MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

 COURSEWORK 10 — SOLUTIONS

 COURSEWORK 10 — SOLUTIONS}

Exercise (*) 1. The solutions will appear on WeBWork after CW10 due date.
Exercise 2. (a) We know that H has an orthogonal basis because we can always construct an orthogonal basis by starting with an arbitrary basis and using the Gram-Schmidt process. In particular, we can, if we like, define $\hat{\mathbf{y}}$ by setting

$$
\begin{equation*}
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{v}_{r}}{\mathbf{v}_{r} \cdot \mathbf{v}_{r}}\right) \mathbf{v}_{r} \tag{1}
\end{equation*}
$$

(b) We now define $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$. Then \mathbf{z} is orthogonal to all of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ in the chosen orthogonal basis for H, because for each $i \in\{1, \ldots, r\}$ we have

$$
\begin{aligned}
\mathbf{z} \cdot \mathbf{v}_{i} & =(\mathbf{y}-\hat{\mathbf{y}}) \cdot \mathbf{v}_{i} \\
& =\left(\mathbf{y}-\left(\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\cdots-\left(\frac{\mathbf{y} \cdot \mathbf{v}_{r}}{\mathbf{v}_{r} \cdot \mathbf{v}_{r}}\right) \mathbf{v}_{r}\right) \cdot \mathbf{v}_{i} \\
& =\mathbf{y} \cdot \mathbf{v}_{i}-\left(\frac{\mathbf{y} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}}\right) \mathbf{v}_{i} \cdot \mathbf{v}_{i} \quad \quad \quad\left(\text { because } \mathbf{v}_{i} \cdot \mathbf{v}_{j}=0 \text { for all } j \neq i\right) \\
& =\mathbf{y} \cdot \mathbf{v}_{i}-\mathbf{y} \cdot \mathbf{v}_{i} \\
& =0
\end{aligned}
$$

Hence, it follows from Theorem 6.8(ii) in lectures that \mathbf{z} is orthogonal to every vector in H, i.e. $\mathbf{z} \in H^{\perp}$.
(c) Suppose, as suggested, that

$$
\mathbf{y}=\hat{\mathbf{y}}_{1}+\mathbf{z}_{1} \quad \text { for some } \quad \hat{\mathbf{y}}_{1} \in H \text { and } \mathbf{z}_{1} \in H^{\perp} .
$$

Then we have

$$
\hat{\mathbf{y}}_{1}+\mathbf{z}_{1}=\hat{\mathbf{y}}+\mathbf{z}
$$

because both sides of this equation are equal to \mathbf{y}, and so

$$
\begin{equation*}
\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}=\mathbf{z}-\mathbf{z}_{1} . \tag{2}
\end{equation*}
$$

This implies that the vector $\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}$ is an element of both H and H^{\perp}, i.e. it is in H because both $\hat{\mathbf{y}}$ and $\hat{\mathbf{y}}_{1}$ are in H, and it is in H^{\perp} because $\mathbf{z}-\mathbf{z}_{1}$ is in H^{\perp} (because H^{\perp} is a subspace). In particular, $\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}$ must be orthogonal to itself, and so

$$
\left(\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}\right) \cdot\left(\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}\right)=0, \quad \text { i.e. } \quad\left\|\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}\right\|=0
$$

Therefore, $\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}$ is the zero vector, so $\hat{\mathbf{y}}_{1}=\hat{\mathbf{y}}$, and hence by (2) we also have $\hat{\mathbf{z}}_{1}=\hat{\mathbf{z}}$.
Exercise 3. If $\mathbf{x} \in H$ then \mathbf{x} is orthogonal to every vector in H^{\perp} (because every vector in H^{\perp} is orthogonal to \mathbf{x}) and so $\mathbf{x} \in\left(H^{\perp}\right)^{\perp}$. Therefore, H is a subset of $\left(H^{\perp}\right)^{\perp}$. It remains to show that $\left(H^{\perp}\right)^{\perp}$ is a subset of H. Suppose that $\mathbf{x} \in\left(H^{\perp}\right)^{\perp}$. By the Orthogonal Decomposition Theorem,
we can write \mathbf{x} in the form $\mathbf{x}=\hat{\mathbf{x}}+\mathbf{z}$ where $\hat{\mathbf{x}} \in H$ and $\mathbf{z} \in H^{\perp}$. Since $\mathbf{z} \in H^{\perp}$, it is orthogonal to both \mathbf{x} (which is an element of H) and $\hat{\mathbf{x}}$ (which is an element of $\left(H^{\perp}\right)^{\perp}$). Therefore,

$$
\mathrm{z} \cdot \mathrm{z}=\mathrm{z} \cdot \mathrm{z}+\underbrace{\mathrm{z} \cdot \hat{\mathrm{x}}}_{=0}=\mathrm{z} \cdot(\mathbf{z}+\hat{\mathrm{x}})=\mathrm{z} \cdot \mathrm{x}=0 .
$$

Hence, $\mathbf{z}=0$, and so $\mathbf{x}=\hat{\mathbf{x}} \in H$. Therefore, $\left(H^{\perp}\right)^{\perp}$ is a subset of H.
Exercise 4. (a) We have

