MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra COURSEWORK 6 - SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW6 due date.
Exercise 2. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ be a basis for $L \cap M$. In particular, this set is linearly independent in both L and M, so, by a result from lectures, it can be completed to bases of L and M, i.e., we can find $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s}$ in L and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{t}$ in M so that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{s}\right\}$ is a basis for L, and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{t}\right\}$ is a basis for M.

It suffices to show that

$$
B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{s}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{t}\right\}
$$

is a basis for $L+M$, since it would then follow that

$$
\operatorname{dim}(L+M)+\operatorname{dim}(L \cap M)=(r+s+t)+r=(r+s)+(r+t)=\operatorname{dim}(L)+\operatorname{dim}(M) .
$$

To see that B is linearly independent, assume that

$$
\sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i}+\sum_{j=1}^{s} \beta_{j} \mathbf{u}_{j}+\sum_{k=1}^{t} \gamma_{k} \mathbf{w}_{k}=\mathbf{0} .
$$

Then we have

$$
\sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i}+\sum_{j=1}^{s} \beta_{j} \mathbf{u}_{j}=-\sum_{k=1}^{t} \gamma_{k} \mathbf{w}_{k}
$$

where the left hand side is a vector in L, and the right hand side is a vector in M, hence both are actually in $L \cap M$. Thus, there exist some scalars δ_{i} so that

$$
-\sum_{k=1}^{t} \gamma_{k} \mathbf{w}_{k}=\sum_{i=1}^{r} \delta_{i} \mathbf{v}_{i}
$$

i.e.,

$$
\sum_{i=1}^{r} \delta_{i} \mathbf{v}_{i}+\sum_{k=1}^{t} \gamma_{k} \mathbf{w}_{k}=\mathbf{0}
$$

Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{t}\right\}$ is a basis for M, it is linearly independent and it follows that $\delta_{i}=0$ for $i=1, \ldots, r$ and $\gamma_{k}=0$ for $k=1, \ldots, t$. By substituting $\gamma_{k}=0$ in the above, we see that

$$
\sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i}+\sum_{j=1}^{s} \beta_{j} \mathbf{u}_{j}=\mathbf{0}
$$

so using the fact that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{s}\right\}$ is a basis for L, we deduce that $\alpha_{i}=0$ for $i=1, \ldots, r$ and $\beta_{j}=0$ for $j=1, \ldots, s$.

To summarise, all α_{i}, β_{j} and γ_{k} must be 0 , and we have proved linear independence of B.
To see that B is spanning set for $L+M$, note that an arbitrary vector $\mathbf{x} \in L+M$ can be written as $\mathbf{x}=\mathbf{y}+\mathbf{z}$, where $\mathbf{y} \in L$, and $\mathbf{z} \in M$. These vectors can be expressed in terms of bases as

$$
\mathbf{y}=\sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i}+\sum_{j=1}^{s} \beta_{j} \mathbf{u}_{j}, \text { and } \mathbf{z}=\sum_{i=1}^{r} \alpha_{i}^{\prime} \mathbf{v}_{i}+\sum_{k=1}^{t} \gamma_{k} \mathbf{w}_{k}
$$

for some $\alpha_{i}, \alpha_{i}^{\prime}, \beta_{j}, \gamma_{k}$. Thus,

$$
\mathbf{x}=\mathbf{y}+\mathbf{z}=\sum_{i=1}^{r}\left(\alpha_{i}+\alpha_{i}^{\prime}\right) \mathbf{v}_{i}+\sum_{j=1}^{s} \beta_{j} \mathbf{u}_{j}+\sum_{k=1}^{t} \gamma_{k} \mathbf{w}_{k},
$$

showing that

$$
\mathbf{x} \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{s}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right)=\operatorname{Span}(B),
$$

and we are done.
Exercise 3. First put A to row echelon form:

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
1 & -1 & 3 & 1 & 2 \\
2 & -2 & 6 & 3 & 0 \\
3 & -3 & 9 & 4 & 2
\end{array}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & -1 & 3 & 1 & 2 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1 & -4
\end{array}\right) R_{2} \rightarrow R_{2}-2 R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& \sim\left(\begin{array}{ccccc}
1 & -1 & 3 & 1 & 2 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) R_{3} \rightarrow R_{3}-R_{2}
\end{aligned}
$$

Call the final matrix U. When regarded as elements of \mathbb{R}^{5} (i.e. as column vectors), the nonzero rows of U form a basis for $\operatorname{row}(A)$, so

$$
\left\{\left(\begin{array}{c}
1 \\
-1 \\
3 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-4
\end{array}\right)\right\}
$$

is a basis for $\operatorname{row}(A)$. Now look at the columns of U. The first and fourth columns contain the leading 1 s , and a basis for $\operatorname{col}(A)$ is obtained by taking the corresponding columns of the original matrix A (not of the REF matrix U). Therefore,

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)\right\}
$$

is a basis for $\operatorname{col}(A)$ (this is highlighted in red/boldface in the above calculation). In order to determine a basis for $N(A)$ we solve $U \mathbf{x}=\mathbf{0}$ in the usual way (using back substitution): setting $x_{2}=\alpha, x_{3}=\beta$, and $x_{5}=\gamma$, we find $x_{4}=4 x_{5}=4 \gamma$, and $x_{1}=x_{2}-3 x_{3}-x_{4}-2 x_{5}=\alpha-3 \beta-6 \gamma$. Thus, every solution of $A \mathbf{x}=\mathbf{0}$ has the form

$$
\left(\begin{array}{c}
\alpha-3 \beta-6 \gamma \\
\alpha \\
\beta \\
4 \gamma \\
\gamma
\end{array}\right)=\alpha \underbrace{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)}_{=\mathbf{x}_{1}}+\beta \underbrace{\left(\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right)}_{=\mathbf{x}_{2}}+\gamma \underbrace{\left(\begin{array}{c}
-6 \\
0 \\
0 \\
4 \\
1
\end{array}\right)}_{=\mathbf{x}_{3}},
$$

for some α, β, γ, and so $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is a basis for $N(A)$.

Since the bases for $\operatorname{row}(A)$ and $N(A)$ found above have two and three elements, respectively, we have

$$
\operatorname{rank}(A)=2 \quad \text { and } \quad \operatorname{null}(A)=3
$$

Hence, $\operatorname{rank}(A)+\operatorname{null}(A)=3+2=5$, so the Rank-Nullity Theorem holds for the matrix A.
Exercise 4. By the Invertible Matrix Theorem, A is invertible if and only if $N(A)=\{0\}$, i.e. A is invertible if and only if null $(A)=0$. By the Rank-Nullity Theorem, $\operatorname{rank}(A)=n-\operatorname{null}(A)$, so A is invertible if and only if $\operatorname{rank}(A)=n$.

Exercise 5. (a) Yes, e.g.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

has rank 1 and nullity 2. (If this is not clear then you should check it!)
(b) No, this is not possible. The Rank-Nullity Theorem says that for every 3×4 matrix A, we have $\operatorname{rank}(A)+\operatorname{null}(A)=4$, so no 3×4 matrix can have rank 2 and nullity 1 because these numbers add up to $3 \neq 4$.

