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Part I: Multiple-choice questions

Question 1 [10 marks].
Determine whether the given set S is a subspace of the vector space V , and select those
that are subspaces. [10]

(a) V = Rn, and S is the set of solutions to the homogeneous linear system Ax = 0
where A is a fixed m× n matrix;

(b) V = C2(R) (the space of twice continuously differentiable functions), and S is the
subset of V consisting of those functions satisfying the differential equation
y′′ − 4y′ + 3y = 0;

(c) V = R2, and S consists of all vectors

(
x1

x2

)
satisfying x2

1 − x2
2 = 0;

(d) V is the vector space of all real-valued functions defined on R and S is the subset
of V consisting of those functions satisfying f(x + 1) = f(x) for all x ∈ R;

(e) V = Pn (the space of polynomials of degree up to n), and S is the subset of Pn

consisting of those polynomials satisfying p(t + 1) = p(t) + 1.

Question 2 [10 marks]. Select the true statements below. [10]

(a) There exists a proper subspace S of R3 such that Span (S) = R3.

(b) The space Pn of polynomials of degree up to n has a basis consisting of
polynomials that all have degree n.

(c) There exist vectors u,v,w ∈ R3 such that u− v,v −w,w − u span R3.

(d) A subset of a spanning set can sometimes form a linearly independent set.

(e) For all vectors a,b, c in a vector space, a ∈ Span (b, c) implies that
c ∈ Span (a,b).

Question 3 [10 marks]. Let x, y be arbitrary vectors in a vector space, and
suppose that z = 4x + 3y and w = −8x− 6y + 3z. Select true statements below. [10]

(a) Span (x,y, z) = Span (w,x,y);

(b) Span (w, z) = Span (w,x, z);

(c) Span (x,y) = Span (y, z);

(d) Span (w,x) = Span (w,y, z);

(e) Span (x,y, z) = Span (w, z).
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Question 4 [10 marks]. Consider the matrix

A =

−1 1 0 7
2 0 x −5
−1 3 −4 16

 .

Select the true statements below. [10]

(a) The rank of A is 3 for any value of x.

(b) The column space of A is 3-dimensional for any value of x.

(c) The nullity of A is 4 minus its rank.

(d) The rank of AT is equal to the rank of A.

(e) The nullity of AT is equal to the nullity of A.

Question 5 [10 marks]. Consider the matrix

A =

1 −2 2
0 2 0
0 −1 3

 .

Select the true statements below. [10]

(a) The vector

1
0
0

 is an eigenvector of A.

(b) A has eigenvalue 0.

(c) The sum of all eigenvalues is 6.

(d) A is an orthogonal matrix.

(e) The determinant of A is 6.

Question 6 [10 marks]. Let P3 be the vector space of all real polynomials in
variable t of degree up to 2. Consider the linear transformation D : P3 → P3 given by

D(p)(t) = (at + 1)
dp(t)

dt
+ p(t) ,

where p ∈ P3, a ∈ R, and let A be the matrix associated to D with respect to the basis
(t2, t, 1). Select the true statements below. [10]

(a) The determinant of A vanishes for a = 0.

(b) The determinant of A vanishes for a = −1
2
.
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(c) A is diagonalisable for all values of a.

(d) A + AT is diagonalisable.

(e) The rank of A is 2 when a = −1.

Question 7 [10 marks]. Suppose that

A =


1 1 0
0 1 1
−1 0 1
1 2 1

 , b =


1
2
3
4

 .

Which of the following vectors is a least-squares solution to Ax = b? [10]

(a) x =

−1
3

1
2

;

(b) x =

1
2
1
3

;

(c) x =


1
1
0
−1

;

(d) x =


1
−1
1
0

;

(e) x =

2
3

0
3

.
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Part II: Open-ended questions

Question 8 [7 marks]. Let V be a 4-dimensional vector space and let L : V → V
be a linear transformation such that

L4 = 0 and L3 6= 0,

where Ln = L ◦ · · · ◦ L︸ ︷︷ ︸
n times

denotes the n-fold composite of L with itself. Prove that there

exists a basis B for V such that the matrix of L with respect to the basis B is

[L]B =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .

Justify all your claims and state precisely any theorems you use. [7]
Hint. Since L3 6= 0, there exists a vector v ∈ V such that L3(v) 6= 0. Consider the set

{v, L(v), L2(v), L3(v)}.

Question 9 [8 marks]. Suppose that vectors v1, . . . ,vn are linearly independent in
a vector space V , and let w ∈ V be another vector such that

v1 + w, . . . ,vn + w

are linearly dependent. Prove that

w ∈ Span (v1, . . . ,vn).

Justify all your claims and state precisely any theorems you use. [8]

Question 10 [15 marks]. Consider the vector space R2×2 of real 2× 2 matrices.

(a) Check that the ordered set B = (v1,v2,v3,v4) is a basis for R2×2, where

v1 =

(
1 0
0 1

)
, v2 =

(
0 1
1 0

)
, v3 =

(
0 −1
1 0

)
, v4 =

(
1 0
0 −1

)
.

[3]

(b) Consider the basis C = (w1,w2,w3,w4), with

w1 =

(
1 0
0 0

)
, w2 =

(
0 1
0 0

)
, w3 =

(
0 0
1 0

)
, w4 =

(
0 0
0 1

)
.

Write down the transition matrix PB,C = [id]BC from the basis B to the basis C. [4]

(c) Check that the columns of PB,C form an orthogonal set of vectors in R4. Rescale
those vectors to obtain an orthonormal set. [4]
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(d) Consider a vector w ∈ R2×2 and let a = [w]C ∈ R4. Calculate the norm of a
according to the standard scalar product in R4.

Show that w has the same norm with respect to the scalar product on R2×2

defined by
〈v,w〉 = Tr(vTw),

for v,w ∈ R2×2, where Tr is the trace (the sum of the diagonal elements of a
matrix). [4]

End of Paper.
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