MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 9 — SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW9 due date.

Exercise 2. (a) We have

(1)

$$\begin{aligned} ||\mathbf{x} + \mathbf{y}||^2 &= (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) \\ &= \mathbf{x} \cdot \mathbf{x} + \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y} \\ &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2(\mathbf{x} \cdot \mathbf{y}) \end{aligned}$$

Now, by definition, x and y are orthogonal if and only if $x \cdot y = 0$, so it follows from equation (1) that x and y are orthogonal if and only if

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

(b) First observe that the inequality is clearly true if either of \mathbf{u} or \mathbf{v} are the zero vector, so we can assume that both are *not* the zero vector. In particular, $||\mathbf{u}|| \neq 0$ and $||\mathbf{v}|| \neq 0$. Taking $\mathbf{x} = ||\mathbf{u}||\mathbf{v}$ and $\mathbf{y} = -||\mathbf{v}||\mathbf{u}$ in (1) as per the hint, we obtain

$$\begin{aligned} ||(||\mathbf{u}||\mathbf{v}) + (-||\mathbf{v}||\mathbf{u})||^2 &= ||(||\mathbf{u}||\mathbf{v})||^2 + ||(-||\mathbf{v}||\mathbf{u})||^2 + 2((||\mathbf{u}||\mathbf{v}) \cdot (-||\mathbf{v}||\mathbf{u})) \\ &= ||\mathbf{u}||^2 ||\mathbf{v}||^2 + (-||\mathbf{v}||)^2 ||\mathbf{u}||^2 - 2||\mathbf{u}||||\mathbf{v}||\mathbf{v} \cdot \mathbf{u} \\ &= 2||\mathbf{u}||^2 ||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\mathbf{v} \cdot \mathbf{u}. \end{aligned}$$

Because the left-hand side above is non-negative, the right-hand side is also non-negative, so we have

$$0 \le 2||\mathbf{u}||^2||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\mathbf{v} \cdot \mathbf{u},$$

or in other words,

(2)

$$||\mathbf{u}|||\mathbf{v}||\mathbf{v}\cdot\mathbf{u}\leq ||\mathbf{u}||^2||\mathbf{v}||^2.$$

Because we may assume that $||\mathbf{u}|| \neq 0$ and $||\mathbf{v}|| \neq 0$ (see above), we can divide both sides of the above inequality by $||\mathbf{u}|| ||\mathbf{v}||$ to obtain

$$\mathbf{v} \cdot \mathbf{u} \le ||\mathbf{u}|| ||\mathbf{v}||.$$

We're not *quite* finished yet, because we want to show that the *absolute value* of $\mathbf{v} \cdot \mathbf{u}$ is less than or equal to $||\mathbf{u}|| ||\mathbf{v}||$. However, if we run through the above argument again, except with $\mathbf{y} = + ||\mathbf{v}||\mathbf{u}$, then we obtain

$$-\mathbf{v} \cdot \mathbf{u} \le ||\mathbf{u}|| ||\mathbf{v}||.$$

Putting (2) and (3) together yields the desired inequality, namely

$$|\mathbf{v} \cdot \mathbf{u}| \le ||\mathbf{u}|| ||\mathbf{v}||.$$

(c) Equation (1) and the Cauchy-Schwartz inequality (from part (b)) yield

$$\begin{aligned} ||\mathbf{u} + \mathbf{v}||^2 &= ||\mathbf{u}||^2 + ||\mathbf{v}||^2 + 2(\mathbf{u} \cdot \mathbf{v}) \\ &\leq ||\mathbf{u}||^2 + ||\mathbf{v}||^2 + 2|\mathbf{u} \cdot \mathbf{v}| \\ &\leq ||\mathbf{u}||^2 + ||\mathbf{v}||^2 + 2||\mathbf{u}||||\mathbf{v}|| \\ &= (||\mathbf{u}|| + ||\mathbf{v}||)^2. \end{aligned}$$

Now taking square roots of both sides gives the desired inequality, namely

 $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||.$

Exercise 3. (a) As with all 'subspace' proofs, we must show three things: (i) H^{\perp} is non-empty, (ii) H^{\perp} is closed under addition, (iii) H^{\perp} is closed under scalar multiplication.

