MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2023/2024)

 COURSEWORK 6

 COURSEWORK 6}

WebWork submission of exercise marked (*) due:
11.59am on Wednesday 22 November 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 6 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023.
Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. Let V be a finite dimensional vector space, and let U and W be subspaces of V. Recall (from CW2 and lectures notes week 3, page 31) that $L \cap M$ and

$$
L+M=\operatorname{Span}(L \cup M)=\{\mathbf{u}+\mathbf{v}: \mathbf{u} \in L, \mathbf{v} \in M\}
$$

are both subspaces of V. Prove the modular law

$$
\operatorname{dim}(L+M)+\operatorname{dim}(L \cap M)=\operatorname{dim}(L)+\operatorname{dim}(M) .
$$

Exercise 3. Let

$$
A=\left(\begin{array}{lllll}
1 & -1 & 3 & 1 & 2 \\
2 & -2 & 6 & 3 & 0 \\
3 & -3 & 9 & 4 & 2
\end{array}\right)
$$

Find bases for the row space, column space, and null space of A. Hence, determine the rank and the nullity of A, and verify that the Rank-Nullity Theorem holds for this particular matrix.

Exercise 4. Use the Rank-Nullity Theorem to prove that an $n \times n$ matrix A is invertible if and only if $\operatorname{rank}(A)=n$.

Exercise 5. Is it possible to construct matrices with the following properties?
(a) A 4×3 matrix with rank 1 and nullity 2 ?
(b) A 3×4 matrix with rank 2 and nullity 1 ?

If you think the answer is "yes", give an example; if you think the answer is "no", explain why such a matrix cannot exist.

