MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2023/2024)

 COURSEWORK 7

 COURSEWORK 7}

WebWork submission of exercise marked (*) due:
11.59am on Wednesday 06 December 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 7 at:

> https://webwork.qmul.ac.uk/webwork2/MTH5112-2023.

Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. Let $L: V \rightarrow W$ be a linear transformation, and suppose that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ spans V. Prove that the set $\left\{L\left(\mathbf{v}_{1}\right), \ldots, L\left(\mathbf{v}_{n}\right)\right\}$ spans $\operatorname{im}(L)$.
Exercise 3. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear operator defined by

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
16 x_{1}-20 x_{2}-16 x_{3} \\
-10 x_{2} \\
48 x_{1}-48 x_{3}
\end{array}\right) .
$$

(1) Find bases for the image and the kernel of L.
(2) Hence, determine the rank and the nullity of L, and verify that the Rank-Nullity Theorem holds for this linear transformation.
(3) Find the matrix $A \in \mathbb{R}^{3 \times 3}$ associated with L, i.e., such that

$$
L(\mathbf{x})=A \mathbf{x}
$$

for all $\mathbf{x} \in \mathbb{R}^{3}$.

