MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 5 — SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW5 due date.

Exercise 2. (a) Because (as you can check)

$$\begin{vmatrix} 1 & 0 & -3 \\ -2 & 1 & 6 \\ 0 & 1 & 1 \end{vmatrix} = 1 \neq 0 \quad \text{and} \quad \begin{vmatrix} 1 & 2 & 1 \\ 3 & 0 & 0 \\ -1 & 1 & 1 \end{vmatrix} = -3 \neq 0,$$

Theorem 4.12 from lectures tells us that \mathcal{B}_1 and \mathcal{B}_2 are both linearly independent. Since both sets contain 3 vectors in the 3-dimensional vector space \mathbb{R}^3 , both are therefore bases for \mathbb{R}^3 .

(b) By definition, the transition matrix from \mathcal{B}_2 to the standard basis of \mathbb{R}^3 is the matrix whose columns are the vectors in \mathcal{B}_2 , i.e.

$$P_{\mathcal{B}_2} = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 0 & 0 \\ -1 & 1 & 1 \end{pmatrix}.$$

(c) Notice that the question asks you to determine the transition matrix from the standard basis to \mathcal{B}_1 , which is the *inverse* of the transition matrix $P_{\mathcal{B}_1}$ from \mathcal{B}_1 to the standard basis:

$$P_{\mathcal{B}_1}^{-1} = \begin{pmatrix} 1 & 0 & -3 \\ -2 & 1 & 6 \\ 0 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -5 & -3 & 3 \\ 2 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix}.$$

(I'll omit the details of how to compute this inverse using the Gauss–Jordan algorithm, because you should know how to do that by now.) The transition matrix from \mathcal{B}_2 to \mathcal{B}_1 is therefore

$$P_{\mathcal{B}_1}^{-1} P_{\mathcal{B}_2} = \begin{pmatrix} -17 & -7 & -2 \\ 5 & 4 & 2 \\ -6 & -3 & -1 \end{pmatrix}.$$

(d) We have

$$[\mathbf{x}]_{\mathcal{B}_1} = P_{\mathcal{B}_1}^{-1} P_{\mathcal{B}_2}[\mathbf{x}]_{\mathcal{B}_2} = \begin{pmatrix} -17 & -7 & -2 \\ 5 & 4 & 2 \\ -6 & -3 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix}.$$

Exercise 3. (a) We know that P_2 has dimension 3, so we just need to check that the three vectors $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ are linearly independent. We must therefore assume that

$$c_1\mathbf{p}_1 + c_2\mathbf{p}_2 + c_3\mathbf{p}_3 = \mathbf{0},$$

and show that this assumption implies that $c_1=c_2=c_3=0$. For each $t\in\mathbb{R}$ we have

$$0 = c_1 \mathbf{p}_1(t) + c_2 \mathbf{p}_2(t) + c_3 \mathbf{p}_3(t)$$

= $c_1(t^2 - 4t + 2) + c_2(t + 3) + c_3 \cdot 1$
= $c_1 t^2 + (c_2 - 4c_1)t + (2c_1 + 3c_2 + c_3),$

and so we obtain the following linear system for the unknowns c_1, c_2, c_3 :

$$c_1 = 0$$

$$-4c_1 + c_2 = 0$$

$$2c_1 + 3c_2 + c_3 = 0.$$

Although we could now use Gaussian elimination, it is reasonably clear that this system has only the trivial solution: the first equation says that $c_1 = 0$, then the second equation gives $c_2 = -4c_1 = 0$, and similarly the third equation then gives $c_3 = 0$. Therefore, $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ are linearly independent (and hence a basis for P_2 , as explained above).

(b) By definition, $[\mathbf{p}]_{\mathcal{B}} = (-1, 3, 2)^T$ means that

$$\mathbf{p}(t) = -\mathbf{p}_1(t) + 3\mathbf{p}_2(t) + 2\mathbf{p}_3(t)$$

= $-t^2 + 7t + 9$.

(c) We must find scalars c_1, c_2, c_3 such that $c_1\mathbf{p}_1 + c_2\mathbf{p}_2 + c_3\mathbf{p}_3 = \mathbf{q}$. Using similar working to that in part (a), we see that we must therefore find c_1, c_2, c_3 such that

$$c_1t^2 + (c_2 - 4c_1)t + (2c_1 + 3c_2 + c_3) = -t^2 + 6$$

for all $t \in \mathbb{R}$. Comparing powers of t now gives us the following system of equations for c_1, c_2, c_3 :

$$c_1 = -3$$

$$-4c_1 + c_2 = 0$$

$$2c_1 + 3c_2 + c_3 = 6.$$

The (unique) solution is $c_1 = -1$, $c_2 = -4$ and $c_3 = 20$, and so

$$[\mathbf{q}]_{\mathcal{B}} = \begin{pmatrix} -1\\ -4\\ 20 \end{pmatrix}.$$