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COURSEWORK 9 — SOLUTIONS

Exercise (∗) 1. The solutions will appear on WeBWork after CW9 due date.

Exercise 2. (a) We have

||x+ y||2 = (x+ y) · (x+ y)

= x · x+ x · y + y · x+ y · y
= ||x||2 + ||y||2 + 2(x · y)(1)

Now, by definition, x and y are orthogonal if and only if x·y = 0, so it follows from equation
(1) that x and y are orthogonal if and only if

||x+ y||2 = ||x||2 + ||y||2.

(b) First observe that the inequality is clearly true if either of u or v are the zero vector, so we
can assume that both are not the zero vector. In particular, ||u|| 6= 0 and ||v|| 6= 0. Taking
x = ||u||v and y = −||v||u in (1) as per the hint, we obtain

||(||u||v) + (−||v||u)||2 = ||(||u||v)||2 + ||(−||v||u)||2 + 2((||u||v) · (−||v||u))
= ||u||2||v||2 + (−||v||)2||u||2 − 2||u||||v||v · u
= 2||u||2||v||2 − 2||u||||v||v · u.

Because the left-hand side above is non-negative, the right-hand side is also non-negative,
so we have

0 ≤ 2||u||2||v||2 − 2||u||||v||v · u,

or in other words,

(2) ||u||||v||v · u ≤ ||u||2||v||2.

Because we may assume that ||u|| 6= 0 and ||v|| 6= 0 (see above), we can divide both sides
of the above inequality by ||u||||v|| to obtain

v · u ≤ ||u||||v||.

We’re not quite finished yet, because we want to show that the absolute value of v ·u is less
than or equal to ||u||||v||. However, if we run through the above argument again, except
with y = +||v||u, then we obtain

(3) −v · u ≤ ||u||||v||.

Putting (2) and (3) together yields the desired inequality, namely

|v · u| ≤ ||u||||v||.



(c) Equation (1) and the Cauchy–Schwartz inequality (from part (b)) yield

||u+ v||2 = ||u||2 + ||v||2 + 2(u · v)
≤ ||u||2 + ||v||2 + 2|u · v|
≤ ||u||2 + ||v||2 + 2||u||||v||
= (||u||+ ||v||)2.

Now taking square roots of both sides gives the desired inequality, namely

||u+ v|| ≤ ||u||+ ||v||.

Exercise 3. (a) As with all ‘subspace’ proofs, we must show three things: (i) H⊥ is non-empty,
(ii) H⊥ is closed under addition, (iii) H⊥ is closed under scalar multiplication.

(i) Since the zero vector is orthogonal to every vector in Rn, it is, in particular, orthogonal
to every vector in H, so the zero vector is an element of H⊥ and hence H⊥ is non-empty.

(ii) Let x,y ∈ H⊥. We must show that x+y ∈ H⊥, i.e. we must show that (x+y)·v = 0
for every v ∈ H. Our strategy is the usual one for these kinds of proofs: use the fact that
x,y ∈ H⊥, i.e. that x · v = 0 and y · v = 0 for every v ∈ H. This allows us to say that

(x+ y) · v = x · v + y · v = 0 + 0 = 0,

which is what we wanted. Hence, H⊥ is indeed closed under addition.
(iii) Let x ∈ H⊥ and α ∈ R. We must show that αx ∈ H⊥, i.e. that (αx) · v = 0 for

every v ∈ H. Since we are assuming that x · v = 0, we can argue that

(αx) · v = α(x · v) = α · 0 = 0,

which is what we wanted. Hence, H⊥ is indeed closed under scalar multiplication.
(b) Suppose that H = span(v1, . . . ,vr), and let x ∈ Rn. If x ∈ H⊥ then x is orthogonal to

every vector in H, so in particular x is orthogonal to the spanning vectors v1, . . . ,vr. It
remains to prove the converse, i.e. that if x is orthogonal to v1, . . . ,vr then it is orthogonal
to every vector in H. If y is any vector in H then we can write

y = α1v1 + . . . αrvr

for some scalars α1, . . . , αr. We therefore have

x · y = x · (α1v1 + · · ·+ αrvr)

= x · (α1v1) + · · ·+ x · (αrvr)

= α1(x · v1) + · · ·+ αr(x · vr)

= α1 · 0 + · · ·+ αr · 0
= 0 + · · ·+ 0

= 0.

