges to a limit (not necessarily a rational
number).

Proof. Since the rg, 71, . . . , 7, are the convergents to the finite continued fraction [a; a1, . . . , @)
for any fixed n > 0, all the results in the preceding section apply results of the preceding section:

« (Corollary 35) rg <1y <1y < -+ <15 <13 <179,

(-1t

e (Theorem 36) 7, — 1,1 =
L1ty

Since the even terms
ro, 72,74, ..,
form an increasing sequence bounded above by 71, it tends to a limit p. On the other hand, the odd

rerms
r1,73,75, ...,

form a decreasing sequence bounded below by g and it tends to a limit p’. Since 79 < 79141
(Theorem 34),
P = lim Ty S lim rojy1 = p,.
j—oo Jj—o0
[Note that < is not a typo; even if ry < r9j41 is maintained for every j, there is no way of knowing
a priori this continues to hold in the limit] On the other hand,
(_1)N—1

| —0
IN—1IN

Iry —ry-a| = |
as N = 2j tends to oo. It therefore follows

o —p'| =1(p—rn) + (rny —rn-—1) + (rv—1 = p')| < lp —rw|+ [rv — v+ [p" — pyv—i| = 0

and one can deduce p = p’. [

Definition. We define the limit of the sequence of convergents to be the value of the infinite
continued fraction [a; ay, .. .].

We show that every real number (not just a rational number) has a continued fraction expan-

sion:
Theorem 37. For every irrational number 7, there exists a sequence ofintegers ag, ai, ... with
a, > 0ifn > 1 such thar the value of [a; a1, ... ] is 7.
1
Proof. Let pg = rand @ = |pg| € Z so that 0 < pg —a < 1. The number p; = —— > 1is
po—a

irrational (if not, 7 would be rational). We may continue this process: starting with an irrational
1
number p, > 1, we let a, = |p,] € Nand let p, 41 denote the irrational number ———— > 1.

pn — Qy
Then
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a1, a2, ...,
are positive integers and
P1,P25 -,

are irrational numbers > 1. The process continues without an end and [a; a1, .. ., ]| define an in-
finite continued fraction (This ‘algorithm’ is called the continued fraction algorichm). It remains to
check that the value of this continued fraction is indeed r (that we started wich).

We prove by induction onn > 1 that

[(1; ag, ... 7an—17pn] =T.
1
Whenn=1,r=a+py—a=a+ — = [a;p1].
p1
Suppose that [a; a1, . . ., ay—1, p,] = rholdsforn > 1 (we wouldlike to show [a; a1, .. ., @y, put1] =
r holds). Since = pu — ay,
Pn+1
[(l; ag, . .- 7anapn+1]
= a-+ 1
a; + 1
- ap—1 + 1
a” —"_
Pn+1
B 1
= q + 1
L1t
a, + Py Ay
B 1
= q + 1
ap +
Loyt —
- [a; aip, L) anflapn]
—
the claim thus follows.
Let
{ro=la;a1,...,a,]}
be the convergents of [a; a1, . . ., |. We know that the convergents tend to a limit p (by Theorem 36).

We need to show that p = r, i.e., the continued fraction algorithm correctly defines the continued
fraction of 7. We know from the proof of Theorem 36 that

p =Ty

and

Toi+1 2 P,
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it suffices to establish the same set of inequalities with p replaced by r holds. Indeed, if this is the
case, letting N = 2j for example,

r—p| <|ry —rn-1| =0

asj — 00.

To prove that r > 79 and r9j41 > r, we arguc as follows.

Suppose 7 is even. From the algorithm, we see that [p, ] = a, so a, < p,. It therefore follows
from the lemma below that

Ty = [CL, ag,...,0p—1, an] < [(1, ag, ... 7an—17pn] =T.
Then case when 7 is odd follows similarly. [

Lemma 38. Suppose that v < 7/ for positive real numbers 7, 7", Then, forn > 1,
s fasar, . an1,7] < lajai, ..., a,-1,7] when nis even,
s lasar, .o an-1,7] > lajai, .., a,-1,7] when nis odd.
Proof. Prove by induction on n. Whenn = 1,
a1t = [a;9] > [a;7] =a+l,
Y g

holds because of the assumption v < +'. Suppose that the assertion holds withn — 1 in place of .

Suppose firstly that (i.e. m — 1 is odd). It then follows that

1 1
[a;ala"wan—la’Y]:a—}_ R <at R / :[a;alv"'aan—lvvl]
[(117(12,...,Cln_1,’}/] [a17a2>"'7an—17’7]

because by the inductive hypothesis we know
[(11; ag, ... 7an—17’7] - [B?/Bb v 76n—277] > [Bu 617 LR 7/3n—27’Y/] — [al; az, ..., an—l;ryl]-
The case is similar. O

Remark. The proof is constructive. The algorithm is exactly the same as the one for finite con-
tinued fractions (for positive/negative rational numbers).

Example. What is the continued fraction of 7 = 3.141592653589793? Applying the contin-
ued fraction algorithm to get
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1
— |3.141592653589793| =3 = - — 7.062513305931046
a=| J P1 = 0.141592653580793

1
= 17.06251 1046 | = = = 15. 44 2
a; = [7.062513305931046| =7 = po 0.06251330593104577 5.9965944066857

1

= 1.003417231013372

ay = [15.99659440668572| =15 = p3

~ 0.99659440668572
az = |1.003417231013372] =1 = py= 0.0034172131013372 = 292.6345910144503
as = |292.6345910144503] = 292 =  p5 = 0.63459110144503 = 1.575818089492172
d
so the continued fraction looks like [3; 7,15, 1,292, 1, ... ]. The convergents are

22 333 355 103993
T 7710671137 33102 7
22 355

The numbers are — and — are well-known approximations to 7!

7 113
1
Exampler =1+ 5\/5

a:|_1+%\/§J:1 = p1 = 11 :\/§
(1+§\/§)—1
’ 1
alzt\/m:l = p2=ﬁ=1+\/§
4 1
(l2—|_1—|—\/§J:2 = p3=m=1+\/§zpz
/
az = as = P4 = p3 = P2
/

1
Hence 1 + 1+ 5\/5 is the value of [1;1,2,2,...].

Example. r = V15— 3.
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1 V15 + 3
a=|VI5-3]=0 M=

1 1
@le 1:\/ﬁ+3

o =1 P2= Uy
(=5

1 1

azZL\/E—i-ZiJ:G P3:(\/1—5+3)_6:\/ﬁ_3:l)1

as = dj

p1=p2

ag = a2 P5 = P3 = P1

SNENEN N N

Hence v/15 — 3 is the value of [0; 1,6, 1,6, .. .].

1++/5
9

Example. The golden ratio r = . This is the value of [1; 1,1, .. .].

Finally, we show that the continued fraction expression is unique:
Theorem 39. Every irrational number is the value of a unique infinite continued fraction.

Proof. Let 7 be an irrational number. By Theorem 37, we may write 7 as [a; a1, . . ., |. The goal
is to show that @, ay, ... are uniquely determined by 7.

1 1
Then r = a + — with p; > 1isirrational; so a = |r| and p; =
P1 r—
1

ined by r. Similarly, a1 = |p;1 | and p2 =
P1 — a1

are uni quely determ—

are uniquely determined, and so on. O

Remark. Given Theorem 37, the proof of Theorem 39 seems redundant but note that Theorem
37 only proves that there is a way (an algorithm) to find a continued fraction expression for 7 (but
it fails to prove that it is the way). Even though a is obtained as |7] in Theorem 37, it does not
automatically mean that, whatever method we come up with or decide to take, a- the first integer
its expression— should always be |r]. Theorem 39 proves that it always should be.

To sum up, there is a bijection between

« the set of irrational numbers
« the set of infinite continue fractions [a; ay, . ..], wherea € Z and ay,--- € N.

Given an irrational number, the continued fraction algorithm (See the proof of Theorem ??) defines
an infinite continued fraction. Conversely, given a continued fraction [a; a1, . . ., |, we may calcu-
late the convergents 7, = [a; ay, . . . | and their limit gives the corresponding irrational number.
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6.3 Periodic continued fraction

Definition. An infinite continued fraction [a; ay, . . . | is periodic if there exists [, N with [ > 0 such
that the sequence stabilizes at the N-th repeats itself with cycle of length [:

ay = aAN+[ = AN+2/ = "y,
aN41 = OAON4/4+1 — QAaNf2+1 — 0,
AN+[-1 — OAN42[-1 — OAN43/-1 — =",
Or more Succinctly
Oyt — Ay

for all m > N; and we write the continued fraction as

[CL; A1y, AN-1, AN; AN+1y - - - 7aN+l—1]
[t is said to be purely periodic it N = 0, i.c.,
Qpy] = Ay

forallm > 0.

Example. [2;1,2,1,2,1,2,...] = [2;1]. What (irrational) real number r does this continued
fraction represent? By definition, it suffices to solve the equation
1 x  3r+?2

=9 =
1+1 Tt T A

x=[2;1,2] =2+

which is2? — 2x — 2 = 0. The solution (in R) of the equationis 1+ V3 but the expression suggests
r>2 Sor=14++/3.

Example. What about s = [3;5,2,1,2,1,2,1,2,...] = [3;5,2,1]? Let r denote the 2, 1-bit
which we know, from the first example, to be 1 + /3, so that
s = [3;5,7]
= 3+ —

b+ =
"

— 34+
5+ 1
160 71

5r+1
126 — /3
39

These two real numbers are irrational while satistying quadratic equations (s satisfies (39s —

126)? = 3).

It does not have be concrete numbers:
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Example. Let n be a positive integer. Then
Vn? +1 = [n;2n].

To see this, we simply run the algorithm:

1
o S T, Y
1 1

ap = |[VRP+1+n]=2n

P VB ritn) —2n Veeil-n

az = aj P3 = P2 = P1

SNEN N

hence vn? 4+ 1 = [n,2n,2n,...] = [n,2n].

Conversely, if we are given [n, 2n], can we work out the value r of the continued fraction? Let
s = [2n] = [2n, 2n, .. .]. By definition,

1
s=2n+ —,
$

ie., s — 2ns — 1 = 0. Solving this equation in r, we have s =

2n + v4n? + 4
" 2n—|— =n+vn+1
Since s > 0, it follows that s = n + v/n? 4 1. To compute 7, we compute

+1 N 1 n”+nvn2+1+1 \/n2—|—1(n+\/n2—|—1)
r=n — =N = —
$ n+vn?+1 n+vn2+1 n+vn?+1

=vn?+1.