(i) Since the zero vector is orthogonal to every vector in ℝⁿ, it is, in particular, orthogonal to every vector in *H*, so the zero vector is an element of *H*[⊥] and hence *H*[⊥] is non-empty.
(ii) Let x, y ∈ *H*[⊥]. We must show that x+y ∈ *H*[⊥], i.e. we must show that (x+y)·v = 0 for every v ∈ *H*. Our strategy is the usual one for these kinds of proofs: use the fact that x, y ∈ *H*[⊥], i.e. that x · v = 0 and y · v = 0 for every v ∈ *H*. This allows us to say that

 $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{v} = \mathbf{x} \cdot \mathbf{v} + \mathbf{y} \cdot \mathbf{v} = 0 + 0 = 0,$

which is what we wanted. Hence, H^{\perp} is indeed closed under addition.

(iii) Let $\mathbf{x} \in H^{\perp}$ and $\alpha \in \mathbb{R}$. We must show that $\alpha \mathbf{x} \in H^{\perp}$, i.e. that $(\alpha \mathbf{x}) \cdot \mathbf{v} = 0$ for every $\mathbf{v} \in H$. Since we are assuming that $\mathbf{x} \cdot \mathbf{v} = 0$, we can argue that

$$(\alpha \mathbf{x}) \cdot \mathbf{v} = \alpha (\mathbf{x} \cdot \mathbf{v}) = \alpha \cdot 0 = 0,$$

which is what we wanted. Hence, H^{\perp} is indeed closed under scalar multiplication.

(b) Suppose that $H = \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_r)$, and let $\mathbf{x} \in \mathbb{R}^n$. If $\mathbf{x} \in H^{\perp}$ then \mathbf{x} is orthogonal to every vector in H, so in particular \mathbf{x} is orthogonal to the spanning vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$. It remains to prove the converse, i.e. that if \mathbf{x} is orthogonal to $\mathbf{v}_1, \ldots, \mathbf{v}_r$ then it is orthogonal to every vector in H. If \mathbf{y} is any vector in H then we can write

$$\mathbf{y} = \alpha_1 \mathbf{v}_1 + \dots \alpha_r \mathbf{v}_r$$

for some scalars $\alpha_1, \ldots, \alpha_r$. We therefore have

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot (\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r)$$

= $\mathbf{x} \cdot (\alpha_1 \mathbf{v}_1) + \dots + \mathbf{x} \cdot (\alpha_r \mathbf{v}_r)$
= $\alpha_1 (\mathbf{x} \cdot \mathbf{v}_1) + \dots + \alpha_r (\mathbf{x} \cdot \mathbf{v}_r)$
= $\alpha_1 \cdot 0 + \dots + \alpha_r \cdot 0$
= $0 + \dots + 0$
= 0

Hence, x is indeed orthogonal to the arbitrary vector $y \in H$, and so $x \in H^{\perp}$.

(c) Let r denote the dimension of H, and choose a basis $\mathbf{v}_1, \ldots, \mathbf{v}_r$ for H. Form the $r \times n$ matrix A whose rows are the vectors $\mathbf{v}_1^T, \ldots, \mathbf{v}_r^T$. Then, since $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are linearly independent, they form a basis for the row space of A, so we have

$$\operatorname{rank}(A) = r = \dim(H)$$

On the other hand, by part (b), the nullspace of A is equal to H^{\perp} (i.e. the solutions of $A\mathbf{x} = \mathbf{0}$ are precisely the vectors that are orthogonal to all of $\mathbf{v}_1, \ldots, \mathbf{v}_r$, and by part (b)

these are precisely the vectors that are orthogonal to *every* vector in H). Hence, the nullity of A is the dimension of H^{\perp} , i.e.

$$\mathsf{null}(A) = \mathsf{dim}(H^{\perp}).$$

But now the rank-nullity theorem tells us that

$$n = \mathsf{rank}(A) + \mathsf{null}(A) = \mathsf{dim}(H) + \mathsf{dim}(H^{\perp}),$$

which is exactly what we wanted to prove.

Exercise 4. (a) Let A be the 2×3 matrix whose rows are \mathbf{u}^T and \mathbf{v}^T , i.e.

