1. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .2.61.pg

Let \mathbf{u}_{4} be a linear combination of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
Select the best statement.

- A. $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$.
- B. There is no obvious relationship between $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ and $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$.
-C. We only know that $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\} \subseteq$ $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$.
- D. $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ when \mathbf{u}_{4} is a scalar multiple of one of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
- E. none of the above

2. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .3.50 .pg

Let \mathbf{u}_{4} be a linear combination of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly dependent set of vectors unless one of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is the zero vector.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is never a linearly dependent set of vectors.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vectors chosen.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly dependent set of vectors.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vector space chosen.
- F. none of the above

3. (1 point) Library/TCNJ/TCNJ_LinearIndependence/problem1.pg Suppose $S=\{r, u, d\}$ is a set of linearly independent vectors.

If $x=2 r+2 u+5 d$, determine whether $T=\{r, u, x\}$ is a linearly independent set.
? 1 . Is T linearly independent or dependent?

If T is dependent, enter a nontrivial linear relation below. Otherwise, enter 0 's for the coefficients.

$$
\ldots \quad u+\ldots x=0
$$

4. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .3.47.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ be a linearly independent set of vectors. Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly independent set of vectors.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is always a linearly independent set of vectors.
- D. none of the above

5. (1 point) Library/Rochester/setLinearAlgebra8VectorSpaces/u r_la_8_5.pg

Find the dimensions of the following linear spaces.
(a) $\mathbb{R}^{6 \times 2}$
(b) P_{4}
(c) The space of all diagonal 3×3 matrices \qquad
6. (1 point) Library/Rochester/setLinearAlgebra10Bases/ur_la_1 0_34.pg
The set

$$
B=\left\{\left[\begin{array}{cc}
-1 & -2 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & -1 \\
0 & -2
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]\right\}
$$

is a basis of the space of upper-triangular 2×2 matrices.
Find the coordinates of $M=\left[\begin{array}{cc}-7 & -3 \\ 0 & -8\end{array}\right]$ with respect to this basis.
$[M]_{B}=\left[\begin{array}{l}\overline{-} \\ \text { - }\end{array}\right]$
7. (1 point) Library/Rochester/setLinearAlgebra15TransfOfLinSp aces/ur_la_15_1.pg
Which of the following transformations are linear? Select all of the linear transformations. There may be more than one correct answer. Be sure you can justify your answers.

- A. $T(A)=\left[\begin{array}{cc}4 & 3 \\ -2 & 6\end{array}\right] A$ from $\mathbb{R}^{2 \times 4}$ to $\mathbb{R}^{2 \times 4}$
- B. $T(A)=A^{T}$ from $\mathbb{R}^{4 \times 6}$ to $\mathbb{R}^{6 \times 4}$
- C. $T(A)=A\left[\begin{array}{cc}2 & -5 \\ 6 & 4\end{array}\right]-\left[\begin{array}{ll}2 & 5 \\ 6 & 8\end{array}\right] A$ from $\mathbb{R}^{2 \times 2}$ to
$\mathbb{R}^{2 \times 2}$
- D. $T(A)=\operatorname{det}(A)$ from $\mathbb{R}^{6 \times 6}$ to \mathbb{R}
- E. $T(A)=A\left[\begin{array}{cc}-7 & 1 \\ 4 & 9\end{array}\right]$ from \mathbb{R} to $\mathbb{R}^{2 \times 2}$
- F. $T(A)=A+I_{4}$ from $\mathbb{R}^{4 \times 4}$ to $\mathbb{R}^{4 \times 4}$

8. (1 point) Library/Hope/Multi1/04-01-Linear-transformations/ Lin_trans_05.pg
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(\langle x, y\rangle)=4 x-6 y+2$. Is f a linear transformation?
(1) $f\left(\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle\right)=$ \qquad . (Enter
x_{1} as $\times 1$, etc.)
$f\left(\left\langle x_{1}, y_{1}\right\rangle\right)+f\left(\left\langle x_{2}, y_{2}\right\rangle\right)=$ \qquad $+$ \qquad
Does $f\left(\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle\right)=f\left(\left\langle x_{1}, y_{1}\right\rangle\right)+f\left(\left\langle x_{2}, y_{2}\right\rangle\right)$ for all $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle \in \mathbb{R}^{2}$?