6.4 Diophantine approximation

We have seen that if 7 is the value of [a; a1, ... ] and 7, = [@; a1, . . ., @,] is the n-th convergent to
r, then the numbers 7, are rational numbers that tend to the limit 7. In this section, we establish
that they give best possible approximations to 7.

0y
What should be a good rational approximation E tor?

« it should be close to r (of course),

« the denominator ¢ is relatively small; there should be no rational number, with smaller de-
nominator, that is close to 7.

The goal of this section is to establish that the convergents to the continued fraction for 7 in-
deed satisfy these properties.

To this end, recall:
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where
Sp = QpSp—1 + Sp—2
torm>1sg=a,s 1=1,s55=0,
by = Qulp—1 + ty—2,
form>1tg=1,1t_1=0, t_yg = 1;
« (Corollary35) rg <y <ry < - <r<--- <15 <ry <ry
- ifp (resp. p') is the 1imitj1_iglo r9; (resp. /11_)1{)10 r9ir+1) of the strictly increasing (resp. decreasing)

sequence {79} (resp. {roy+1}), then
p=r

r—ry| < |rys1—1, for every n. To see this, note that if n is even, thenr, < r < 7,41, hence
|r — ry| < |ry — rug1); similarly if nis even, then 7,y <7 <7, and |r —r,| <|r, — rupa|.

Since Theorem 34 asserts |41 — 7| = , it follows that

tntn—l—l
1

tntn+1 ‘

|7‘ - rn| < |rn+1 - rn| =

Example. We saw that r = /15 — 3 is the value of [0;1,6,1,6,...]. The convergents for

V15 — 3 are

1 6 7 S4 48 S5 55 S6 378
rnn=—-nn=—=—-,T9=—=Z-,'3= -,y = — = _——-,I'5 = — = —=,Tg = — = ——=y--..
0 1 17 2 7a 3 87 4 1 557 5 L5 637 6 te 4337

How good is 74, as a (rational) approximation to 7?

1 1 1 1

_ < — = — < —
Ir r6|_t6t7 133496 214768 ~ 104

hence accurate to the FOU.T decimal p]aces.

We know that 7, is always a better approximation to 7 than r,_ is (recall r,_y < 7, < rif'n
iseven and r < 1, < 1,9 if m is odd). What about 7, vs r,_1? We will answer the question by
showing that, after the first step, the approximation always gets better as n increases.

When 7 is the value of the continued fraction, [a; ay, . . . |, we let 7, denote the n-th convergent
la; a1, ..., al; let p, € R be the output of the continued fraction algorithm after n-steps:

1

Ap—1 = Lpn—lj =P =
Pn—1 — Gn—1

and

r= [0., ag, - . '7anflapn]
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(see the proof of Theorem 33) and we may see p, as

Pn = [an; Ay4+1y - - - ]

def

Proposition 33 shows that for the finite continued fraction 7,41 = [@;a1, ..., aup1] equals

Sibl T e e T o o .

"= which, by definition, is ——————"—. Something similar holds for an infinite continued
€n+1 an+1tn +th-1

fraction:

Lemma 40. Let 7 be an irrational number.
o . o pn—HSn + Sn—1
r= [(1, ag, ... aanapn+1] S
anrltn + lnfl

Proof. The first equality is established in the proof of Theorem 37. We prove the second equality
by induction on n.

. 1 +1
By definition,r =a+r—a=a+ — = G-
P b
Sp— Sy—
Suppose that [a; a1, . .., ay_1,px] = Puln=1 =2 1 1ds. Since [as a1, ...y an, pur1] = [a;aq,
1 pntn—l + lp—2
] and
Pn+1

1
Ay + ——)Sp—1 + Sp—
( " pn+1> "l " o pn—‘rl(ansn—l +Sn—2) +sn—1 o Pn+18n + Sn—1

pn—‘,—l(antn—l + tn—?) + tn—l pn—l—ltn + tn—l .

(ay + Yon—1 + L2
Pn+1
Ol
It follows
pdn [ a, ... ,(lmpn+1]—s—" _ PrtaSn Tt Su—1 Sw _ aSa—1 = Sabuo1 (=) (=" 7
Ly i Putibn iy b L(Puyite +tim1)  ta(purats + Lio1)

by Theorem 34 and therefore

[(=1)"] 1 1

_&|: _

<
tn |tn (p7L+1tn + tn—l)‘ tn (pn-{—ltn + tn—l) tntn—i-l

as
pn+1tn +1,-1 > anJrltn +1,-1 = tn+1

(recall that a,41 = |pas1], hence puy1 > api1).

Proposition 41. For every n > 2, we have

tnr - sn| < |tn—1r - sn—1|7

r—r| < |r—r_1l
Proof. Using the argument above, we have

Sy 1
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and

tn—l pnln—l + tn—2 .

To prove the first assertion, it therefore suffices to establish

Sn—1 ‘ 1

|[n,17' - S,,,1| = Zn,1|7' -

pn+ltn + tnfl > pntnfl + tn72-
By definition, a, = |p, ], thus p, < a, + 1. It follows that

pntn—l +i0 < (an + 1)tn—l o =oply1 tlh ot 1=t +11< pn—l—ltn + ly—1,

. 1 1
since py+1 > 1 by definition— recall that p, 41 = = where 0 < p, — [pn] < 1.

Pn _‘ ay pn‘_ \_an
To prove the second assertion, we firstly observe from the first assertion, combined with ¢, >
ty—1 > 1, that

|tnr_sn| < |tn—lr_sn—1| < |tn—17‘_sn—1|‘
Iy Iy lp—1

Sy
, while the RHS is |r — t” !

TthHSis|r—%]:|r—rn
n

| =1|r—r,1]. O
n—1

$ -
DCﬁl’litiOl’l. We say that a rational number Z 1§ a gOOd apprommamon tor lf

s s/
’7‘ — -’ < ‘7’ -
t t
S/
for any rational number — with " < ¢.
! s s
In other words, there is no rational number closer to 7 than - with smaller denominator; if;

. s . . s
has smaller denominator than " then it has to be further from r than s tor.

Theorem 42. Let r be an irrational number, [a;ay, ... ] be the continued fraction for r, and

s s
o= lajag,... 0, = t—" be the n-th convergent. Let p = p be a rational number in its lowest
n
terms. If ¢ < t, whenever n > 1, then
Sn s
r——=[<lr—-[=I[r—p|
n t

holds.

Remark. The theorem asserts that the convergents 7, for n > 2, are good approximations to

We need a lemma.

Lemma43. Let7 be anirrational number, [a; ay, . . . | beits continued fraction, 7, = [a; a1, ..., a,] =

5,

~ be the n-th convergent. If s and t are integers satisfying ged(s, t) = 1 and ¢ < t,,, then
& g ymg g

n

|l7’ - S| Z ‘ln,ﬂ” - sn71|
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Loty

Proof of the lemma. 'This is due to Lagrange. Consider the following system of equations

holds, with equality if and only if“E Sn-1

Sp—1& + S,y
ly1x +tyy = ¢t

Since $y—1ty — Suly—1 = (—1)" (Theorem 34), we see that it has a unique integer solution

(@,3) = ((=1)" (st — tsn), (=1)"(ts5—1 — stu—1)).
Suppose & = 0. This is equivalent to st, — s, = 0, i.c.

s S s
- 2. While = is
t o, t
in its lowest terms (Theorem 34), the equality express the same rational number with two distinct
denominators (recall t < ¢, by assumption). This is a contradiction.
¥ is non-zero or (s,t) = ($y—1,t,—1) | Similar to the argument above. If y = 0, then 5,1 —
S Sn—1
sty_1 = 0, hence - = =

_— note that as ‘¢ < t,—1" is NOT assumed, it is not possible to eliminate
n—1

s Sn—1

this case. To sum up, ¥ is either non-zero, or zero in which case -

and therefore s = s,
4 ln—1
and ¢t = t,_1 (again, because ‘¢ < £,_1" is NOT assumed, this is allowed!) and consequently

ltr —s| = |ty_1r — su-1]-

Suppose that y is non-zero. Our goal then is to establish that

ltr —s| > |ty_1r — s5-1]-

x and y have opposite signs

. . s Sn—1
ie, ts,_1 — Sty_q1 > 0, ie., -

Suppose thaty < 0. If nis odd, theny = —(ts,-1 — st,—1) <0,

. Ty—1. On the other hand, Theorem 34 proves that
n—1

. . S Sl Sa

Ty — rp—1 > 0 (since n — 1 is even), hence - < t” < t_n’ ie., st, —ts, < 0. As a resul,
n—1 n

x = (—1)"(st,—ts,) (since nis odd). Similarly, if n is even, ts,_1 —st,—1 < 0,ic., - >

Sn—1

=71
/ ty 1 n—1
. s
As Theorem 34 proves that r, — 7,1 < 0 (since n — 1 is odd), it follows that - >

Sn—1 > Sn
st, —ts, > 0. As aresuleax = (—1)"(st, — ts,) > 0 (since n is even).

—, l.e.,
One can similarly show that if y > 0, then z < 0 (whether 7 is odd or even).

n—1 Iy

ty—17 — $y—1 and t,r — s, have opposite signs

. Sp—1
Observe that 7 lies between r,_; = —

and
n—1
Sn . . o
r, = —, hence t,_17 — 5,1 and t,r — s, have opposite signs. For example, if n is even, then we
n
have

Sn

L

Sn—1
=1, <r<r,i=
n

ln—l '
The first inequality yields t,7 — 5, > 0, while the second yields t,_1r — 5,1 < 0. If n is odd, then
we have 7,1 < r < r, and this yields t,7 — s, < 0 and t,,_17 — 5,1 > 0.
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Combining the last two items, we may then deduce that 2(t,—17 — s,1) and y(¢,r — s,) have
the same signs. It hence follows that

r =) = [(tust + 1) — (50 + 50)
= |e(tiar —su1) +y(tar — 54|
= |e(tuiar — su1)| + [y(tar — 54)]|
= |alturr = su—a| + y[ltar — s
> |ty1r — Syl

tn,lr —

The last (strict) inequality follows since |z| > 1 (chis follows since 2 is a non-zero integ
$p—1| > 0and |t,r —s,| > 0.0

Proof of Theorem 42. Suppose t < t,. Then it follows from Lemma 43, Proposition 41

1 1
Ir =2 = ~Jrt = s[> |t — 50| > |n o > Sty —sa] = = 1.
t t t L, L,

Theorem 44. Let r bc an irmtional number, and let 5,2 € Z witht > 0 and ged(s,t) = 1.

