MTH5112 Linear Algebra I
 MTH5212 Applied Linear Algebra

COURSEWORK 5 - SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW5 due date.

Exercise 2. (a) Because (as you can check)

$$
\left|\begin{array}{ccc}
1 & 0 & -3 \\
-2 & 1 & 6 \\
0 & 1 & 1
\end{array}\right|=1 \neq 0 \quad \text { and } \quad\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right|=-3 \neq 0
$$

Theorem 4.12 from lectures tells us that \mathcal{B}_{1} and \mathcal{B}_{2} are both linearly independent. Since both sets contain 3 vectors in the 3 -dimensional vector space \mathbb{R}^{3}, both are therefore bases for \mathbb{R}^{3}.
(b) By definition, the transition matrix from \mathcal{B}_{2} to the standard basis of \mathbb{R}^{3} is the matrix whose columns are the vectors in \mathcal{B}_{2}, i.e.

$$
P_{\mathcal{B}_{2}}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

(c) Notice that the question asks you to determine the transition matrix from the standard basis to \mathcal{B}_{1}, which is the inverse of the transition matrix $P_{\mathcal{B}_{1}}$ from \mathcal{B}_{1} to the standard basis:

$$
P_{\mathcal{B}_{1}}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -3 \\
-2 & 1 & 6 \\
0 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
-5 & -3 & 3 \\
2 & 1 & 0 \\
-2 & -1 & 1
\end{array}\right)
$$

(I'll omit the details of how to compute this inverse using the Gauss-Jordan algorithm, because you should know how to do that by now.) The transition matrix from \mathcal{B}_{2} to \mathcal{B}_{1} is therefore

$$
P_{\mathcal{B}_{1}}^{-1} P_{\mathcal{B}_{2}}=\left(\begin{array}{ccc}
-17 & -7 & -2 \\
5 & 4 & 2 \\
-6 & -3 & -1
\end{array}\right) .
$$

(d) We have

$$
[\mathbf{x}]_{\mathcal{B}_{1}}=P_{\mathcal{B}_{1}}^{-1} P_{\mathcal{B}_{2}}[\mathbf{x}]_{\mathcal{B}_{2}}=\left(\begin{array}{ccc}
-17 & -7 & -2 \\
5 & 4 & 2 \\
-6 & -3 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right)
$$

Exercise 3. (a) We know that P_{2} has dimension 3, so we just need to check that the three vectors $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ are linearly independent. We must therefore assume that

$$
c_{1} \mathbf{p}_{1}+c_{2} \mathbf{p}_{2}+c_{3} \mathbf{p}_{3}=\mathbf{0}
$$

and show that this assumption implies that $c_{1}=c_{2}=c_{3}=0$. For each $t \in \mathbb{R}$ we have

$$
\begin{aligned}
0 & =c_{1} \mathbf{p}_{1}(t)+c_{2} \mathbf{p}_{2}(t)+c_{3} \mathbf{p}_{3}(t) \\
& =c_{1}\left(t^{2}-4 t+2\right)+c_{2}(t+3)+c_{3} \cdot 1 \\
& =c_{1} t^{2}+\left(c_{2}-4 c_{1}\right) t+\left(2 c_{1}+3 c_{2}+c_{3}\right),
\end{aligned}
$$

and so we obtain the following linear system for the unknowns c_{1}, c_{2}, c_{3} :

$$
\begin{aligned}
c_{1} & =0 \\
-4 c_{1}+c_{2} & =0 \\
2 c_{1}+3 c_{2}+c_{3} & =0 .
\end{aligned}
$$

Although we could now use Gaussian elimination, it is reasonably clear that this system has only the trivial solution: the first equation says that $c_{1}=0$, then the second equation gives $c_{2}=-4 c_{1}=0$, and similarly the third equation then gives $c_{3}=0$. Therefore, $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ are linearly independent (and hence a basis for P_{2}, as explained above).
(b) By definition, $[\mathbf{p}]_{\mathcal{B}}=(-1,3,2)^{T}$ means that

$$
\begin{aligned}
\mathbf{p}(t) & =-\mathbf{p}_{1}(t)+3 \mathbf{p}_{2}(t)+2 \mathbf{p}_{3}(t) \\
& =-t^{2}+7 t+9
\end{aligned}
$$

(c) We must find scalars c_{1}, c_{2}, c_{3} such that $c_{1} \mathbf{p}_{1}+c_{2} \mathbf{p}_{2}+c_{3} \mathbf{p}_{3}=\mathbf{q}$. Using similar working to that in part (a), we see that we must therefore find c_{1}, c_{2}, c_{3} such that

$$
c_{1} t^{2}+\left(c_{2}-4 c_{1}\right) t+\left(2 c_{1}+3 c_{2}+c_{3}\right)=-t^{2}+6
$$

for all $t \in \mathbb{R}$. Comparing powers of t now gives us the following system of equations for c_{1}, c_{2}, c_{3} :

$$
\begin{array}{rlr}
c_{1} & =-1 \\
-4 c_{1}+c_{2} & =0 \\
2 c_{1}+3 c_{2}+c_{3} & =6 .
\end{array}
$$

The (unique) solution is $c_{1}=-1, c_{2}=-4$ and $c_{3}=20$, and so

$$
[\mathbf{q}]_{\mathcal{B}}=\left(\begin{array}{c}
-1 \\
-4 \\
20
\end{array}\right)
$$

