MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 10

Exercise (*) 1. Solve WeBWork Set 10 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.
Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. The Orthogonal Decomposition Theorem (7.26 from lectures) says the following: if H is a subspace of \mathbb{R}^{n} then every vector $\mathbf{v} \in \mathbb{R}^{n}$ can be written uniquely in the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}, \quad \text { where } \quad \hat{\mathbf{y}} \in H \text { and } \mathbf{z} \in H^{\perp},
$$

and, furthermore, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is an orthogonal basis for H then

$$
\begin{equation*}
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{v}_{r}}{\mathbf{v}_{r} \cdot \mathbf{v}_{r}}\right) \mathbf{v}_{r} . \tag{1}
\end{equation*}
$$

Proceed as follows to prove the Orthogonal Decomposition Theorem:
(a) Explain why we can define the vector $\hat{\mathbf{y}}$ using equation (1). In other words, why do we know that H actually has an orthogonal basis?
(b) Now define the vector \mathbf{z} by setting $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$. Prove that \mathbf{z} is an element of H^{\perp}.
(c) It now remains to show that the decomposition $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ of \mathbf{y} into a vector in H plus a vector in H^{\perp} is unique. To prove this, assume that we can also write

$$
\mathbf{y}=\hat{\mathbf{y}}_{1}+\mathbf{z}_{1} \quad \text { for some } \quad \hat{\mathbf{y}}_{1} \in H \text { and } \mathbf{z}_{1} \in H^{\perp}
$$

and show that this implies that $\hat{\mathbf{y}}_{1}=\hat{\mathbf{y}}$ and $\mathbf{z}_{1}=\mathbf{z}$. (Hint: can you prove that the vector $\hat{\mathbf{y}}-\hat{\mathbf{y}}_{1}$ must be an element of both H and H^{\perp} ?)

Exercise 3. Prove Corollary 7.28 (of the Orthogonal Decomposition Theorem) from lectures: if H is a subspace of \mathbf{R}^{n}, then

$$
\left(H^{\perp}\right)^{\perp}=H .
$$

Exercise 4. Consider the vectors $\mathbf{y}=(-1,7)^{T}$ and $\mathbf{u}=(1,3)^{T}$ in \mathbb{R}^{2}.
(a) Compute the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto the subspace $H=\operatorname{span}(\mathbf{u})$.
(b) Write down the vector $\mathbf{y}-\hat{\mathbf{y}}$ and verify that it really is orthogonal to \mathbf{u}.
(c) Give a geometric interpretation of the quantity $\|\mathbf{y}-\hat{\mathbf{y}}\|$.

Exercise 5. Consider the vectors $\mathbf{y}=(6,-1,8)^{T}, \mathbf{u}_{1}=(1,2,1)^{T}$ and $\mathbf{u}_{2}=(-3,1,1)^{T}$ in \mathbf{R}^{3}, and let $H=\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal set (and hence a basis for H), and find the orthogonal decomposition of \mathbf{y} with respect to the subspace H, i.e. write \mathbf{y} as the sum of a vector in H and a vector in H^{\perp}.

Exercise 6. Consider the following vectors in \mathbb{R}^{4} :

$$
\mathbf{x}_{1}=(1,0,1,0)^{T}, \quad \mathbf{x}_{2}=(3,0,1,1)^{T}, \quad \mathbf{x}_{3}=(-2,1,4,-3)^{T} .
$$

(a) Show that the set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is linearly independent but not orthogonal.
(b) Use the Gram-Schmidt process to construct an orthogonal basis for the subspace $H=$ $\operatorname{span}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ of \mathbb{R}^{4}.
(c) Find the orthogonal decomposition of the vector $\mathbf{y}=(2,1,4,-4)^{T}$ with the respect to the subspace H (i.e. write \mathbf{y} as the sum of a vector in H and a vector in H^{\perp}), and thereby determine the best approximation to y by a vector in H.

Exercise 7. Solve the least squares problem for the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
4 \\
1
\end{array}\right)
$$

That is, write down the corresponding normal equations and determine the set of least squares solutions.