: s
Suppose that |r — Z| < 2_L‘2 Thgn - is a convergent to 7.
. . . s
Proof. Let [a;ay,...] be the continued fraction for r (Theorem 37), and define r, = = as
n
before. Choose 7 such that
1 <t<t,
Lemma 43 states |tr — s| > |t,—17 — $,—1], and it therefore follows that
rt [ <lir—sl=tr =21 < o =5
r—s r—s|=tlr—- = —
- 20 A
implies
Sn 1’ 1
b1~ 2,1l
On one hand,
§ Sn—1 1 1 1 1 2 1
B
4 In—1 In—1 In—1 2t 2tn—1t 2tn—lt In—1t
On the other hand,
s Sn—1 Slp—1 — ISp—1
l In—1 ty—1
~ ~ . s Sn—1
It therefore follows that the numerator st,_1 — ts,_1 has to be zero, i.e. Pl O
n—1
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6.5 Periodic continue fraction 11

A quadratic irrational r is a real number of the form s 4 tvVd wheres € Q,t € Q — {0} andd > 1

is a square-free integer.
Quadratic irrationals are precisely the roots of irreducible degree 2 polynomials with Q-coefficients.
Theorem 45. If a real number has a periodic continued fraction, then it is a quadratic irrational.

Proof. We firstly show that a (real) number with a purely periodic continued fraction is a quad-
ratic number. To this end, let
r = [a;al, ce 7a[_1].

The cases when [ = 1 and [ = 2 are left as exercises. We henceforth assume [ > 3. If r was
rational, the continued fraction would have finite length; hence 7 is irrational. By assumption,
r=la;ay,...,q_1,7]
and it follows from Lemma 40 that the RHS equals
rs;—1+ 82

1+ to

Sn . -
where — is the n-th convergent of [a7 a7, - - -, @j_1). We then see that
n

1r® + (li—g —s-1)r — 512 =0

and therefore that 7 is a quadratic irrational.
We now show that any number with periodic continued fraction is a quadratic irrational.

Let p be the value of [a; a1, ..., an,@ns1, -, any) for fixed N and [, and let 7 be the value
of [@NF1; GN+2, - - -, @GN+ By the first pare, r is a quadratic irrational of the form, say, s + 1d
withs € Q,1 € Q — {0}. We have

S ay, 7] = BN+ SN-1
P y Gy - o0 AN, i+ Iy

s .
by Lemma 40, where = is the n-th convergent of p. Substituting r = s + 1Vd, we have
n

_SNS—|—SN_1 +SNLL\/E_”. SN—lt(SN_tN)
P NS+ Iy_q + EntVd (tns+tn-1)? — (tnt)

and p is quadratic irrational. [J

Zd\/EeQ+Q\/E

The converse also holds, but it will not be discussed any further:

Theorem 46. A real number has periodic continued fraction if and only if it is quadratic irra-

tional.

In fact, for a square-free positive integer d, Vd always has the continued fraction expression of
the form

Vd = [a;a1,a9,...,as, a,2al.
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7 Pell’s equation
In this section, we will study Pell’s equation:
x? —dy* = £1.

We will see that continued fractions give us constructive methods of finding (integer) solutions
to these equations. In doing so, we will describe the solutions in two different ways (in Part I and
Pare 11).

71 Parcl
Theorem 47 Suppose thatd € N is not a square and suppose that there is a pair of positive integers
. S . .
s and ¢ satisfying s2 — di? = +1. Then ; is a convergent to Vd (in the sense that it is of the form
Su -
r, = — for some n).

Proof. 1fs? — dt* = £1, then (s + V/dt)(s — Vdt) = %1, hence

s 1
V== o

holds. The denominator
t(s +1Vd) = t2(; +Vd) =2 /d + tl? +Vd) > 2(Vd — 1+ Vd) > 2

. . . s,
since d > 2 (as d is positive and not a square). It then follows from Theorem 44 that . is a conver-

gent to \/E ]

Remark. The theorem asserts that positive integer solutions to Pell’s equation 2% — dy? = +1

are necessarily convergents to the continued fraction of Vd:

.. . . Sn
{Thc positive integer solutions to % — dy?* = :I:l} C {thc convergents 7, = -~ to \/c_i}
n

(recall that s, and t,, are both positive if n > 1) But not all convergents are solutions to the Pell
equation. Do we know which convergents?

Example. 2% — 2y* = +1.

The continued fraction of v/2 is [1; 2]. The convergents are:

3 7 17 41

1 2577‘223773:E,T4=E7-~-

These, as it turns out, define solutions to 22 — 2y? = £1.

3 -2.22=1,7"-2-5°=—1,17"—2-122 =1,41* —=2-29° = —1, ...
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It might be reasonable to expect that the convergent 7, when n is even (resp. odd), define solutions

ox? — 2y = —1 (resp. 22— 2% =1).

Example. 2% — 3y? = +1.

The continued fraction of v/3 is [1; T, 2]. The convergents are:

7‘—2r—5r—7r—19
1 — 17 2_37 3_4a 4 — 117
This time, not all of them are solutions to the Pell equation:

22 -312=1,5-3-32=-27-3.42=1,19°-3- 11> = -2, ...

Again, it might not be so far-fetched to conjecture that the 7,,, where 7 is odd, define solutions
toa? — 3y? = 1, while it is likely that 2* — 3y* = —1 does not have any solutions. This can be
checked by passing to Fs. If there was a solution, say (s, t), then

sf=-1=2
2 .
mod 3, however the Legendre symbol (g) = —1, a contradiction!

The following theorem singles out exactly which convergents to V/d indeed define positive in-
teger solutions to x? — dy? = £1:

Theorem 48 Suppose that d € N is not a square. Suppose that Vd = la;ar, -, q Let ™ be

n
the n-th convergent of the continued fraction of Vd. Then

s2—di? = +1

ifandonly ifn = Nl — 1 forsome N =1,2,3,....
Moreover,
Sxio1 — iy = (=DM

Remark. As advertised, Theorem 48 proves that, ifvVd = [a;ar, - a,

{The positive integer solutions to x? — dy* = :l:l} = {the ‘convergents’ (Syi—1,tni—1), N =1,2,... t0 \/E}
Proof. NON-EXAMINABLE. OJ

Example. 2% —2y? = £1. In this case,/ = 1 and everyr, = M isa solutionforn =0,1,2,...;
and 2 — 22 = (—1)".
Example. 2% —3y? = £1. In this case, [ = 2 and every 7,, whenn = 2N — 1, i.c. when nis odd,

defines a solution to & — 3y* = +1. In fact s35_; — 3tay_; = (=1)* =Tland2? — 3y* = —1
does not have any solutions (as expected).
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As we have seen in the second example, when [ is even, (—1)N = 1, and the following follows
immediately from the theorem:

Corollary 49 Suppose that d € N is not a square. Suppose that Vd = la;ar, ). Iflis
even, the equation

a2 —dy? = -1

has no solutions.

72 Parcll

Definition. We define a partial order on the set of solutions to equation 2 — dy* = +1: if (s, 1)
and (s', ") are two distinct solutions, we then define

(s,1) < (s, 1)

ifx + y\/g < s +¢VdinR (SL says this is equivalent to s < ' and ¢ < ). The fundamental

solution is the minimum positive solution in this sense.

By Theorem 48, we know that the fundamental solution toa? —dy? = +1is (x,y) = (s-1,-1)

SI-1 .
where s the ({ — 1)-st convergent.
-1

We will see that | the fundamental solution generates all positive integer solutions (,).

Example. 22 — 2y* = +1. As we saw already, (s0,20) = (1,1), (sa,22) = (7,5),... define
solutions to

x? — 2% = —1,
while (s1,21) = (3,2), (s3,£3) = (17,12), ... define solutions to
-2 =1.

An eagle-eyed reader might notice a pattern— if (v,, w,) is the n-th (positive integer) solution, then
(Vna1, Wyr1) = (v, + 2wy, v, + w,) is the (n + 1)-st, and

Upt1 + wn-i-l\/g = (v, + wn\/i)(l + \/5)

in other words,

(Un + wn\/é) = (Ul + w1\/§)"

This is not a coincidence, as we shall see shortly.

(1+v2)".

Example. 2% — 3y* = +1. 'The first few solutions to 2% — 3y* = 1 are (vy,w;) = (s1,41) =
(2,1), (vg,ws) = (s3,23) = (7,4), (v3,w3) = (s5,15) = (26,15),... and solutions necessarily
satisfy

Uy + 'Uyn\/g - (7)1 + wl\/g)n - (2 + \/§>n.

Lemma 50 Let (s,¢) = (vq, w;) be the fundamental solution to the Pell equation

x? —dy* = £1.
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Forn=1,2,..., define (v,,w,) € N x N by the equation
v, +w,Vd = (s+ t\/g)".
Then

Uy =

((s +Vd)" 4 (s — t\/c_i)">

DN | —

and

w0, — ﬁ (s + vy — (s — 1))

Remark. Note that (v,, w,) is different from (s, t,) that defines the n-th convergent r, any
longer.

Proof. Induction on n. [J

Theorem 51 Let (s,¢) = (v1, w;) be the fundamental solution to the equation
x? —dy* = +1

and let
e =5 —d* € {£1}.

As before, forn = 1,2, ..., define (v,,w,) € N x N by the equation
v, + w,Vd = (s + 1Vd)".

Then

Remark. Theorem 51 proves that
{Thc positive integer solutions to x? — dy? = :I:l} D {(vy,w,)}-

Proof of Theorem 51. Applying Lemma 50, we obtain

1 ; N Vd , . ]
vn—wn\/c_lzé((s%—t\/g) +(s—z\/3))—m((s+n/2) —(s—z:\/E)):@—NE).

Hence
02 — dw? = (v, — w,Vd) (0, + w,Vd) = (s — tVd)"(s + tVd)" = (s — di®)".

g

The following theorem establishes the ‘converse of Theorem 51, ie. {(v,,w,)} seces all the
positive integer solutions to 22 —dy? = +1, ie.

{The positive integer solutions to 2?2 —dy? = :I:l} = {(vy, w,)}.
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Theorem 52 Suppose that d € N is not a square. Suppose that (v, w) is a solution to the Pell
equation

x* —dy* = £1.

Then there exists n > 1 such that (v, w) = (v,, w,) as above.

Proof. Let (s,t) be the fundamental solution to 2? — dy? = +1. Suppose there exists a pair
(v, w) of integers such that

cv>landw > 1,
e v? —dw? = +1,

+ (v,w) is not (v, w,) for any n > 1, where (v,, w,) is a pair of integers satisfying

U, + wn\/_ = (s + l\/@n

Pll'ld
V2 — dw? = +1

The assertion follows if this set of assumption leads to a contradiction.

