MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 10

Exercise (*) 1. Solve WeBWork Set 10 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.

Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. The Orthogonal Decomposition Theorem (7.26 from lectures) says the following: if H is a subspace of \mathbb{R}^n then every vector $\mathbf{v} \in \mathbb{R}^n$ can be written *uniquely* in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$
, where $\hat{\mathbf{y}} \in H$ and $\mathbf{z} \in H^{\perp}$,

and, furthermore, if $\{{f v}_1,\ldots,{f v}_r\}$ is an orthogonal basis for H then

(1)
$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 + \dots + \left(\frac{\mathbf{y} \cdot \mathbf{v}_r}{\mathbf{v}_r \cdot \mathbf{v}_r}\right) \mathbf{v}_r.$$

Proceed as follows to prove the Orthogonal Decomposition Theorem:

- (a) Explain why we can *define* the vector $\hat{\mathbf{y}}$ using equation (1). In other words, why do we know that H actually *has* an orthogonal basis?
- (b) Now define the vector \mathbf{z} by setting $\mathbf{z} = \mathbf{y} \hat{\mathbf{y}}$. Prove that \mathbf{z} is an element of H^{\perp} .
- (c) It now remains to show that the decomposition $y = \hat{y} + z$ of y into a vector in H plus a vector in H^{\perp} is *unique*. To prove this, assume that we can also write

$$\mathbf{y} = \mathbf{\hat{y}}_1 + \mathbf{z}_1 \quad \text{for some} \quad \mathbf{\hat{y}}_1 \in H \text{ and } \mathbf{z}_1 \in H^{\perp},$$

and show that this implies that $\hat{\mathbf{y}}_1 = \hat{\mathbf{y}}$ and $\mathbf{z}_1 = \mathbf{z}$. (Hint: can you prove that the vector $\hat{\mathbf{y}} - \hat{\mathbf{y}}_1$ must be an element of both H and H^{\perp} ?)

Exercise 3. Prove Corollary 7.28 (of the Orthogonal Decomposition Theorem) from lectures: if H is a subspace of \mathbb{R}^n , then

$$(H^{\perp})^{\perp} = H.$$

Exercise 4. Consider the vectors $\mathbf{y} = (-1,7)^T$ and $\mathbf{u} = (1,3)^T$ in \mathbb{R}^2 .

- (a) Compute the orthogonal projection \hat{y} of y onto the subspace H = span(u).
- (b) Write down the vector $\mathbf{y} \hat{\mathbf{y}}$ and verify that it really is orthogonal to \mathbf{u} .
- (c) Give a geometric interpretation of the quantity $||\mathbf{y} \hat{\mathbf{y}}||$.

Exercise 5. Consider the vectors $\mathbf{y} = (6, -1, 8)^T$, $\mathbf{u}_1 = (1, 2, 1)^T$ and $\mathbf{u}_2 = (-3, 1, 1)^T$ in \mathbf{R}^3 , and let $H = \mathrm{span}(\mathbf{u}_1, \mathbf{u}_2)$. Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set (and hence a basis for H), and find the orthogonal decomposition of \mathbf{y} with respect to the subspace H, i.e. write \mathbf{y} as the sum of a vector in H and a vector in H^{\perp} .

Exercise 6. Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{x}_1 = (1, 0, 1, 0)^T$$
, $\mathbf{x}_2 = (3, 0, 1, 1)^T$, $\mathbf{x}_3 = (-2, 1, 4, -3)^T$.

(a) Show that the set $\{x_1, x_2, x_3\}$ is linearly independent but *not* orthogonal.

- (b) Use the Gram–Schmidt process to construct an orthogonal basis for the subspace $H = \operatorname{span}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)$ of \mathbb{R}^4 .
- (c) Find the orthogonal decomposition of the vector $\mathbf{y}=(2,1,4,-4)^T$ with the respect to the subspace H (i.e. write \mathbf{y} as the sum of a vector in H and a vector in H^{\perp}), and thereby determine the best approximation to \mathbf{y} by a vector in H.

Exercise 7. Solve the least squares problem for the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 1 \end{pmatrix}.$$

That is, write down the corresponding normal equations and determine the set of least squares solutions.