MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

 COURSEWORK 9 - SOLUTIONS

 COURSEWORK 9 - SOLUTIONS}

Exercise (*) 1. The solutions will appear on WeBWork after CW9 due date.
Exercise 2. (a) We have

$$
\begin{align*}
\|\mathbf{x}+\mathbf{y}\|^{2} & =(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y}) \\
& =\mathbf{x} \cdot \mathbf{x}+\mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y} \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2(\mathbf{x} \cdot \mathbf{y}) \tag{1}
\end{align*}
$$

Now, by definition, x and y are orthogonal if and only if $x \cdot y=0$, so it follows from equation (1) that \mathbf{x} and \mathbf{y} are orthogonal if and only if

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
$$

(b) First observe that the inequality is clearly true if either of \mathbf{u} or \mathbf{v} are the zero vector, so we can assume that both are not the zero vector. In particular, $\|\mathbf{u}\| \neq 0$ and $\|\mathbf{v}\| \neq 0$. Taking $\mathbf{x}=\|\mathbf{u}\| \mathbf{v}$ and $\mathbf{y}=-\|\mathbf{v}\| \mathbf{u}$ in (1) as per the hint, we obtain

$$
\begin{aligned}
\|(\|\mathbf{u}\| \mathbf{v})+(-\|\mathbf{v}\| \mathbf{u})\|^{2} & =\|(\|\mathbf{u}\| \mathbf{v})\|^{2}+\|(-\|\mathbf{v}\| \mathbf{u})\|^{2}+2((\|\mathbf{u}\| \mathbf{v}) \cdot(-\|\mathbf{v}\| \mathbf{u})) \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}+(-\|\mathbf{v}\|)^{2}\|\mathbf{u}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \mathbf{v} \cdot \mathbf{u} \\
& =2\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \mathbf{v} \cdot \mathbf{u}
\end{aligned}
$$

Because the left-hand side above is non-negative, the right-hand side is also non-negative, so we have

$$
0 \leq 2\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \mathbf{v} \cdot \mathbf{u}
$$

or in other words,

$$
\begin{equation*}
\|\mathbf{u}\|\|\mid \mathbf{v}\| \mathbf{v} \cdot \mathbf{u} \leq\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \tag{2}
\end{equation*}
$$

Because we may assume that $\|\mathbf{u}\| \neq 0$ and $\|\mathbf{v}\| \neq 0$ (see above), we can divide both sides of the above inequality by $\|\mathbf{u}\|\|\|\mathbf{v}\|$ to obtain

$$
\mathbf{v} \cdot \mathbf{u} \leq\|\mathbf{u}\|\|\mathbf{v}\| .
$$

We're not quite finished yet, because we want to show that the absolute value of $\mathbf{v} \cdot \mathbf{u}$ is less than or equal to $\|\mathbf{u}\|\|\|\mathbf{v}\|$. However, if we run through the above argument again, except with $\mathbf{y}=+\|\mathbf{v}\| \mathbf{u}$, then we obtain

$$
\begin{equation*}
-\mathbf{v} \cdot \mathbf{u} \leq\|\mathbf{u}\|\| \| \mathbf{v} \| . \tag{3}
\end{equation*}
$$

Putting (2) and (3) together yields the desired inequality, namely

$$
|\mathbf{v} \cdot \mathbf{u}| \leq\|\mathbf{u}\|\|\mid \mathbf{v}\| .
$$

(c) Equation (1) and the Cauchy-Schwartz inequality (from part (b)) yield

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2(\mathbf{u} \cdot \mathbf{v}) \\
& \leq\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2|\mathbf{u} \cdot \mathbf{v}| \\
& \leq\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2\|\mathbf{u}\|\|\mathbf{v}\| \\
& =(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2}
\end{aligned}
$$

Now taking square roots of both sides gives the desired inequality, namely

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\| .
$$

Exercise 3. (a) As with all 'subspace' proofs, we must show three things: (i) H^{\perp} is non-empty, (ii) H^{\perp} is closed under addition, (iii) H^{\perp} is closed under scalar multiplication.
(i) Since the zero vector is orthogonal to every vector in \mathbb{R}^{n}, it is, in particular, orthogonal to every vector in H, so the zero vector is an element of H^{\perp} and hence H^{\perp} is non-empty.
(ii) Let $\mathbf{x}, \mathbf{y} \in H^{\perp}$. We must show that $\mathbf{x}+\mathbf{y} \in H^{\perp}$, i.e. we must show that $(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}=0$ for every $\mathbf{v} \in H$. Our strategy is the usual one for these kinds of proofs: use the fact that $\mathbf{x}, \mathbf{y} \in H^{\perp}$, i.e. that $\mathbf{x} \cdot \mathbf{v}=0$ and $\mathbf{y} \cdot \mathbf{v}=0$ for every $\mathbf{v} \in H$. This allows us to say that

