1. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .2.61.pg

Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Select the best statement.

- A. span{ u_1, u_2, u_3 } = span{ u_1, u_2, u_3, u_4 }.
- B. There is no obvious relationship between span{u₁, u₂, u₃} and span{u₁, u₂, u₃, u₄}.
- C. We only know that $\text{span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \subseteq \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$.
- D. span{u₁, u₂, u₃} = span{u₁, u₂, u₃, u₄} when u₄ is a scalar multiple of one of {u₁, u₂, u₃}.
- E. none of the above

2. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2
.3.50.pg

Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Select the best statement.

- A. {**u**₁, **u**₂, **u**₃, **u**₄} is a linearly dependent set of vectors unless one of {**u**₁, **u**₂, **u**₃} is the zero vector.
- B. {**u**₁, **u**₂, **u**₃, **u**₄} is never a linearly dependent set of vectors.
- C. {**u**₁, **u**₂, **u**₃, **u**₄} could be a linearly dependent or linearly dependent set of vectors depending on the vectors chosen.
- D. {**u**₁, **u**₂, **u**₃, **u**₄} is always a linearly dependent set of vectors.
- E. {**u**₁, **u**₂, **u**₃, **u**₄} could be a linearly dependent or linearly dependent set of vectors depending on the vector space chosen.
- F. none of the above

3. (1 point) Library/TCNJ/TCNJ_LinearIndependence/problem1.pg Suppose $S = \{r, u, d\}$ is a set of linearly independent vectors.

If x = 2r + 2u + 5d, determine whether $T = \{r, u, x\}$ is a linearly independent set.

? 1. Is T linearly independent or dependent?

If T is dependent, enter a non-trivial linear relation below. Otherwise, enter 0's for the coefficients.

 $\underline{\qquad} r+\underline{\qquad} u+\underline{\qquad} x=0.$

4. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2
.3.47.pg

Let $\{u_1, u_2, u_3, u_4\}$ be a linearly independent set of vectors. Select the best statement.

- A. {**u**₁, **u**₂, **u**₃} could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- B. {**u**₁, **u**₂, **u**₃} is never a linearly independent set of vectors.
- C. {**u**₁, **u**₂, **u**₃} is always a linearly independent set of vectors.
- D. none of the above

5. (1 point) Library/Rochester/setLinearAlgebra8VectorSpaces/u
r_la_8_5.pg

Find the dimensions of the following linear spaces. (a) $\mathbb{R}^{6\times 2}$

$$(a) \mathbb{R}$$

- (b) *P*₄ ____
- (c) The space of all diagonal 3×3 matrices _____

6. (1 point) Library/Rochester/setLinearAlgebra10Bases/ur_la_1
0_34.pg

The set

$$B = \left\{ \left[\begin{array}{cc} -1 & -2 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & -1 \\ 0 & -2 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right] \right\}$$

is a basis of the space of upper-triangular 2×2 matrices.

Find the coordinates of $M = \begin{bmatrix} -7 & -3 \\ 0 & -8 \end{bmatrix}$ with respect to this basis.

$$[M]_B = \left[\begin{array}{c} ---\\ ---\\ --- \end{array} \right]$$

7. (1 point) Library/Rochester/setLinearAlgebra15TransfOfLinSp aces/ur_la_15_1.pg

Which of the following transformations are linear? Select all of the linear transformations. There may be more than one correct answer. Be sure you can justify your answers.

• A.
$$T(A) = \begin{bmatrix} 4 & 3 \\ -2 & 6 \end{bmatrix} A$$
 from $\mathbb{R}^{2 \times 4}$ to $\mathbb{R}^{2 \times 4}$
• B. $T(A) = A^T$ from $\mathbb{R}^{4 \times 6}$ to $\mathbb{R}^{6 \times 4}$

- C. $T(A) = A \begin{bmatrix} 2 & -5 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 6 & 8 \end{bmatrix} A$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$
- D. $T(A) = \det(A)$ from $\mathbb{R}^{6 \times 6}$ to \mathbb{R}

• E.
$$T(A) = A \begin{bmatrix} -7 & 1 \\ 4 & 9 \end{bmatrix}$$
 from \mathbb{R} to $\mathbb{R}^{2 \times 2}$

• F. $T(A) = A + I_4$ from $\mathbb{R}^{4 \times 4}$ to $\mathbb{R}^{4 \times 4}$

8. (1 point) Library/Hope/Multi1/04-01-Linear-transformations/ Lin_trans_05.pg

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(\langle x, y \rangle) = 4x - 6y + 2$. Is f a linear transformation?

- (1) $f(\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle) =$ ______. (Enter $x_1 \text{ as } x_1, \text{ etc.}$) $f(\langle x_1, y_1 \rangle) + f(\langle x_2, y_2 \rangle) =$ ______ + ____. Does $f(\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle) = f(\langle x_1, y_1 \rangle) + f(\langle x_2, y_2 \rangle)$ for all $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in \mathbb{R}^2$?
- choose
- Yes, they are equal
- No, they are not equal

(2)
$$f(c\langle x, y \rangle) =$$
_____.
 $c(f(\langle x, y \rangle)) =$ ____(_____).
Does $f(c\langle x, y \rangle) = c(f(\langle x, y \rangle))$ for all $c \in \mathbb{R}$ and all $\langle x, y \rangle \in \mathbb{R}^2$?

