MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2023/2024)

 COURSEWORK 8

 COURSEWORK 8}

WebWork submission of exercise marked (*) due: 11.59am on Monday 06 December 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 8 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023.
Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. Let A be a square matrix. Prove the following:
(a) 0 is an eigenvalue of A if and only if A is not invertible.
(b) If A is invertible, then λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1}.
(c) If λ is an eigenvalue of A and n is a positive integer, then λ^{n} is an eigenvalue of A^{n}.

Exercise 3. Let

$$
A=\left(\begin{array}{ccc}
4 & 3 & 3 \\
-4 & -3 & -4 \\
2 & 2 & 3
\end{array}\right)
$$

(a) Verify that $(3,-4,2)^{T}$ is an eigenvector of A, and find the corresponding eigenvalue.
(b) Determine all of the eigenvalues of A, and find bases for the corresponding eigenspaces. (Hint: you can use the eigenvalue from (a) to help factorise the characteristic polynomial.)
(c) Using (b), explain why A is diagonalisable and find a matrix P that diagonalises A. (Remember what this means: P should be invertible and $P^{-1} A P$ should be diagonal.)
(d) Using (c), compute A^{5}.

Exercise 4. For each of the following matrices, find all of the eigenvalues and find bases for the corresponding eigenspaces. Decide whether the matrix is diagonalisable. If it is, find a matrix that diagonalises it; if it is not, explain why.
(a) $\left(\begin{array}{ccc}6 & 4 & 2 \\ -7 & -6 & -5 \\ 4 & 4 & 4\end{array}\right)$,
(b) $\left(\begin{array}{llll}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$,
(c) $\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\end{array}\right)$.