There exists a unique N such that

(S+t\/E)N <v4wVd < (s+t\/E>N+17

because the interval (s + tvVd)N+! — (s + tVd)N = (s + tV/d)N (s + tv/d — 1) gets bigger as N
increases [the point is that v + wv/d is bounded strictly by powers of s + t\/c_i; this only occurs if
(v, w) is not (v, w,)!].

, we have

1
Multiplying all by ————
(s+1¢ \/3)1\]

1< V+WVd<s+itvd

where

UN — wN\/E

2 2

(v+w\/g): L

1
Vi WVd= —— -
(s + tv/d)N oy +wyVd

(v + wVd) = (v + wVd).

It is straightfbrward to check that
d
vowvao aresd

We check
V2 —dW? = £1,ie (V, W) is a solution for x? — dy* = £1| Simply substituting above,

2 2
VdW? = (Ve WV (V-WV) = —5 (0P dw?) (R —dwy) = vode

(v} — dw})? vy — dwy
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by Theorem 51.
—1 <V —Wvd<1|Since |V+WVd||V—-WVd =|+1 =1and V+ WVd > 1,
it follows that |V — WVd| < 1.

Consequently,
2V = (V+WVd)+(V—-WVd) >1-1=0,
hence V > 0 and
QWVd = (V+ WVd)— (V—-WVd) >1-1=0,

hence W > 0. This contradicts the minimality of the fundamental solution s + tvVd. O

To sum up, we prove that, whenvd = la, a1, al,

(Sui—1, Wy—1)} (Parc 1)

o | 2 g _ I
{The positive integer solutions to 2% — dy il} { {(v,, w,)} (Parc 1)

In particular, we see
« The fundamental solution (s, ) is (v, wy);

* (vn, wy) = (Swi—1, tu—1) [note that we see this equality rather indirectly, without comparing
nl

(Vn, wy) and ($y—1, ty—1) directly] and v2 — dw? = (—1)",

and as a result
e=s>—di* =v® —dw?® = (—1)".

It is odd, then

+ (vy, w,), for m even, are solutions to the Pell equation

2 —dy? = +1

* (vy, wy), for n odd, are solutions to the Pell equation

a2 —dy* = —1.

Example. 22 — 3y* = 1. The fundamental solution is (s,£) = (2,1). Hence

v+ w3 = (2+V3)2 = T+4V3,
v+ w3 = (243 = 26+ 153,
7J4+'U’)4\/§ = (2+\/§)2 = 97+56\/§,

Example. The continued fraction of v/13 is [3;1,1,1,1,6] with [ = 5. Hence the positive

S5N—1 .
1S

integer solutions to 2% — 13y? = =+1 are the convergent (ssy_1, t5x—1) where rsn_; = .
5N—1
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the 5N — 1-st convergent. The ‘smallest’ solution is (s4,24) = (18,5) and 18% — 13- 5% = —1.

Example. 22 — 41y* = —1. The fundamental solution to &% — 41y* = —1is (s1,11) = (32,5)
and the fundamental solution to x? — 41y? = 1 is (sq, f3) is computed by

0y + wy VAL = (32 4+ 5V/41)% = 2049 + 320V/41.

Example. The continued fraction of v/61is [7;1,4,3,1,2,2,1, 3,4, 1, 14] with period [ = 11.
It follows from Theorem 48 that the solutions to 22 — v/61y? = %1 are

($10,t10) = (29718, 3805), (s21, 21), ($32, t32), - - -

llN)

(satistying s2, y_; — di?1y_1 = (=1)''V), and the fundamental solution to &* — dy* = —1 is

(810, tl()) = (29718, 3805)
while the fundamental solution to 22 — dy? = 1 is
($21,291) = (1766319049, 226153980).

Theorem 51 ascertains that (29718 + 3805v/61)% = 1766319049 + 226153980+/61.

7.3 Appendix: A proof of Theorem 48 (NON-EXAMINABLE)
Let d be a square-free integer. Let {a,} (resp. {pn}) be positive integers (resp. real numbers)
appearing in the continued fraction algorithm for Vd, ie.,
\/3 = [a; at, ..., an—lapn]
1

(by definition, a,—1 = [py—1] and p, = ———— hence p,—1 = a,_1 + —; furthermore,
Pn—1 — Qn—1 Pn

since Vd is irrational, p, is non-zero for any n).

Definition. Define integers R, and S, inductively as follows:
« Rg=1and § =0,
s S =a R, =S,
s,
R

The following is the key lemma:

* R/nJrl =

Lemma We have
« R, and §, are both integers,
- R, dividesd — §?

n»

S, +Vd

CPelT R,
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Proof of the lemma. We prove this by induction. The case when n = 0 holds trivially. Suppose
that the assertion holds for n.

Su+1 € Z| By definition, S,41 = a,—1 R, — S, where a,,_1 is an integer by definition and R,

and §, are integers by the inductive hypothesis.

By definition,

d— 2. d—(ay Ri—S)? d—S?
Rﬂ+1 = R, = (a ;?,Ijﬂ ) = R, + 20,18, — a1 R,

N

n

The assertion follows since is an integer by the inductive hypothesis.

n

R, 1 divides d — S,,?H This follows immediately from R,41 R, =d — S,%H.

1
Pn = M Since py—1 = a,—1 + —, it follows from the inductive hypothesis that
R, P
1 S, +Vd
a1+ —=—75—.
Pu R,
It follows that
Pn = R/n _ Rn _ R/n<\/c_l+ Sn+1> _ an(\/g—i_ SnJrl) _ \/g—i_ Sn+1
" Sn + \/6_1 - an_lR,L \/E - Sn+1 d— 534_1 R/LR?'L+1 Rn+1 ’

as desired. O

s
Proposition A-1 Let d be a square-free integer. Let t—" be the n-th convergent to Vd. We then
n

have
2 = di = (~1)" Ry
and R,41 > 0.
S, pnsn + Sn—1
Proof. SinceVd = [a; aq, ..., ap_1,pp] = =222
roof. Since [a; ay i1 Pn) oot oy

\/E (pntn + Z'Lnfl) = PnSn + $—1.

S, d .
Substituting p, = %— from the lemma, we have
n+1
Sn d Sn d
vaSmtvd, N Smtvd o
R, 11 Ryt

Multiplying R, 41 and rearranging, we have
\/E (Sﬂ+1tn + RnJrltnfl - Sn) = SnJrlSn + an+1sn71 - dtn-
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Since V/d is irrational, it follows that

Sn—l—ltn + Rﬂ—‘,—ltn—l — S = 0& Sp = dpr1ly + Rﬂ—l—lln—ly

and
S7L+lsn + Rﬂ—‘,—lsn—l - dtn =0« dtn - Sn—l—lsn + I?'rt—l-lsn—l'

It therefore follows that
Si—dtz = sn(‘Sn+1tn+an+1tnfl)_tn(Sn+lsn+an+1snfl) = RfrlJrl(Sntnfl_tnsnfl) = R/errl(_l)n_l

by Theorem 34. O

Proposition A-2 Suppose that Vd = [a;ar, .-, ] for some [ > 1. Let {R,} be as above.
Then R, = 1 if and only if [ divides n.

Corollary. Theorem 48 follows.

Proof of Corollary (Theorem 48).

S—df=(-1V"e R =1elh+)en=01-121—1,....

n

Proof of Proposition A-2. Suppose that [ divides n. We show that for any multiple £ of [, Ry = 1.
Firstly, since Vd = [a; p1] by definition, we have p1 = [a170z, .., ). Similarly, since Vd =
la; a1, ..., pi1], we also have pry1 = [a1; a2, - - -, a7]; indeed, for any integer £ > 1, we have

Pkl+1 = [(11;(127 e ,0!1] = p1

(easy to check by induction). By the lemma above, it therefore follows that

S/el+1+\/E: S; 4+ Vd
Ry 1 Ry

and, as a result, that Ry+1 = Ry and Sy = Si. By definition,
Ri=d—-S=d- S8, ,=RyRus = RyR,.

Since R; > 0, we have Ry = 1 as desired.

Conversely, suppose that R, = 1. It follows from the lemma that

1 S, d 1
a, + — = pu—1 :+—\/_: Sn—i—\/gz S, +a+—.
pn R’Il pl
While @, (on the leftmost), S, and a (on the rightmost) are all integers, both — and — are fractions
Pn P1
< 1 and therefore the equality p, = p1 needs to hold. This implies that [ divides n (as [ is the period
length). O
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8 Sums of squares

81 224+y>=p
Let p be a prime. The basic question we want to understand in this section is whether
24y =

has a solution in (x,y) € N x N. For example,

22412 = 5
3F+22 = 13
2412 = 17
52422 = 29.
On the other hand,
4y =7

is not soluble in Z x Z; for if it were, there would be (m,n) € Z x Z such that m* +n* = 7, but
the table

z (mod 4) | 22 (mod 4)
0 0
1 1
2 0
3 1

shows m? + n? would never be 7 = 3 mod 4.
In fact,

Proposition 53. Let p be a prime congruent to 3 mod 4. Then

has no solutions in (z,y) € Z X Z.
Proof. The table above shows that, for any pair of integers 7, 5, the sum 7% + 52 is congruent to
0,1, or 2 mod 4. If (r,s) are a solution for 2 + y* = p, then p would be congruent to 0, 1 or 2,

but this contradicts the assumption that p is congruent to 3. [

On the other hand, the following theorem gives us a good handle on primes representable as

sums of squares:

-1
Theorem 54. If (7> = 1, then the equation

is soluble.
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To prove the theorem, we firstly prove

Lemma 55. Let 7 € R and N € N. Then there exists s/t € Q with ged(s,z) = 1 and

1 <t < N such that .
Y I
" “(N+1)

‘ N
14

s s .
Remark. Indeed, we show that we may take S to be a convergent = to r for some 7.
n

: . - . s
Proof. Let 7 = [a;ay, .. .| be the continued fraction of 7 and 7, = = be the n-th convergent

n
(recall that ¢, is an increasing sequence). It follows from Theorem 34 that

1
r =l = = 2 < s — 1] < ——
tn tntn—l—l

TthC are two cases to pl’OCCCdZ

Suppose that t, < N for every n. In this case, the increasing sequence t, is bounded from
above, i.c., t, stabilises for sufficiently large n, i.c., the continued sequence is indeed finite and 7 is

s s
a rational number 7 = [a; ay, . . ., a,] for some n. Letting = = =, we have
n
s 1
r—-=0< ———.
t t(N+1)

Suppose that there exists n such that
tn S N < ln—&-l

(whether 7 is a rational or not) Since N and t,41 are both integers, it follows that N +1 < ¢,4;.
s S
Letting - = =,
n
s Sy 1 1
r—-|=r——=| < < :

Proof of Theorem 54. Since —1 is a quadratic residue mod p, there exists an integer 2 such that

22 = —1 mod p. Applying the lemma with r = ;—) and N = |/p], we find ; € Q such that
1 <t<|[P] <Pand

SR P S

p t T HN+1) tp

S
==

since N = |/p| <P < N+1
Let u = ps — 2t. Then, sincet > 0 and p > 0,




‘ (u, ) is a solution we are looking for | It follows from the last inequality that

O<w>+12<p+p=2p
as we know t < N < /p. On the other hand,
WA= (ps —2t)* + P =220+ 2 = (22 4+ )P

mod p. However, by assumption, 22 = —1 mod p, hence u? + 12 = 0 mod p. The oniy possibility
for the ‘real’ value of u? + 2 therefore is p, ic., u? + 12 = p. [J

Corollary 56. Let p be a prime congruent to 1 mod 4. Then
24y =

has an integer solution in 2 and y.

