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COURSEWORK 8 — SOLUTIONS

Exercise (∗) 1. The solutions will appear on WeBWork after CW8 due date.

Exercise 2. (a) 0 is an eigenvalue of A if and only if det(A) = 0, which, by the Invertible
Matrix Theorem, is the case if and only if A is not invertible.

(b) Suppose that A is invertible. If λ is an eigenvalue of A with corresponding eigenvector v,
then

Av = λv.

Moreover, by part (a), λ 6= 0. To show that λ−1 is an eigenvalue of A−1, we must show that
A−1w = λ−1w for some nonzero vector w. In fact, we will show that we can take w = v.
Multiplying both sides of the equation Av = λv on the left by λ−1A−1, we obtain

λ−1A−1Av = λ−1λA−1v,

so

λ−1v = A−1v,

which is what we wanted. Conversely, suppose that λ−1 is an eigenvalue of A with eigenvector
v, that is,

A−1v = λ−1v .

Multiplying both sides of this equation on the left by λA, we obtain

λAA−1v = λλ−1Av ,

so

λv = Av,

i.e. λ is an eigenvalue of A.
(c) If λ is an eigenvalue of A with corresponding eigenvector v, then, as usual,

Av = λv.

To show that λn is an eigenvalue of An for every positive integer n, we must show that
Anw = λnw for some nonzero vector w. In fact, we will show that we can take w = v.
That is, we will show that

Anv = λnv

for every positive integer n. This is true for n = 2 because

A2v = A(Av) = A(λv) = λ(Av) = λλv = λ2v.

Now let’s finish the proof using induction. Suppose that we have proved the result for an
integer n− 1, i.e. we know that An−1v = λn−1v. We must now prove it for the integer n,
which we can do as follows:

Anv = A(An−1v) = A(λn−1v) = λn−1(Av) = λn−1(λv) = λnv.



Exercise 3. (a) Since 4 3 3
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the vector (3,−4, 2)T is indeed an eigenvector of A, corresponding to the eigenvalue 2.
(b) A straightforward but somewhat tedious calculation shows that the characteristic polynomial

of A, call if p, is

p(λ) = det(A− λI) = −λ3 + 4λ2 − 5λ+ 2.

The eigenvalues of A are the roots of p, i.e. the solutions of p(λ) = 0. One way to find the
roots is to observe from (a) that λ = 2 is a root of p, so that we can take out a factor λ− 2
and then use polynomial long division. Regardless of how you choose to do it, you should
find that

p(λ) = −(λ− 2)(λ2 − 2λ+ 1) = −(λ− 2)(λ− 1)2.

Hence, the eigenvalues of A are 1 and 2. To find the eigenspaces, we now just solve (in the
usual way) the linear system

(A− λI)x = 0

for each of the (two) eigenvalues λ that we found above. You should be very good at solving
linear systems by now, so I won’t write down the calculations, but you should find that the
eigenspace corresponding to λ = 1 is

N(A− I) = Span (v1,v2), where v1 =

−11
0

 , v2 =

−10
1

 ,

and that the eigenspace corresponding to λ = 2 is

N(A− 2I) = Span (v3), where v3 =

 3
−4
2

 .

(c) From (b) we see that A has three linearly independent eigenvectors (if this is not clear then
observe that the two eigenvectors corresponding to λ = 1 are clearly linearly independent,
and recall Theorem 5.7 in the lecture notes which guarantees that eigenvectors correspond-
ing to different eigenvalues are always linearly independent). Hence, the Diagonalisation
Theorem (5.8 in the lecture notes) tells us that A is diagonalisable. Moreover, the theorem
actually gives us a matrix P that diagonalises A: it’s just the matrix whose columns are the
eigenvectors of A. That is, if we now define

P =
(
v1 v2 v3

)
=

−1 −1 3
1 0 −4
0 1 2

 ,

then P is invertible and

P−1AP = D =

1 0 0
0 1 0
0 0 2

 .

We can check whether we have made any mistakes by calculating

AP =

 4 3 3
−4 −3 −4
2 2 3

−1 −1 3
1 0 −4
0 1 2

 =

−1 −1 6
1 0 −8
0 1 4





and

PD =

−1 −1 3
1 0 −4
0 1 2

1 0 0
0 1 0
0 0 2

 =

−1 −1 6
1 0 −8
0 1 4

 ,

which show that AP = PD as required.
(d) Since P−1AP = D it follows that

A = PDP−1 ,

and hence (as explained in more generality in lectures) that

A5 = PD5P−1 .

Therefore,

A5 =

−1 −1 3
1 0 −4
0 1 2

15 0 0
0 15 0
0 0 25

 4 5 4
−2 −2 −1
1 1 1

 =

 94 93 93
−124 −123 −124
62 62 63

 .

Exercise 4. As in the previous exercise, I’m going omit some of the details of various routine
calculations (of determinants, row operations, back substitution) in this exercise. You should be
very good by now at computing determinants and solving systems of linear equations via Gaussian
elimination/back substitution, so you shouldn’t need me to write down all the details.

(a) Let

A =

 6 4 2
−7 −6 −5
4 4 4

 .

Then

det(A− λ) = −λ3 + 4λ2 − 4λ = −λ(λ2 − 4λ+ 4) = −λ(λ− 2)2 ,

so the eigenvalues of A are λ1 = 0 and λ2 = 2. The corresponding eigenspaces, i.e. the
nullspaces N(A−λI) of the matrices A−λI (i.e. the sets of solutions of the linear systems
(A− λI)x = 0), are obtained as follows. For the eigenvalue λ1 = 0 we have

A− λ1I = A ∼

1 0 −1
0 1 2
0 0 0

 ,

so

N(A) = Span (v1) where v1 =

 1
−2
1

 .

For the eigenvalue λ2 = 2 we have

A− λ2I = A− 2I =

 4 4 2
−7 −8 −5
4 4 2

 ∼
1 0 −1
0 1 3/2
0 0 0

 ,

so

N(A− 2I) = Span (v2) where v2 =

 2
−3
2

 .

Since the 3× 3 matrix A has only 2 linearly independent eigenvectors, we conclude that A
is not diagonalisable.



(b) Let

A =


2 0 0 1
0 2 0 0
0 0 3 0
0 0 0 3

 .

Since A is (upper) triangular, we can immediately see that its eigenvalues are 2 and 3. The
corresponding eigenspaces are

N(A− 2I) = N



0 0 0 1
0 0 0 0
0 0 1 0
0 0 0 1


 = Span (v1,v2) where v1 =


1
0
0
0

 ,v2 =


0
1
0
0

 ,

and

N(A− 3I) = N



−1 0 0 1
0 −1 0 0
0 0 0 0
0 0 0 0


 = Span (v3,v4) where v3 =


0
0
1
0

 ,v4 =


1
0
0
1

 .

Since the 4× 4 matrix A has 4 linearly independent eigenvectors, A is diagonalisable and is
diagonalised by the matrix

P = (v1 v2 v3 v4) =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

i.e.

P−1AP = D =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3

 .

(c) This is very similar to (b). Let

A =


2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3

 .

Since A is (upper) triangular, we see immediately that its eigenvalues are 2 and 3. The
corresponding eigenspaces are

N(A− 2I) = Span (v1,v2) where v1 =


1
0
0
0

 ,v2 =


0
1
0
0

 ,

and

N(A− 3I) = Span (v3) where v3 =


0
0
1
0

 .

Since the 4×4 matrix A has only 3 linearly independent eigenvectors, it is not diagonalisable.