- choose
- Yes, they are equal
- No, they are not equal
(2) $f(c\langle x, y\rangle)=$ \qquad
$c(f(\langle x, y\rangle))=-(\square)$.
Does $f(c\langle x, y\rangle)=c(f(\langle x, y\rangle))$ for all $c \in \mathbb{R}$ and all $\langle x, y\rangle \in \mathbb{R}^{2}$?
- choose
- Yes, they are equal
- No, they are not equal
(3) Is f a linear transformation?
- choose
- f is a linear transformation
- f is not a linear transformation

9. (1 point) Library/Rochester/setLinearAlgebra14TransfOfRn/ur _la_14_10.pg
Consider a linear transformation T from \mathbb{R}^{3} to \mathbb{R}^{2} for which

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
8 \\
7
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=
$$

Find the matrix A of T.
$A=\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right]$
10. (1 point) Library/Rochester/setLinearAlgebra15TransfOfLin Spaces/ur_la_15_7.pg
Find the matrix A of the linear transformation $T(f(t))=$ $9 f^{\prime}(t)+6 f(t)$ from P_{2} to P_{2} with respect to the standard basis for $P_{2},\left\{1, t, t^{2}\right\}$.
$A=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$
11. (1 point) Library/Rochester/setLinearAlgebral1Eigenvalues/ ur_la_11_9.pg
Supppose A is an invertible $n \times n$ matrix and \vec{v} is an eigenvector of A with associated eigenvalue -4 . Convince yourself that \vec{v} is an eigenvector of the following matrices, and find the associated eigenvalues.
(1) The matrix A^{2} has an eigenvalue \qquad
(2) The matrix A^{-1} has an eigenvalue \qquad
(3) The matrix $A-9 I_{n}$ has an eigenvalue \qquad -.
(4) The matrix $-7 A$ has an eigenvalue \qquad —.
12. (1 point) Library/Rochester/setLinearAlgebra11Eigenvalues/ ur_la_11_8.pg
Find the eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
6 & -4 & -15 \\
-1 & 3 & 9 \\
4 & -4 & -13
\end{array}\right]
$$

From smallest to largest, the eigenvalues are $\lambda_{1}<\lambda_{2}<\lambda_{3}$ where $\lambda_{1}=\ldots$ has an eigenvector $\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$,
$\lambda_{2}=\ldots$ has an eigenvector $\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$,
Note: you may want to use a graphing calculator to estimate the roots of the polynomial which defines the eigenvalues.
13. (1 point) Library/Hope/Multi1/05-04-Diagonalization/DiagR_ $\left[\begin{array}{l}04 . \mathrm{pq} \\ \mathrm{L} 5 \mathrm{t}\end{array}\right]$.

$$
A=\left[\begin{array}{ccc}
-13 & -4 & 28 \\
4 & 3 & -8 \\
-6 & -2 & 13
\end{array}\right]
$$

If possible, find an invertible matrix P so that $D=P^{-1} A P$ is a diagonal matrix. If it is not possible, enter the identity matrix for P and the matrix A for D. You must enter a number in every
answer blank for the answer evaluator to work properly.
$P=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$.
$D=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$.
Is A diagonalizable over \mathbb{R} ?

- choose
- diagonalizable
- not diagonalizable

Be sure you can explain why or why not.
14. (1 point) Library/TCNJ/TCNJ_LengthOrthogonality/problem3. pg
Let W be the set of all vectors $\left[\begin{array}{c}x \\ y \\ x+y\end{array}\right]$ with x and y real. Find a basis of W^{\perp}.
$\left\{\left[\begin{array}{l}- \\ -\end{array}\right]\right\}$.
15. (1 point) Library/Rochester/setLinearAlgebra17DotProductRn /ur_la_17_17.pg

Find the orthogonal projection of

$$
\vec{v}=\left[\begin{array}{c}
0 \\
0 \\
-9 \\
0
\end{array}\right]
$$

onto the subspace W of \mathbb{R}^{4} spanned by

$$
\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]
$$

$\operatorname{proj}_{W}(\vec{v})=\left[\begin{array}{l}\square \\ \square\end{array}\right]$
16. (1 point) Library/Rochester/setLinearAlgebra20LeastSquares /ur_la_20_2.pg
Find the least-squares solution \vec{x}^{*} of the system

$$
\left[\begin{array}{cc}
2 & -1 \\
-2 & 1 \\
4 & 5
\end{array}\right] \vec{x}=\left[\begin{array}{c}
13 \\
-17 \\
-5
\end{array}\right]
$$

$\vec{x}^{*}=[\square]$