. —1
Proof. It follows from the theorem that if (7) = 1, then 2% + y* = p is soluble. By

-1
assumption, p is odd and Rule 2 in Theorem 25 asserts that (7) = lifand only if p = 1 mod
4.0

8.2 Hermite's algorichm

The proof of Theorem 54 can be made into an algorithm for finding &,y such that 2? 4+ y* = p.

Step 1: find z such that 2* = —1 mod p.

5,
Step 2 (inductive): compute the n-th r, = t_” and the (n 4 1)-th convergents 7,41 = ;
n n+1

.z
the continued fraction —. If

tn < \/ﬁ < tn+l>

then the algorithm stops and (x,v) = (£, ps, — 2t,) defines a solution for 22 +y* = p. If this does
not hold,
Step 3: see if £,41 < /P < tyo works. If it does, the algorithm stops. If not...

Example. Lec p = 13.

Step 1: we simpiy spot that 52 = —1 mod 13.
5

Step 2: To find the convergents ofl—g, we see
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=
13 520 5
13 < 1 )
al—LgJ:2:> 7'2—%_225
) < 1 3
(12:|_§J:1 = r3—§_1:§

; /
03:L§J:1 :>7"4:%_1:2€N

/

as = LT4J =Ty

Hence the convergents are

So $1 1 S92 1 §3 2
to ) t]_ [ ’ ] 27 t2 [ » ] 37 t3 [ ] 5

The algorithm stops atn = 2 as
th=3<V13<t3="5
and (x,y) = (3,131 —=5-3) = (3, —2), or (3,2) defines a solution. Indeed, 3% + 22 = 13.
Example. p = 2017,

Step 1: 2292 = —1 mod 2017.
To do this, we make appeal to Proposition 29. Since (m) = —1 (crial and error), it follows
2017—1

from Proposition 29 that 57 1 = 5504 defines a solution to 22 = —1 mod 2017. Simplify 5504
mod 2017, we get 229 mod 2017.

229
2017’

Step 2: to find the convergents of we see that
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=|l—=]=0 = n
2017 ) 2970~ 229
207 1 229
- | = T —_

T g PTIT R 185

/
229 1 185

2= 1g5) =1 j PTEmO T

185 1w

as = EJ_ZL j 7'4—%_ :5

44| _ _ 1 9
a4—L§J— = r5_%174_§
7

Hence the COHVGIgCl’ltS are

5_1 1 So 1 S3 5 S4 21

S0 L R
to i 8ty 9ty 44’1, 185

The algorithm stops at n = 3 as

t3 =44 < /2017 <ty = 185.

and (x,y) = (44,2017 - 5 — 229 - 44) = (44, 9) is a solution. Indeed, 92 + 44% = 2017.

8.3 More sums of squares

Let n € N. We can write it as n = @*b where a, b € N and b is square free, in the sense that if p is a
prime that divides b, then p? does not divide b). More precisely, it follows from the Fundamental
Theorem of Algebra that we may write 7 as

2
n—= Hpri, _ H p25p H p2xp+1 _ (Hpsp> H p
p P

rp=2s rp=2sp+1 rp=2sp+1

and we may take a = H P (where p ranges over all prime factors of n) and b = H p (where
p rp=2sp+1
P ranges over the prime factors of n for which 7, is odd).
For Cxamplc,

1440 = 2°3%5 = 122 . 10.

We shall refer to b as the square-free part of n.

Theorem 57 (Fermat & Euler) A positive integer 7 is the sum of two squares (of integers) if and
only if the square-free part p of # has no prime factors congruent to 3 mod 4.
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Proof. Suppose firstly that p has no prime factors congruent to 3 mod 4.

If p = =1, then n is a square and it is evidently a sum of squares (since 02 is a sqaure). We
may then suppose that p > 1.Since the product of sums of squares is, again, a sum of squares [if
a=r’+s?and B=1*>+u? then aB = (r? + s*) (> + «?) = (rt — su)? + (ru + st)?], ic sufhices
to establish that any prime factor p of p is a sum of squares. In theory, there are 4 cases mod 4 to

deal wich:

This can occur since p is a prime.
This follows from Corollary 56.

The only possibility for p (prime and congruent to 2 mod 4) is 2. Clearly 2 is a sum of
squares 2 = 12 + 12

This is excluded by assumption.

Conversely, suppose that n = r? +s? for some integers 7, 5. It suffices to prove that if p divides
the square-free part of n, then p is not congruent to 3 mod 4. It is equivalent to establishing that
if p is a prime factor of n and is congruent to 3 mod 4, then p is a factor of the ‘square-part’ of n,
i.e. ,if p is a prime factor of m, is congruent to 3 mod 4 and p¥ is the maximal p-power divisor of
n, then N is even. We shall prove the latter by induction on 1.

Ifn = 1, then the assertion holds (as n = 1 has no non-trivial divisors).

Suppose that the assertion holds for a positive integer < n. Suppose that p = 3 mod 4 and p|n.
The goal is to show that p divides 7 an even number of times.

p|r and p|s | Suppose WLOG that p does not divide 7. Therefore there exists ¢ such that 7t = 1

mod p. On the other hand, since p|n, it follows from n = r? + 52 that

N
mod p. Multiplying the congruence by %, we obtain
0=22(r* +5%) = (n)* + (st)* = 1+ (st)?,

-1
ie. (s1)> = —1 mod p. In other words, (7> = 1 but this contradicts Rule 2 in Theorem 25 (chis

is where we use p = 3 mod 4).
Let r = pu and s = pv. Substitute those back into the equation, we have
n=r>+s*=p*(u*+v?).

Since (#? + v?) < n, it follows from the inductive hypothesis that p divides («? 4+ v*) an even
number of times. The same remains true for p?(u? + v?). O
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Example. 585 = 3% - 5 - 13. The square-free part is 5 - 13 and both prime factors 5 and 13 are
congruent to 1 mod 4, in particular NOT congruent to 3 mod 4. According to the theorem, we
should be able to express 585 as a sum of four integer squares. In fact,

5=22+12 =1 +5

and
13=2°+3 =1 +u°

And it follows from the formula in the proof of the theorem that
513 = (rP+s) (2 +u?) = (t—su)* + (rutst)* = (2:3-1-2)+(2-2+3-1)* =4+ 7.
It therefore follows that

585 =3%(4*+7%) = (3-4)* + (3-7)* =122 + 21%.

Remark. We were ‘lucky’ that we could easily spot that squares for 5 and 13 respectively in the
example. What should we do if numbers are much bigger? Note that a positive integer 7 will NOT
be a sum of squares if there is a prime congruent to 3 mod 4 that divides the square-free pare. So
if we know that no prime factor of the square-free part of 7 is congruent to 3 mod 4 (the theorem
ascertains that 7 is a sum of squares), what we need to do is to write all prime factors congruent to
1 mod 4 (the only prime congruent to 2 mod 4 is 2 and it is 12 4 12, while there is no prime con-
gruent to 0 mod 4) as sums of two squares, for which we may make appeal to Hermite's algorichm,
and use the product formula in the proof of the theorem.

Theorem 58 (Legendre & Gauss) Every positive integer can be written as a sum of three squares
(of integers) except for those of the form 4"(8z + 1) for r,z > 0.

Theorem 59 (Lagrange) Every positive integer can be written as a sum of four squares (of in-
tegers).

Proof (NON-EXAMINABLE). I learned the proof from A. Baker; it illustrates Fermat's ‘infinite
descent argument’.

Firstly, by the formal identity

@+ +224+w?) (S + 2 +u?+0%) = (x5 +yt+z2u+ wo)? + (at — ys + wu — z2v)?
4+ (au—zs+yv — wt)® + (xv — ws + =t — yu)?

that the product of two sums of four squares is again a sum of four squares. Therefore the the-
orem follows if we can prove that every prime number is a sum of four squares. In fact, since
2 =12+ 12 + 02 + 02, it suffice to prove it for an odd prime number.

Consider the set ]
X:{x2|ogng’7}.

The elements in the set are NOT congruent to each other mod p. Indeed, if's? = > mod p where

0<s,t< ? , then p would divide s — 12 = (s + 1) (s — 1); however, since 0 < s +1 < p — 1
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—1
and —PT <s—t< 4 , it is evident that p does not divide s 4+ £ nor s — ¢.

Similarly, the elements of the set
—1
Y= {-1-plo<y< )

are NOT congruent to each other neither (this can be proved similarly). Each of these two sets

contain 1 + elements and therefore | X| 4 | Y] = p + 1 elements in total. Therefore if we

consider their residues mod p, there exists at least one pair of elements (x,y) € (X, Y) whose
resides mod p coincide (the pigenhole principle), i.c.,

2t = —1—y?
1 o P P
mod p. Furthermore, since & < 3 andy < 2

2
0<x2+y2+1<2<‘§) 1<t
We may therefore let 2% 4+ y* + 1 = kp for some 0 < k < p.
We now define £ to be the least positive integer such that pf = s* + 1* + u® + v* for some

s,t,u,v € Z—we may and will find the smallest positive integer of the form s? + 2 + u?® + v? that
is divisible by p, and £ is simply its quotient by p.

Let s, £,u, v be a set of integers satisfying pf = s* + 1% 4+ u? + v

This follows by definition.