$$
(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}=\mathbf{x} \cdot \mathbf{v}+\mathbf{y} \cdot \mathbf{v}=0+0=0
$$

which is what we wanted. Hence, H^{\perp} is indeed closed under addition.
(iii) Let $\mathbf{x} \in H^{\perp}$ and $\alpha \in \mathbb{R}$. We must show that $\alpha \mathbf{x} \in H^{\perp}$, i.e. that $(\alpha \mathbf{x}) \cdot \mathbf{v}=0$ for every $\mathbf{v} \in H$. Since we are assuming that $\mathbf{x} \cdot \mathbf{v}=0$, we can argue that

$$
(\alpha \mathbf{x}) \cdot \mathbf{v}=\alpha(\mathbf{x} \cdot \mathbf{v})=\alpha \cdot 0=0
$$

which is what we wanted. Hence, H^{\perp} is indeed closed under scalar multiplication.
(b) Suppose that $H=\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$, and let $\mathbf{x} \in \mathbb{R}^{n}$. If $\mathbf{x} \in H^{\perp}$ then \mathbf{x} is orthogonal to every vector in H, so in particular \mathbf{x} is orthogonal to the spanning vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$. It remains to prove the converse, i.e. that if \mathbf{x} is orthogonal to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ then it is orthogonal to every vector in H. If \mathbf{y} is any vector in H then we can write

$$
\mathbf{y}=\alpha_{1} \mathbf{v}_{1}+\ldots \alpha_{r} \mathbf{v}_{r}
$$

for some scalars $\alpha_{1}, \ldots, \alpha_{r}$. We therefore have

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{y} & =\mathbf{x} \cdot\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{r} \mathbf{v}_{r}\right) \\
& =\mathbf{x} \cdot\left(\alpha_{1} \mathbf{v}_{1}\right)+\cdots+\mathbf{x} \cdot\left(\alpha_{r} \mathbf{v}_{r}\right) \\
& =\alpha_{1}\left(\mathbf{x} \cdot \mathbf{v}_{1}\right)+\cdots+\alpha_{r}\left(\mathbf{x} \cdot \mathbf{v}_{r}\right) \\
& =\alpha_{1} \cdot 0+\cdots+\alpha_{r} \cdot 0 \\
& =0+\cdots+0 \\
& =0
\end{aligned}
$$

Hence, \mathbf{x} is indeed orthogonal to the arbitrary vector $\mathbf{y} \in H$, and so $x \in H^{\perp}$.
(c) Let r denote the dimension of H, and choose a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ for H. Form the $r \times n$ matrix A whose rows are the vectors $\mathbf{v}_{1}^{T}, \ldots, \mathbf{v}_{r}^{T}$. Then, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are linearly independent, they form a basis for the row space of A, so we have

$$
\operatorname{rank}(A)=r=\operatorname{dim}(H)
$$

On the other hand, by part (b), the nullspace of A is equal to H^{\perp} (i.e. the solutions of $A \mathbf{x}=\mathbf{0}$ are precisely the vectors that are orthogonal to all of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$, and by part (b)
these are precisely the vectors that are orthogonal to every vector in H). Hence, the nullity of A is the dimension of H^{\perp}, i.e.

$$
\operatorname{null}(A)=\operatorname{dim}\left(H^{\perp}\right)
$$

But now the rank-nullity theorem tells us that

$$
n=\operatorname{rank}(A)+\operatorname{null}(A)=\operatorname{dim}(H)+\operatorname{dim}\left(H^{\perp}\right)
$$

which is exactly what we wanted to prove.
Exercise 4. (a) Let A be the 2×3 matrix whose rows are \mathbf{u}^{T} and \mathbf{v}^{T}, i.e.

$$
A=\left(\begin{array}{lll}
1 & 1 & -1 \\
0 & 1 & -3
\end{array}\right)
$$

Then H^{\perp} is just the nullspace of A, i.e. the set of solutions of the linear system $A \mathbf{x}=\mathbf{0}$. Since A is already in row echelon form, we can easily find the solution set of this system. Letting α denote the free variable x_{3}, we find that $x_{2}=3 x_{3}=3 \alpha$ and $x_{1}=x_{3}-x_{2}=$ $\alpha-3 \alpha=-2 \alpha$, so we have

$$
H^{\perp}=N(A)=\left\{(-2 \alpha, 3 \alpha, \alpha)^{T}: \alpha \in \mathbb{R}\right\}=\operatorname{span}\left((-2,3,1)^{T}\right)
$$

In other words, $\{(-2,3,1)\}$ is a basis for H^{\perp}.
(b) H is a plane through the origin in \mathbb{R}^{3}, and H^{\perp} is the line through the origin which is perpendicular to this plane.