Hence, x is indeed orthogonal to the arbitrary vector y ∈ H, and so x ∈ H⊥.
(c) Let r denote the dimension of H, and choose a basis v1, . . . ,vr for H. Form the r×n matrix

A whose rows are the vectors vT
1 , . . . ,v

T
r . Then, since v1, . . . ,vr are linearly independent,

they form a basis for the row space of A, so we have

rank(A) = r = dim(H).

On the other hand, by part (b), the nullspace of A is equal to H⊥ (i.e. the solutions of
Ax = 0 are precisely the vectors that are orthogonal to all of v1, . . . ,vr, and by part (b)



these are precisely the vectors that are orthogonal to every vector in H). Hence, the nullity
of A is the dimension of H⊥, i.e.

null(A) = dim(H⊥).

But now the rank–nullity theorem tells us that

n = rank(A) + null(A) = dim(H) + dim(H⊥),

which is exactly what we wanted to prove.

Exercise 4. (a) Let A be the 2× 3 matrix whose rows are uT and vT , i.e.

A =

(
1 1 −1
0 1 −3

)
.

Then H⊥ is just the nullspace of A, i.e. the set of solutions of the linear system Ax = 0.
Since A is already in row echelon form, we can easily find the solution set of this system.
Letting α denote the free variable x3, we find that x2 = 3x3 = 3α and x1 = x3 − x2 =
α− 3α = −2α, so we have

H⊥ = N(A) = {(−2α, 3α, α)T : α ∈ R} = span((−2, 3, 1)T ).
In other words, {(−2, 3, 1)} is a basis for H⊥.

(b) H is a plane through the origin in R3, and H⊥ is the line through the origin which is
perpendicular to this plane.

Exercise 5. (a) The vectors v1,v2,v3 are linearly independent — and hence form a basis for the
3-dimensional vector space R3 — because the matrix with columns v1,v2,v3 has nonzero
determinant:∣∣∣∣∣∣
1 −4 2
2 −2 −2
2 4 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −4 2
0 6 −6
0 12 −3

∣∣∣∣∣∣R2 → R2 − 2R1

R3 → R3 − 2R1

= 1 ·
∣∣∣∣ 6 −6
12 −3

∣∣∣∣ = −18 + 72 = 54 6= 0.

To see that v1,v2,v3 form an orthogonal set, we simply check that the three dot products
v1 · v2, v1 · v3 and v2 · v3 are all equal to 0:

v1 · v2 = 1 · (−4) + 2 · (−2) + 2 · 4 = −4− 4 + 8 = 0

v1 · v3 = 1 · 2 + 2 · (−2) + 2 · 1 = 2− 4 + 2 = 0

v2 · v3 = (−4) · 2 + (−2) · (−2) + 4 · 1 = −8 + 4 + 4 = 0.

(b) Since B = {v1,v2,v3} is an orthogonal basis for R3, Theorem 6.13 from lectures tells us
that the coordinate vector of a vector y ∈ R3 with respect to the basis B is

[y]B = (c1, c2, c3)
T where ci =

y · vi

vi · vi

for each i ∈ {1, 2, 3},

so we just need to apply this theorem to the given vectors y = u and y = v. We calculate
that

[u]B =

(
(−1, 5, 3)T · (1, 2, 2)T

(1, 2, 2)T · (1, 2, 2)T ,
(−1, 5, 3)T · (−4,−2, 4)T

(−4,−2, 4)T · (−4,−2, 4)T ,
(−1, 5, 3)T · (2,−2, 1)T

(2,−2, 1)T · (2,−2, 1)T

)T

=

(
−1 + 10 + 6

1 + 4 + 4
,
4− 10 + 12

16 + 4 + 16
,
−2− 10 + 3

4 + 4 + 1

)T

=

(
5

3
,
1

6
,−1

)T



and

[v]B =

(
(6,−2, 2)T · (1, 2, 2)T

(1, 2, 2)T · (1, 2, 2)T ,
(6,−2, 2)T · (−4,−2, 4)T

(−4,−2, 4)T · (−4,−2, 4)T ,
(6,−2, 2)T · (2,−2, 1)T

(2,−2, 1)T · (2,−2, 1)T

)T

=

(
6− 4 + 4

1 + 4 + 4
,
−24 + 4 + 8

16 + 4 + 16
,
12 + 4 + 2

4 + 4 + 1

)T

=

(
2

3
,−1

3
, 2

)T

.