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -3 \end{pmatrix}.$$

Then H^{\perp} is just the nullspace of A, i.e. the set of solutions of the linear system $A\mathbf{x} = \mathbf{0}$. Since A is already in row echelon form, we can easily find the solution set of this system. Letting α denote the free variable x_3 , we find that $x_2 = 3x_3 = 3\alpha$ and $x_1 = x_3 - x_2 = \alpha - 3\alpha = -2\alpha$, so we have

$$H^{\perp} = N(A) = \{(-2\alpha, 3\alpha, \alpha)^T : \alpha \in \mathbb{R}\} = \mathsf{span}((-2, 3, 1)^T).$$

In other words, $\{(-2,3,1)\}$ is a basis for H^{\perp} .

- (b) H is a plane through the origin in \mathbb{R}^3 , and H^{\perp} is the line through the origin which is perpendicular to this plane.
- **Exercise 5.** (a) The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent and hence form a basis for the 3-dimensional vector space \mathbb{R}^3 because the matrix with columns $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ has nonzero determinant:

$$\begin{vmatrix} 1 & -4 & 2 \\ 2 & -2 & -2 \\ 2 & 4 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 6 & -6 \\ 0 & 12 & -3 \end{vmatrix} R_2 \to R_2 - 2R_1 = 1 \cdot \begin{vmatrix} 6 & -6 \\ 12 & -3 \end{vmatrix} = -18 + 72 = 54 \neq 0.$$

To see that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form an orthogonal set, we simply check that the three dot products $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_1 \cdot \mathbf{v}_3$ and $\mathbf{v}_2 \cdot \mathbf{v}_3$ are all equal to 0:

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 1 \cdot (-4) + 2 \cdot (-2) + 2 \cdot 4 = -4 - 4 + 8 = 0$$

$$\mathbf{v}_1 \cdot \mathbf{v}_3 = 1 \cdot 2 + 2 \cdot (-2) + 2 \cdot 1 = 2 - 4 + 2 = 0$$

$$\mathbf{v}_2 \cdot \mathbf{v}_3 = (-4) \cdot 2 + (-2) \cdot (-2) + 4 \cdot 1 = -8 + 4 + 4 = 0.$$

(b) Since $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is an orthogonal basis for \mathbb{R}^3 , Theorem 6.13 from lectures tells us that the coordinate vector of a vector $\mathbf{y} \in \mathbb{R}^3$ with respect to the basis B is

$$[\mathbf{y}]_B = (c_1, c_2, c_3)^T$$
 where $c_i = \frac{\mathbf{y} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$ for each $i \in \{1, 2, 3\}$,

so we just need to apply this theorem to the given vectors $\mathbf{y}=\mathbf{u}$ and $\mathbf{y}=\mathbf{v}.$ We calculate that

$$\begin{split} [\mathbf{u}]_B &= \left(\frac{(-1,5,3)^T \cdot (1,2,2)^T}{(1,2,2)^T \cdot (1,2,2)^T}, \frac{(-1,5,3)^T \cdot (-4,-2,4)^T}{(-4,-2,4)^T \cdot (-4,-2,4)^T}, \frac{(-1,5,3)^T \cdot (2,-2,1)^T}{(2,-2,1)^T \cdot (2,-2,1)^T}\right)^T \\ &= \left(\frac{-1+10+6}{1+4+4}, \frac{4-10+12}{16+4+16}, \frac{-2-10+3}{4+4+1}\right)^T \\ &= \left(\frac{5}{3}, \frac{1}{6}, -1\right)^T \end{split}$$

 $\quad \text{and} \quad$

$$\begin{split} [\mathbf{v}]_{B} &= \left(\frac{(6,-2,2)^{T} \cdot (1,2,2)^{T}}{(1,2,2)^{T} \cdot (1,2,2)^{T}}, \frac{(6,-2,2)^{T} \cdot (-4,-2,4)^{T}}{(-4,-2,4)^{T} \cdot (-4,-2,4)^{T}}, \frac{(6,-2,2)^{T} \cdot (2,-2,1)^{T}}{(2,-2,1)^{T} \cdot (2,-2,1)^{T}}\right)^{T} \\ &= \left(\frac{6-4+4}{1+4+4}, \frac{-24+4+8}{16+4+16}, \frac{12+4+2}{4+4+1}\right)^{T} \\ &= \left(\frac{2}{3}, -\frac{1}{3}, 2\right)^{T}. \end{split}$$