Exercise 5. (a) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent - and hence form a basis for the 3-dimensional vector space \mathbb{R}^{3} - because the matrix with columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ has nonzero determinant:

$$
\left|\begin{array}{ccc}
1 & -4 & 2 \\
2 & -2 & -2 \\
2 & 4 & 1
\end{array}\right|=\left|\begin{array}{ccc}
1 & -4 & 2 \\
0 & 6 & -6 \\
0 & 12 & -3
\end{array}\right| \begin{aligned}
& R_{2} \rightarrow R_{2}-2 R_{1}=1 \\
& R_{3} \rightarrow R_{3}-2 R_{1}
\end{aligned} \cdot\left|\begin{array}{cc}
6 & -6 \\
12 & -3
\end{array}\right|=-18+72=54 \neq 0
$$

To see that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthogonal set, we simply check that the three dot products $\mathbf{v}_{1} \cdot \mathbf{v}_{2}, \mathbf{v}_{1} \cdot \mathbf{v}_{3}$ and $\mathbf{v}_{2} \cdot \mathbf{v}_{3}$ are all equal to 0 :

$$
\begin{aligned}
& \mathbf{v}_{1} \cdot \mathbf{v}_{2}=1 \cdot(-4)+2 \cdot(-2)+2 \cdot 4=-4-4+8=0 \\
& \mathbf{v}_{1} \cdot \mathbf{v}_{3}=1 \cdot 2+2 \cdot(-2)+2 \cdot 1=2-4+2=0 \\
& \mathbf{v}_{2} \cdot \mathbf{v}_{3}=(-4) \cdot 2+(-2) \cdot(-2)+4 \cdot 1=-8+4+4=0 .
\end{aligned}
$$

(b) Since $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}, Theorem 6.13 from lectures tells us that the coordinate vector of a vector $\mathbf{y} \in \mathbb{R}^{3}$ with respect to the basis B is

$$
[\mathbf{y}]_{B}=\left(c_{1}, c_{2}, c_{3}\right)^{T} \quad \text { where } \quad c_{i}=\frac{\mathbf{y} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \quad \text { for each } \quad i \in\{1,2,3\}
$$

so we just need to apply this theorem to the given vectors $\mathbf{y}=\mathbf{u}$ and $\mathbf{y}=\mathbf{v}$. We calculate that

$$
\begin{aligned}
{[\mathbf{u}]_{B} } & =\left(\frac{(-1,5,3)^{T} \cdot(1,2,2)^{T}}{(1,2,2)^{T} \cdot(1,2,2)^{T}}, \frac{(-1,5,3)^{T} \cdot(-4,-2,4)^{T}}{(-4,-2,4)^{T} \cdot(-4,-2,4)^{T}}, \frac{(-1,5,3)^{T} \cdot(2,-2,1)^{T}}{(2,-2,1)^{T} \cdot(2,-2,1)^{T}}\right)^{T} \\
& =\left(\frac{-1+10+6}{1+4+4}, \frac{4-10+12}{16+4+16}, \frac{-2-10+3}{4+4+1}\right)^{T} \\
& =\left(\frac{5}{3}, \frac{1}{6},-1\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
\text { and } \\
\begin{aligned}
{[\mathbf{v}]_{B} } & =\left(\frac{(6,-2,2)^{T} \cdot(1,2,2)^{T}}{(1,2,2)^{T} \cdot(1,2,2)^{T}}, \frac{(6,-2,2)^{T} \cdot(-4,-2,4)^{T}}{(-4,-2,4)^{T} \cdot(-4,-2,4)^{T}}, \frac{(6,-2,2)^{T} \cdot(2,-2,1)^{T}}{(2,-2,1)^{T} \cdot(2,-2,1)^{T}}\right)^{T} \\
& =\left(\frac{6-4+4}{1+4+4}, \frac{-24+4+8}{16+4+16}, \frac{12+4+2}{4+4+1}\right)^{T} \\
& =\left(\frac{2}{3},-\frac{1}{3}, 2\right)^{T} .
\end{aligned}
\end{aligned}
$$