Suppose that £ is even. Then s* + 1> + u? + v? is even, hence either 0, 2, or 4 of

{s,t,u, v} are even. If at least two of them are even, we may relabel them if necessary to assume
that s and t are even. In this case, s+, s —t,u+ v, u — v are indeed all even! In fact, even if's, ¢, u, v
are all odd, s +t,5 — t,u + v and u — v are all even. Granted,

s+t 2+ s—1 2+ u-+v 2+ u—0 2_s2+t2+u2+v2_ EGN
2 2 2 2 B 2 — 73

contradicting the minimality of £. Therefore £ is odd.

It remains to establish that , To this end, suppose that £ > 1. Let § denote the residue

of s by £, i.e., the unique integer 0 <5 < ¢ — 1 congruent to §; in fact, it is possible to choose §
l L
such that 0 <5 < 3 (since £ is odd, 5 = 3 cannot hold). Similarly define 7, %, 7, and let
N =3+ +u*+7°
¢ divides N | Since ¢ divides s2 + 12 + u® + v, it follows that 5% 4+ ° + @2 + 92 is congruent
to 0 mod /.
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IfN=0thens=t=u=7=0,1ie., {dividess,t,u and v. It would then follow
that 2 divides s?, 2,4 and v* and consequently it divides s* 4+ 2 4+ «* + v*. As the latter is £p,
this would mean that ¢ divides p but by definition £ < p and this cannot possibly happen.

AN
N<4(§) — ¢

and therefore N = 7 for some integer 0 < 7 < £. By the formal identity, the product (r¢)(pf) of
=4+ + +7 andpl =+ 12 +u? + 02 is again a sum of four squares. As the product
is divisible by £2, it is easy to see that each of the four squares is in fact divisible by £2. Dividing

It follows that

through by £2) we then see that 7p is a sum of four squares, but this contradicts the minimality of
(.0
9 Algebraic number theory
Definition. Let a be a complex number.
+ a is an algebraic number if there is a non-zero polynomial f(z) € Qx| such that f(a) = 0;

+ a is an algebraic integer if there is a non-zero monic polynomial f () € Zx] such that f(a) =

0.

« a is a transcendental number if it is NOT an algebraic number.

By a monic polynomial f(x), it means that the coefhicient of the highest power (=degree of f)
of z is exactly 1.

Remark. By definition, an algebraic integer is an algebraic number.

Example. A rational number is an algebraic number. A rational number r € QQ is a root of the
monic polynomial x — r € Q[z]. Similarly, an integer is an algebraic integer.

Example. a = V2 is an algebraic integer. It is a root of the polynomial 22 — 2 which is monic
and has coefficients in Z.

1

Example. a = —— is an algebraic number. Is this an algebraic integer? If @ = ——, then
P V2 & & 8 NG
1 . 1 .
o = o hence a is a root of the polynomial x* — 3 € Q[x] monic but not not all coefficients are

in Z; alternatively, we may think of @ as a root of the polynomial 22? — 1 with integer coefhicients
but it is not monic. It seems likely a is not an algebraic integer (the argument above is not good
enough to conclude a is not an algebraic integer— we have not eliminated the possibility that there
might be a strange monic polynomial with integer coefhicients with a its root.

Example. 7 is a transcendental number, i.e., not an algebraic number. This is a theorem of
Lindermann about 150 years ago. ‘Transcendental number theory’ is what A. Baker got a Fields

medal (1970) for.
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Proposition 60. A rational number is an algebraic integer if and only if it is an integer.
Proof. It suffices to prove that if a rational number r = " with ged(s, ) = 1, is an algebraic

number, thenr € Z,ie..t = 1.
By definition, 7 satisfies

"4 ey 4 e+ ¢ = 0.

Substituting 7 = ; and subsequently multiplying by ¢", we obtain

Sy T st " = 0.

[fwe write s" = —(c,_18" 't + - -+ cyst" 1 + ct"), one sees that ¢ divides the RHS and there-
fore also divides the LHS, s".

Suppose that £ > 1 (the goal is to deduce a contradiction). Let p be a prime factor of ¢ (which
exists because ¢ > 1). Since ¢ divides §”, the prime factor p divides s” and it follows from Lemma 4
that p divides s. However, since p divides ¢, it follows that p|ged(s, £). But ged(s, ) = 1 and this is

a contradiction. OJ

Definition. Let a be an algebraic number. The minimal polynomial of @ is the non-zero, monic

polynomial f(x) € Q[x] of smallest possible degree, such that f(a) =

Remark. What do we know about the minimal polynomial f of an algebraic number a?

The minimal polynomial exists.

If g(x) is a polynomial in Q[z] such that g(a) = 0, then f necessarily divides g; indeed by
‘division algorithm’, there exist ¢ and 7 in Q[z] such that g = ¢f + r with degr < degf, and it
follows from g(a) = 0 = f(a) that r(a) = 0, contradicting the minimality of degree of /!

On the other hand, f should be irreducible—it can not be factorised as a product of polynomials
in Q[z] of smaller degrees. Indeed, if it was not irreducible (i.e. reducible) in Q[z], then it would
contradict the minimality of the degree of f.

How do these all add up to explain the existence of f?

Since a is algebraic, there is a polynomial f (x) = ¢,a" + ¢, 12" '+ - - + 12+ ¢o € Q|z] such

that ¢, is non-zero and f(a) = 0. Then —f € Qla] is a such monic polynomial. So the minimal

polynomial is an irreducible factor/dlvmor of the ‘defining’ polynomial of which a is a root, but
it is not always easy to spot one!

1 1
Example. The minimal polynomial of ¢ = — is  —

NG 2

Example. The minimal polynomial of @ € Qisx — a.

Example. What about the minimal polynomial of @ = /27 Tt is casy to check that a satisfies
a® — 2. In order for us to claim that it is indeed minimal for a, we need to know that 23 — 2

irreducible in Q|z].
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(NON-EXAMINABLE) A slick way of saying that, there is a minimal polynomial for an al-
gebraic number, is that the ring Q[z] of polynomials with rational coeflicients is a UFD (Unique
Factorisation Domain), hence a PID (Principal Integral Domain))— we can run Euclid’s algorithm

: : : _ - - ™. 2w
with polynomials with rational coefficients. For example, a 11-th root of unity cos — + i sin —

11 11
is, by definition, a root of the polynomial '* — 1 but

= 1l=@—- )@Y +2° +28+2" +al 25t 1)
suggests that 2O+ 2+ 3+ P+t P+ + lisa good candidate for a

minimal polynomial. How do we know that it is irreducible?

the minimal polynomial is unique. Indeed, if f and g were two distinct monic
polynomials of a, then @ would be aroot of & = f —g with degh < degf = degg. This contradicts
the minimality of the degree of f (and g)- the key point is that the minimal polynomial is monic!

Theorem 61 (Gauss’s lemma) The algebraic number a is an algebraic integer if and only if its

minimal polynomial has integer coefhicients.

1
Example. Indeed, we can make appeal to Gauss’s lemma to establish that @ = — is NOT an

V2

algebraic integer. As we saw carlier, a is a root of the polynomial o 5 By Gauss’ lemma, we are

1

ome if we show thart this is the minimal polynomial of a. In fact, since x° — = is monic, it suffices
home if we show that this is th I polynomial of . In fact, "3 it suffi

1
to show that there is no monic polynomial of degree < deg(x? — 5) = 2 of which a is a root. But

if a is a root of a degree 1 polynomial with rational coefhicient, then a should be a rational number.

9.1 Irreducible polynomials over the rationals

I would call the following Gauss’ lemma.

Theorem. Let f be a polynomial in Zz] and suppose that it is monic. Suppose furthermore

that there exist g, & in Q[z] such that degg < degf, degh < degf, and

| = gh.
Then there exist g, &’ € Z[z] such that g’ (resp. h') is a Q-multiple of g (resp. &) and
f=gl

I f is a polynomial in Z[x], then

/ is reducible in Z[zx] = f is reducible in Q[z]

This is equivalent to the statement that

[ is irreducible in Q[x] = f is irreducible in Z[x]
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Gauss’s lemma proves the (non-trivial) converse, assuming that f is monic. In other words, if f
is a monic polynomial in Z[x],

[ isirreducible in Z[zx] = f is irreducible in Q[z]

Just because it is not possible to factorise f in Z[x| does not necessarily mean that it is not
possible in Q[x], but Gauss’ lemma asserts this is indeed the case. It asserts equivalently (assuming
f is a polynomial in Z[x] and, in particular, monic) if f is reducible in Q[x], then it is reducible in
Zlx].

A non-monic polynomial which is irreducible in Z[x] but not irreducible in Q[x] (a comple-
ment to Gauss’ lemma) is, for example, 62% — 5z + 1. This is evidently irreducible in Z[x] but i

factors as 6(x — %)(x — %) in Qlz].

(NON-EXAMINABLE) We will not prove this lemma but we use it to prove Theorem.

Firstly, we show that if the minimal polynomial (in Q[x]) of @ is an element of Z[z], then a
is an algebraic number. This follows by definition, as if @ is an algebraic number and its minimal
polynomial has integer coefhicients, then a is an algebraic integer.

Conversely, we show if @ is an algebraic integer, then the minimal polynomial of a is an element
of Z[x]. Suppose that a is an algebraic integer. Let g be its minimal polynomial— we know that it
is an element of Q[x] but the goal is to show that it is indeed an element of Z[z]. By assumption,
there exists a monic polynomial f in Z[z] such that f(a) = 0. Secing it as an element of Q[z], it
follows that g divides f. To establish the divisibility, suppose that f = gg + r with degr < degg.
[ 7 is non-zero, then it follows from f(a) = 0 that r(a) = 0, contradicting the minimality of g
(you have seen this argument before!).

If degf = degg, then, while it is in theory possible that f differs from g by a non-zero scalar
in Q, both f and g are monic and therefore f = g. In particular f is an element of Z[x].

Suppose that degf > degg. In this case, there exists £ € Q[x] such that degh < degf and
/= gh. Since f and g is monic, so is o. On the other hand, it follows from the second Gauss’ lemma
that there exist g, &’ in Z[z] which differ from g and £ by scalars respectively such that f = g'h’.

1
If we let g’ = ¢g, then &’ should be of the form —A and this cannot possibly be an element of Z[x]

c
(for example, the coeflicient of the top degree term in A" is 1/¢) unless ¢ = £1. This means that
g € Zlx|.

It is, hopetully, clear by now that it is important to know whether a polynomial in Q[z] is
irreducible or not. Knowingly, there are two ways of deciding the irreducibility of a polynomial in
Z[x| (if one is lucky).