- choose
- Yes, they are equal
- No, they are not equal

(3) Is f a linear transformation?

- choose
- f is a linear transformation
- f is not a linear transformation

9. (1 point) Library/Rochester/setLinearAlgebra14TransfOfRn/ur _la_14_10.pg

Consider a linear transformation *T* from \mathbb{R}^3 to \mathbb{R}^2 for which

$$T\left(\left[\begin{array}{c}1\\0\\0\end{array}\right]\right)=\left[\begin{array}{c}8\\7\end{array}\right],\ T\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right)=\left[\begin{array}{c}0\\1\end{array}\right],\ T\left(\left[\begin{array}{c}0\\0\\1\end{array}\right]\right)=\left[\begin{array}{c}1\\0\end{array}\right]$$

Find the matrix A of T.

 $A = \left[\begin{array}{ccc} --- & -- \\ -- & -- \end{array} \right]$

10. (1 point) Library/Rochester/setLinearAlgebra15TransfOfLin Spaces/ur_la_15_7.pg

Find the matrix A of the linear transformation T(f(t)) = 9f'(t) + 6f(t) from P_2 to P_2 with respect to the standard basis for P_2 , $\{1, t, t^2\}$.

$$A = \left[\begin{array}{ccc} --- & --\\ --- & --\\ --- & -- \end{array} \right]$$

11. (1 point) Library/Rochester/setLinearAlgebra11Eigenvalues/
ur_la_11_9.pg

Suppose *A* is an invertible $n \times n$ matrix and \vec{v} is an eigenvector of *A* with associated eigenvalue -4. Convince yourself that \vec{v} is an eigenvector of the following matrices, and find the associated eigenvalues.

- (1) The matrix A^2 has an eigenvalue _____.
- (2) The matrix A^{-1} has an eigenvalue _____.
- (3) The matrix $A 9I_n$ has an eigenvalue _____.
- (4) The matrix -7A has an eigenvalue _____.

12. (1 point) Library/Rochester/setLinearAlgebrallEigenvalues/ ur_la_11_8.pg

Find the eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix} 6 & -4 & -15 \\ -1 & 3 & 9 \\ 4 & -4 & -13 \end{bmatrix}.$$

From smallest to largest, the eigenvalues are $\lambda_1 < \lambda_2 < \lambda_3$ where

$$\lambda_1 = _ \text{ has an eigenvector } \begin{bmatrix} _ \\ _ \\ - \\ \end{bmatrix},$$
$$\lambda_2 = _ \text{ has an eigenvector } \begin{bmatrix} _ \\ - \\ - \\ - \\ - \\ \end{bmatrix},$$
$$\lambda_3 = _ \text{ has an eigenvector } \begin{bmatrix} _ \\ - \\ - \\ - \\ - \\ - \\ \end{bmatrix}.$$

Note: you may want to use a graphing calculator to estimate the roots of the polynomial which defines the eigenvalues.

13. (1 point) Library/Hope/Multi1/05-04-Diagonalization/DiagR_ $\begin{bmatrix} 04, p\\ L\bar{\mathfrak{s}}t \end{bmatrix}$. $A = \begin{bmatrix} -13 & -4 & 28\\ 4 & 3 & -8\\ -6 & -2 & 13 \end{bmatrix}$.

If possible, find an invertible matrix *P* so that $D = P^{-1}AP$ is a diagonal matrix. If it is not possible, enter the identity matrix for *P* and the matrix *A* for *D*. You must enter a number in every

answer blank for the answer evaluator to work properly.

$$P = \begin{bmatrix} --- & -- & -- \\ -- & -- & -- \\ -- & -- & -- \\ -- & -- & -- \\ -- & -- & -- \\ -- & -- & -- \end{bmatrix}.$$

Is A diagonalizable over \mathbb{R} ?

- choose
- diagonalizable
- not diagonalizable
- Be sure you can explain why or why not.

Let *W* be the set of all vectors $\begin{bmatrix} x \\ y \\ x+y \end{bmatrix}$ with *x* and *y* real. Find

a basis of W^{\perp} .

15. (1 point) Library/Rochester/setLinearAlgebra17DotProductRn /ur_la_17_17.pg

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Find the orthogonal projection of

$$\vec{v} = \begin{bmatrix} 0\\0\\-9\\0 \end{bmatrix}$$

onto the subspace *W* of \mathbb{R}^4 spanned by

16. (1 point) Library/Rochester/setLinearAlgebra20LeastSquares /ur_la_20_2.pg

Find the least-squares solution \vec{x}^* of the system

$$\begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 4 & 5 \end{bmatrix} \vec{x} = \begin{bmatrix} 13 \\ -17 \\ -5 \end{bmatrix}.$$
$$\vec{x}^* = \begin{bmatrix} ----- \\ ---- \end{bmatrix}$$