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COURSEWORK 6 — SOLUTIONS

Exercise (∗) 1. The solutions will appear on WeBWork after CW6 due date.

Exercise 2. Let {v1, . . . ,vr} be a basis for L ∩M . In particular, this set is linearly independent
in both L and M , so, by a result from lectures, it can be completed to bases of L and M , i.e., we
can find u1, . . . ,us in L and w1, . . . ,wt in M so that {v1, . . . ,vr,u1, . . . ,us} is a basis for L, and
{v1, . . . ,vr,w1, . . . ,wt} is a basis for M .

It suffices to show that

B = {v1, . . . ,vr,u1, . . . ,us,w1, . . . ,wt}
is a basis for L+M , since it would then follow that

dim(L+M) + dim(L ∩M) = (r + s+ t) + r = (r + s) + (r + t) = dim(L) + dim(M).

To see that B is linearly independent, assume that
r∑

i=1

αivi +
s∑

j=1

βjuj +
t∑

k=1

γkwk = 0.

Then we have
r∑

i=1

αivi +
s∑

j=1

βjuj = −
t∑

k=1

γkwk,

where the left hand side is a vector in L, and the right hand side is a vector in M , hence both are
actually in L ∩M . Thus, there exist some scalars δi so that

−
t∑

k=1

γkwk =
r∑

i=1

δivi,

i.e.,
r∑

i=1

δivi +
t∑

k=1

γkwk = 0.

Since {v1, . . . ,vr,w1, . . . ,wt} is a basis for M , it is linearly independent and it follows that δi = 0
for i = 1, . . . , r and γk = 0 for k = 1, . . . , t. By substituting γk = 0 in the above, we see that

r∑
i=1

αivi +
s∑

j=1

βjuj = 0,

so using the fact that {v1, . . . ,vr,u1, . . . ,us} is a basis for L, we deduce that αi = 0 for i = 1, . . . , r
and βj = 0 for j = 1, . . . , s.

To summarise, all αi, βj and γk must be 0, and we have proved linear independence of B.
To see that B is spanning set for L+M , note that an arbitrary vector x ∈ L+M can be written

as x = y + z, where y ∈ L, and z ∈M . These vectors can be expressed in terms of bases as

y =
r∑

i=1

αivi +
s∑

j=1

βjuj, and z =
r∑

i=1

α′
ivi +

t∑
k=1

γkwk



for some αi, α
′
i, βj, γk. Thus,

x = y + z =
r∑

i=1

(αi + α′
i)vi +

s∑
j=1

βjuj +
t∑

k=1

γkwk,

showing that

x ∈ Span(v1, . . . ,vr,u1, . . . ,us,w1, . . . ,wr) = Span(B),

and we are done.

Exercise 3. First put A to row echelon form:

A =

1 −1 3 1 2
2 −2 6 3 0
3 −3 9 4 2


∼

1 −1 3 1 2
0 0 0 1 −4
0 0 0 1 −4

R2 → R2 − 2R1

R3 → R3 − 3R1

∼

1 −1 3 1 2
0 0 0 1 −4
0 0 0 0 0


R3 → R3 −R2

.

Call the final matrix U . When regarded as elements of R5 (i.e. as column vectors), the nonzero
rows of U form a basis for row(A), so 


1
−1
3
1
2

 ,


0
0
0
1
−4




is a basis for row(A). Now look at the columns of U . The first and fourth columns contain the
leading 1s, and a basis for col(A) is obtained by taking the corresponding columns of the original
matrix A (not of the REF matrix U). Therefore,

1
2
3

 ,

1
3
4


is a basis for col(A) (this is highlighted in red/boldface in the above calculation). In order to
determine a basis for N(A) we solve Ux = 0 in the usual way (using back substitution): setting
x2 = α, x3 = β, and x5 = γ, we find x4 = 4x5 = 4γ, and x1 = x2−3x3−x4−2x5 = α−3β−6γ.
Thus, every solution of Ax = 0 has the form

α− 3β − 6γ
α
β
4γ
γ

 = α


1
1
0
0
0


︸ ︷︷ ︸
=x1

+β


−3
0
1
0
0


︸ ︷︷ ︸

=x2

+γ


−6
0
0
4
1


︸ ︷︷ ︸

=x3

,

for some α, β, γ, and so {x1,x2,x3} is a basis for N(A).



Since the bases for row(A) and N(A) found above have two and three elements, respectively, we
have

rank (A) = 2 and null (A) = 3.

Hence, rank (A) + null (A) = 3 + 2 = 5, so the Rank–Nullity Theorem holds for the matrix A.

Exercise 4. By the Invertible Matrix Theorem, A is invertible if and only if N(A) = {0}, i.e. A is
invertible if and only if null (A) = 0. By the Rank–Nullity Theorem, rank (A) = n− null (A), so A
is invertible if and only if rank (A) = n.

Exercise 5. (a) Yes, e.g. 
1 0 0
0 0 0
0 0 0
0 0 0


has rank 1 and nullity 2. (If this is not clear then you should check it!)

(b) No, this is not possible. The Rank–Nullity Theorem says that for every 3× 4 matrix A, we
have rank (A) + null (A) = 4, so no 3 × 4 matrix can have rank 2 and nullity 1 because
these numbers add up to 3 6= 4.