Let

f=f@)=a"+c, 12" " 4@+ ¢y € Zf7]

be a monic polynomial with integer coefhicients. We will know that f is irreducible in Z[z] (hence
it is irreducible in Q[z] by Gauss) if we can

e find a prime number p such that if we letf = 2" 4 [eu 1)@ 4 -+ [e1]pr + [co], € Fyla],
thenf is irreducible in F,[x];

e find a prime number p such that p divides all ¢; but p? does not divide co; if this holds, we
say that f is Eisenstein at p.
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The former is useful because it reduces our search for factors to finitely many computations.
The latter is often called Eisenstein criterion. These are not sufhicient conditions, i.e. failure to spot

a such p does not mean that f is NOT irreducible in Qx].

Example. We may reverse-engineer the first criterion and work out all irreducible polynomials
in Zs|x| first.

Degree : xande +1 =2 — 1.

Degree 2: 2% 4+ & + 1. To see this, we firstly observe that the monic polynomials in Zs[x] of
degree 2 are 22+, o+ 1,22 2% +1; we may then eliminate the reducible ones.

Degree 3: 22 +x+1and2® +a2+1. To see this, we remove from the list of 8 monic polynomials
in Zs|z] of degree 3 all reducible polynomials which are necessarily of the form

e cither (irreducible of degree 1) X (irreducible of degree 2)
e or (irreducible of degree 1) x (irreducible of degree 1) X (irreducible of degree 1).

(NON-EXAMINABLE) We may ‘inductively’ complete a list of all monic irreducible polyno-
mials in F, [z] of degree n as follows. Firstly, we list all p” monic polynomials in F[x] of degree n.
For every partition ny +ng + - - - +m, = n of n by positive integers, we consider all polynomials of
the form (irreducible of degree ny) x - -+ x (irreducible of degree n;) using the list of degree < n
and remove them from the list. We repeat the process for all possible partitions as above and what
remains is the list of irreducible polynomials of degree n. Can you compute how many irreducibles
in the list? Indeed, the number of monic irreducible polynomials of degree n in IFy[] is computed

(3

where d ranges over all integers in [1,7] dividing 7 and g is the Mdbius function defined for a

by

positive integer 2 as

1 ifzis square-free with even number of prime factors,
pu(z) = ¢ —1 ifzissquare-free with odd number of prime factors,
0 ifzis not square-free, i.c. has a squared prime factor.

In fact, p is related to primitive integers earlier!

Anyway, 22 + 2 + 1 is irreducible in Fofz]. Any f € Z[x] such that f = % 4+ + 1 in Fala] is
irreducible. For example, a® + 2+ 1,23 + 3z + 1,23 + 3z + 3,23 + 2 + 3, .. . (there are of course
infinitely many such polynomials in Z[x]).

Example. Let f(x) = 2® — 2. Then

o / =% is reducible in Fylz].
° ]7 =22 4+1= (x+ 1)(x2 — 2+ 1) is reducible in F3x].
o /= (x—3)(x?+ 3z +9) is reducible in Fsfz].

° ]7 is irreducible in F7[z]. To see this, we argue as follows. IF]T was reducible in Fr[x], then it

would factor as (irreducible of degree 1) X (irreducible of degree 2) or (irreducible of degree 1) x
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(irreducible of degree 1) x (irreducible of degree 1). In either case, f would have a linear
factor i.e. x — a for some a in F7. In other words, it would be the case that f(a) = 0 for
some a in [F7. However,

a |01 23456
f(@)][5 6 6 4

hence no a in F7 would be a root of f(x)! This is a contradiction.

Remark. Just because it is not possible to find p such that f € F,[x] is irreducible does NOT
mean that / is not irreducible! For example, let f(x) = x* — 102? + 1. It turns out (check it if you
arc interested!) thatf € F,[z] is reducible for any prime p, but f itselfis actually irreducible in Z[z]!

Example. X® — 2 is Eisenstein at 2. In fact, 2" = 2, for any n > 2, is Eisenstein at 2. It
therefore follows that 2" — 2 is irreducible in Zlx].

One can reverse-engineer and come up with Eisenstein polynomials at p (i.c. monic irreducible
polynomials) in Q[z] rather easily. This was important in the development of algebraic number
theory.

Example. 22 + 6210 — 92* + 75 is Eisenstein at 3.

(NON-EXAMINABLE until the end of the section) Let us prove the legitimacy of the two ir-
reducible criteria.

Proposition. (Reduction-mod-p-criterion). Let f be a monic polynomial in Z[z]. Iff € F,[z]
is irreducible, then f is irreducible in Z[z].

Proof. Suppose that f is reducible in Z[x] and there exist g, & in Z[x] such that degg < deff,
degh < degf and f = gh. Since f is monic, the top degree terms in g and & have coefficients both
1 or both —1. We may therefore assume WLOG that g and £ are monic. Since f = gh, we have
/T = §/_1 in Fy[x]. However, since]7 is assumed to be irreducible, either (degg, deg /_1) = (0, degf)
or (degg, degh) = (degf,0) holds. Since g and A are monic, this implics cither degh = degf or
degg = degh contradicting assumptions on g and A. [J

Proposition. (Eisenstein criterion). Let f be a monic polynomial in Z[z]. If f is Eisenstein at

P, then f is irreducible in Z[z].

Proof. Suppose that f is reducible in Z[x| and there exist g, & in Z[x] such that degg < deff,
degh < degf and f = gh. Since f is monic, we may assume that g and & are monic. If we let
f=a"+c 12" '+ -+ e+ o, then f = 2 and therefore 2" = gh in [F,[z]. Since g and h are
still monic in F, [x], we see that @ = 2" and h = ' for some integers 7 and s satisfying r + s = n.
From this, it follows that g should be of the form

g=a +ca(g)d "+ +alg)r+eolg)
where p divides all ¢;(g), while & is of the form
h=2a"+c (M) + -+ ci(h)x + co(h)
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where p divides all ¢j(h). However, co = ¢o(g)co(h) and the RHS is divisible by p?. This contradicts
f being Eisenstein at p. O

Both irreducibility criteria can be genera]ised slight]y where it is no longer necessary to assume
f is monic from the outset. Let f = ¢,&" + - - - c12 + ¢ be a polynomial in Z[z] and assume ¢, is
non-zero (i.c. f is of degree n).

e Suppose that ¢, is not divisible by p (e.g. ¢, = 1, i.e. f is monic). Then if f is irreducible in
F,[x], then f is irreducible in Z[x].

e Suppose that p { ¢,. Iff is Eisenstein at p, i.e. pl¢j for everyj but p? { ¢, thenf is irreducible.

The proofs in the monic case hold almost verbatim— we just have to multiplyj7 by the inverse
of ¢, that exists by assumption. In both cases, to deduce the irreducibility of f in Q[z] from that
of Z[x], it is necessary to have Gauss’ lemma that works for non-monic polynomial. We conclude
this section by stating a generalised Gauss.

Definition. A polynomial f = ¢,@" + ¢,_1@" ' + -+ + ¢1 + ¢o € Z[x] is said to be primitive
if ged(co, €1,y ..., 00) = 1,

Example. A monic polynomial is primitive.

Theorem. Let f € Zz] be a primitive polynomial. Suppose that there exist g, 2 in Q[x] such
that degg < degf, degh < degf, and

/=gh
Then there exist g, &’ € Z[z] such that g’ (resp. &') is a Q-multiple of g (resp. &) and
f=gl

9.2 Quadratic number fields

Let a be an algebraic number. By definition, there exists a non-trivial polynomial with coefficients
in Q of which a is a root. As an irreducible factor of this polynomial, there exists a minimal poly-
nomial f in Q[z] of degree, say n.

Definition. Let Q(a) C C denote the smallest field extension of QQ containing a.

By definition, Q(a) is a field and therefore closed under addition and multiplication. It con-

tains, for example, elements such as 2a, 3a, ... and a?,a®,... (or any sum/multiple of these ele-
ments!). As a vector space over Q, the field Q(a) is generated by the linearly independent elements
1,a,...,a" L.

This is an example of a number field. Algebraic number theory was (initially) defined as the
study of properties/structure of number fields.

In theory, one can keep adding algebraic numbers: let Q denote the field extension of Q con-
taining all algebraic numbers. Understanding @ is one of the goals of modern number theory (e.g.
the Langlands program).

In what follows, we consider the case when n = 2.
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Definition. An integer d is a square-free if p is a prime that divides d, then p? does not divide
d. Evidently, V/d is not a rational number.

Definition. Let @(\/E) denote the smallest field extension of Q that contains vVd & Q. More

concretely,
Q) = {s + V5,1 € Q)
and it is a field with respect to addition:
(s4+tVd)+ (5 +Vd) = (s+5) + (t + )Vd € Q(Vd)
and multiplication
(s 4+ tVd)(s' + V) = (s + dit') + (st' +5'1)Vd € Q(Vd);

if s + tv/d is a non-zero element 0?@(\/3) and, in particular if ¢ is non-zero, then it has mulciplic-

ative inverse: s ;
~ 5= VdeQWd)

2 —di2 s?

[note that the denominator s> —dt? is never zero because of the assumption thatd is square-frec!]

Definition. Let d be a square-free integer. The set of elements a in Q(\/(Y) which are algebraic
integers defines a ring. The ring is called the ring of integers of Q(V/d).

Proposition 62 Let d be a square-free integer. Then the ring of integers of Q(V/d) is

« ZIVd] = {s+ tVd|s,t € Z} ifd = 2,3 mod 4,

1+ vd L+ Vd ¥
2

2

- Z

= {5+t 4 € Z}ifd =1mod 4.

Proof (NON-EXAMINABLE). Let a be an element s+iv/d of@[\/c_i]. [t is aroot of the polynomial
2% — 2z + (s* — di?).
For a to be an algebraic integer in Q[\/c_i], the coefficients 25 and s* — di? both need to be integers.

These conditions boil down to both s and ¢ being integers if d = 2 or 3 mod 4, or (s, ) being of

!/ /
the form (s + =, =) for some integers s', ¢/ if d = 1 mod 4. In the latter case,

279
14+ Vd
o

.
s+t\/2:(s’+§)+§\/ﬁzs’+t’

To elaborate more on ‘These conditions boil down to...’, we ask the following question: amongst

the elements in Q(\/E), which a’s are roots of the monic polynomial in Z-coefhicients? The ques-
tion boils down to the following question:

find the set 3 of all pairs (s,7) € Q x Q satisfying 25 € Z and s*> — di* € Z simultancously.