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}=\frac{-1 \cdot 1+7 \cdot 3}{1 \cdot 1+3 \cdot 3}(1,3)^{T}=2(1,3)^{T}=(2,6)^{T}
$$

(b) We have
$\mathbf{y}-\hat{\mathbf{y}}=(-1,7)^{T}-(2,6)^{T}=(-3,1)^{T} \quad$ and hence $\quad(\mathbf{y}-\hat{\mathbf{y}}) \cdot \mathbf{u}=(-3,1)^{T} \cdot(1,3)^{T}=0$.
(c) Geometrically, $\mathbf{y}-\hat{\mathbf{y}}$ is perpendicular to \mathbf{u}, and $\|\mathbf{y}-\hat{\mathbf{y}}\|$ is the distance from $\hat{\mathbf{y}}$ to \mathbf{y}. Hence, $\|\mathbf{y}-\hat{\mathbf{y}}\|$ is the shortest distance from \mathbf{y} to the line through the origin in the direction of \mathbf{u}.

Exercise 5. We have

$$
\mathbf{u}_{1} \cdot \mathbf{u}_{2}=(1,2,1)^{T} \cdot(-3,1,1)^{T}=1 \cdot(-3)+2 \cdot 1+1 \cdot 1=-3+2+1=0
$$

so $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is certainly an orthogonal set, hence a linearly independent set, and therefore a basis for $H=\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$. Using the Orthogonal Decomposition Theorem (see Exercise 1), we find that the orthogonal decomposition of the given vector $\mathbf{y}=(6,-1,8)^{T}$ is

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z},
$$

where

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}=\frac{12}{6}(1,2,1)^{T}+\frac{-11}{11}(-3,1,1)^{T}=(5,3,1)^{T}
$$

and

$$
\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}=(6,-1,8)^{T}-(5,3,1)^{T}=(1,-4,7)^{T}
$$

Exercise 6.

(a) To see that the set $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ is linearly independent, observe that the matrix

$$
\left(\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & 0 & 1 \\
1 & 1 & 4 \\
0 & 1 & -3
\end{array}\right) \quad \text { is row equivalent to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

and hence has rank 3. The set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is not orthogonal because, e.g. $\mathbf{x}_{1} \cdot \mathbf{x}_{2}=4 \neq 0$.
(b) We use the Gram-Schmidt process to build an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for H from the given basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathrm{x}_{3}\right\}$. We begin the by setting

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=(1,0,1,0)^{T}
$$

The next step is to define the vector \mathbf{v}_{2} by subtracting the orthogonal projection of \mathbf{x}_{2} onto $\operatorname{span}\left(\mathbf{v}_{1}\right)$ from x_{2} :

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}=(3,0,1,1)^{T}-\frac{4}{2}(1,0,1,0)^{T}=(1,0,-1,1)^{T}
$$

Finally, \mathbf{v}_{3} is defined by subtracting the orthogonal projection of \mathbf{x}_{3} onto $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ from \mathbf{x}_{3} :

$$
\begin{aligned}
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& =(-2,1,4,-3)^{T}-\frac{2}{2}(1,0,1,0)^{T}-\frac{-9}{3}(1,0,-1,1)^{T} \\
& =(0,1,0,0)^{T}
\end{aligned}
$$

(c) We have $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, where $\hat{\mathbf{y}} \in H$ and $\mathbf{z} \in H^{\perp}$ are given by

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}+\left(\frac{\mathbf{y} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}}\right) \mathbf{v}_{3}=\frac{6}{2} \mathbf{v}_{1}+\frac{-6}{2} \mathbf{v}_{2}+\frac{1}{1} \mathbf{v}_{3}=(1,1,5,-2)^{T}
$$

and

$$
\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}=(1,0,-1,-2)^{T}
$$

By the Best Approximation Theorem (Corollary 6.12 in lectures), the best approximation to \mathbf{y} by a vector in H is the vector $\hat{\mathbf{y}}=(1,1,5,-2)^{T}$.
Exercise 7. The normal equations are (by definition)

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

so we first compute

$$
A^{T} A=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 2 & 2 \\
2 & 2 & 4
\end{array}\right)
$$

and

$$
A^{T} \mathbf{b}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
6 \\
8
\end{array}\right)
$$

The normal equations are therefore

$$
\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 2 & 2 \\
2 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
6 \\
8
\end{array}\right) .
$$

Using Gaussian elimination, you should find that the augmented matrix corresponding to this system is row equivalent to

$$
\left(\begin{array}{lll|l}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

From this we see that x_{3} is a free variable, while x_{1} and x_{2} are leading variables. Writing $\alpha=x_{3}$ to emphasise that x_{3} is a free variable, we find that $x_{2}=3-\alpha$ and $x_{1}=1-\alpha$. The set of least squares solutions of the original system $A \mathbf{x}=\mathbf{b}$ is therefore

$$
\left\{(1-\alpha, 3-\alpha, \alpha)^{T} \mid \alpha \in \mathbb{R}\right\}
$$