[t curns out that
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- itfd =2 ord = 3 mod 4, then
Y={(,0) eQxQ|s€Z,teZ}
and therefore the ring of integers in Q(V/d) is
{s +1Vd|(s,0) € Q} = Z[Vd],

« itd = 1 mod 4, then

'
Z:{(s,t):(s'+§,§) eEQxQ|s ezt e}

and therefore the ring of integers in Q(\/c_i) is

"+ 1 d 1 d
{s ;t +t§\/3|s',t'€Z} = {s’+t’+T\/_|s’,t'€Z} =: 7| +2\/—]

Suppose ’ d=2mod4 ‘ or ’ d=3mod4 ‘ The inclusion
Yo{(,0)eQxQ|seZ,teZ}

is clear. To prove

YC{(st) eQxQ|seZ,t €L},

we argue as follows. Let 25 = r € Z— we only know that s € Q. One of the goals is to prove that
2|r, in order for us to conclude s € Z. As

r? — 4dt?
=—2cZ
4 )
it follows that 2 — 4di* € 47Z. We deduce from this that, while we do not know if ¢ € Z yer,

s — dt?

u .
we do know that 1 = 2 for some u € Z. To see this, we argue as follows. Since 7% — 4dt? is, in
particular, an integer and 7% is an integer, 4di* = d(2t)? is an integer. It suffices to show that 27 is
a .
an integer. As 2t is a rational, we may write 2¢ as — for a pair of integers @, b such that gcd(a, b) = 1
& y b p 8 ) g )

and b is non-zero; the goal is to show that & = 1. Suppose that & > 1. In this case, there exists
2

a prime number p that divides b. Since 3 is an integer, it therefore follows that p? divides da*.
However, since ged(a, b) = 1, it follows that p? divides d. This contradicts the assumption that d
isa square—ﬁee integer.

Substitute ¢ = = back into the equation above, we have

r? —du® € 47.
Recall that
zmod 4 | 22 mod 4
1 1
2 0
3 1
4 0
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We prove . Suppose 2 = 1 mod 4. Then du?® = 2 (resp. du? = 3) mod 4 if

d = 2 (resp. d = 3). It follows from r? —du? € 47 thacr®> = 2 (resp. r?2 = 3) mod 4. According
to the table, this is not possible.

This follows immediately from r2 —du® € 47, and du?® = 0 mod 4 from above.

According to the table, 7 = 1 mod 4 implies 7 = 0 or = 2 mod 4. In either case, 2|r. Similarly

for u.

The case for d = 1 is similar but slightly harder. Suppose |d = 1 mod 4| We show the follow-

ing two sets are equal:
Y={(a,) €eQxQla+BEZa—-BeZ}

On the other hand, the equality

/ /

{(a,B)E@x@|a+B€Z,a—BEZ}:{(s’+%,%)e@x@|s’€Z,t’€Z}

't
holds by relating (a — B,a + B) to (', s 4+ t), or equivalently relating (a, B) to (5" + o 5)

It therefore remains to check the equality £ = {(a,8) €e Q x Q|a+ B € Z,a — B € Z}.

The inclusion
Y2{(a,) eQxQla+BEZ,a—BEZ}

is easy. To prove the inclusion
YC{(a,B) €eQxQ|la+BEZ,a—BEZ},
we argue as in the first case. We let 2s = r € Z,
r?—di* € 47

. . u .
forces t to be of the form ¢t = 3 for some u € Z. We then have

r? — du® € 47.

Asd = 1 mod 4 this time, 7 = 1 mod 4 if and only if #* = 1 mod 4. According to the

table, this implies that 2|(r — «) and 2|(r 4+ u). We then observe that a — B = r ; Y e Zand
r+u

a+pB= € Z as desired. OJ

9.3  Units in the ring of integers in Q(\/E)

Definition. Let R be a ring. An element 7 in R is said to be a unit if there exists s in R such that
rs = 1.
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Example. The units in Z are £1. If 7 and s are integers such that 7s = 1, the only possibilities
for (r,s) are (1,1) or (—1,—1).

Example. £1,4++/—1 are units in Z[v/—1]. This is because 1 - 1 = 1, (—1) - (—=1) = 1,
vV—1-(—=+/—1) = 1. Indeed, they are the units in Z[v/—1] (to be explained shortly).

Remark. It might be useful for us to understand what units in R = Z[\Vd] look like. Let
r=s+t/dand R = S+ TVd wheres,t, S, T € Z. The condition 7R = 1 would then imply
that (1) sS+tTd =1and 2) tS+sT = 0. It follows from (1) X s — (2) X td that 5(82 — dt2) =35
and from (1) X £ — (2) x s that T(32 — dt2) = 1. To sum up,

S+ TVd= - YV

s2 —dr? * 52 — di?

. t .
and therefore both 3 —sdt2 and o should be integers. In fact, s* — di? should be 1 or —1

because of this. See the forthcoming proposition it is, of course, possible to prove this directly].

Definition. Given a = s + tV/d € Q(V/d), let
a=s—1Vd e QW)

and we call it the conjugate of a.
Lemma 65. Let d be a square-free integer and a, 8 € Q(V/d).

- a=Bifandonlyifa = B.
ca@g € Zifa=s+1V/d € Z|Vd].
- af=ap

Proof. This is straightforward. O

Proposition 66 Suppose that d is a square-free integer and d = 2,3 mod 4 (hence the ring of
integers in Q(Vd) is Z[V/d]). An integer a = r + sv/d € Z[V/d] is a unit if and only if |aa| = 1,
or equivalently,

s —di* = +1,

i.e., (s,2) is a solution of Pell's equation x? — dy* = +1.

1 d
Remark(NON-EXAMINABLE). Whend = 1mod 4, the ring of integers in Q(v/d) is Z +Vd

2
1 d R R 1 d 3
+2\/_] is of the of formr = s + ¢ +2\/_ —§ +¢'Vd where s = s+ 7=

t .
€cQandt = 3 € Q. Analogous to the argument in the previous remark, it follows from

1+2¢E:S,+T,\/c—iez[1+2\/3

I

An element in Z]
25 +1
2

rR=1tor R=S+T

| that

s t s t1+Vd
"+ T'Vd = d==+ -
S+ T'Vd S’Q—dt’2+s’2—dt’2\/_ u+u 2 7
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2 € 7 (sinced = 1 implies e 7).

1
where u = 4_1((23 + 1) —dt*) = 5 + st +

t .
Demanding 3 € Z and — € Z simultancously is equivalent to # = =£1 [if not, there would be a

u u
prime p > 1 that divides #. And any power of p would then divide s and ¢, which is evidently a
contradiction] which is markedly different from what we get when d = 2 or 3 mod 4. Note that
u = +1 is equivalent to (25 + 1)? — dt* = +4.

Proof. Suppose that a = s + wd G_Z[\/E] is a unit. Then there exists 8 € Z[V/d] such that
aB = 1. By the first part of Lemma 65, aB = 1 = 1. It follows from the third part of Lemma 65

then that o B
1 = (a)(aB) = af.

From the second part of Lemma 65, B8 € Z and a@ = s* — dt? € Z and the equality in fact claims
that a@ = r? —ds? is a unit in Z. Since the units in Z are 1, we then conclude that 72 —ds? = +1.

Conversely, suppose that 72 — ds? = £1. Then (a@)? = (r* — ds*)? = 1. In other words,
a(aaa) =1,

which says that a is a unit in Z[V/d]. O

Example. The units in Z[/—1] are £1, £1/—1. By Proposition 66, the units in Z[y/—1] are
s + 11/—1 such that s + 12 = 1 for integers s and . The only possible pairs (s, ) are (£1,0) and
(0,+£1).

Example. Z[\/g] has infinitely many units. Indeed, the units in Z[\/g] are of the form (2—1—\/§)"
for n in N. Since we know that the fundamental solution to the Pell’s equation 22 — 3y* = +1
is (s5,¢) = (2,1) and Theorem 51 asserts that every positive integer solution (v,, w,) is given by

v, + w,Vd = (s + 1v/3)". Can you find more?

-3
| are {s—i—tT |52—i—st—|—t2 =

1}. To solve the equation s* + st 4+ > = 1 in s, t € Z, we firstly make appeal to the quadratic for-

1\ —4(P=1) —t+V-33+4
2

Example(NON-EXAMINABLE). The units in Z]

1++v/-3 1++/-3
2

mula :md see that S = =

2

. For s to be an integer, there

are two cases to follow:

In this case, —3t? + 4 should be of the form (2a)? for some a@ € Z. It then follows
from the equation (2a)2 + 312 = 4 that 2 = 0 (as £ is meant to be an even integer) and therefore
+v4
2

that =3t +4 =4 and s = = 41 as a result.

In this case, —3t% + 4 is should be of the form (2a + 1)? for some a € Z. It then

follows form the equation (2a + 1)% 4 3¢% = 4 that > = 1 (as ¢ is meant to be an odd integer), i.c.

—1+1
2

t=%1.1ft =1, then =3t +4=1lands =

1++v1
2

=0orl;ift = —1, thenm =3t +4 =1

=1or0.

and s =
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In conclusion, the units in Z]

14+ /- —
+T3] are elements of the form s + tT where (s,1)
is (1,0), (=1,0),(0,1),(=1,1),(1,—1) or (0, —1).

The following theorem proves the structure of solutions of Pell’s equation % — dy* = +1.

Theorem 67 (Dirichlet’s unit theorem for a real quadratic field; NON-EXAMINABLE) Let d
be a square-free positive integer congruent to 2 or 3 mod 4. The group of units in the ring Z[\/g]
of integers of Z[V/d] is isomorphic to
{£1} x Z.

This is a distilled form of what Dirichlet actually proved for F in 1846 (apparently, P. G. L.

Dirichlet came up with a proof during a concert in the Sistine Chapel in Rome).

Theorem 68 (Dirichlet’s unit theorem for a number field; NON-EXAMINABLE) Let F be a
number field. Let rg (resp. 2r¢) be the number |[Homg(F, R)| (resp. |[Homg(F, C)|) of real em-
beddings (of pairs of complex conjugate embeddings). The group of units in F is finitely generated
by r = rg + rc — 1 generators of infinite order, i.e., the group of units in F is isomorphic to

wxZ
where g1 is the finite cyclic group of roots of unity.

Remark. If 7g > 0, then g = {£1} as 1 are the only roots of unity in R. Even if rg = 0, we
still have g = {£1}; for example Z[v/—1] has units {£1, £v/—1}.

Remark. The unit group is finite if and only if 7 = 0, ic., (rg,7¢c) = (1,0) or (0,1), i,
F =Qor Q(\/g) with d < 0. When d is a negative square-free integer, the group of units in
the ring of integers of Q(v/d) is {£1} except whend = —1 in which case it is {21, 4v/—1} and
1+ \/—_3]

2

when d = —3 and there are 6 units in Z|
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