MTH5112 Linear Algebra I

COURSEWORK 5

WebWork submission of exercise marked (*) due: 11.59am on Wednesday 22November 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 5 at:

```
https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.
```

Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. Consider the following subsets of \mathbb{R}^3 :

 $\mathcal{B}_1 = \{(1,-2,0)^T, (0,1,1)^T, (-3,6,1)^T\} \quad \text{and} \quad \mathcal{B}_2 = \{(1,3,-1)^T, (2,0,1)^T, (1,0,1)^T\}.$

- (a) Prove that \mathcal{B}_1 and \mathcal{B}_2 are bases for \mathbb{R}^3 .
- (b) What is the transition matrix from \mathcal{B}_2 to the standard basis?
- (c) Determine the transition matrix from the standard basis to \mathcal{B}_1 , and hence determine the transition matrix from \mathcal{B}_2 to \mathcal{B}_1 .
- (d) If $\mathbf{x} \in \mathbb{R}^3$ has coordinate vector $(1, -3, 2)^T$ with respect to the basis \mathcal{B}_2 , then what is the coordinate vector of \mathbf{x} with respect to \mathcal{B}_1 ?

Exercise 3. Let $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \in P_2$ be given by

$$\mathbf{p}_1(t) = t^2 - 4t + 2, \quad \mathbf{p}_2(t) = t + 3, \quad \mathbf{p}_3(t) = 1.$$

- (a) Prove that $\mathcal{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a basis for P_2 .
- (b) If $\mathbf{p} \in P_2$ has coordinate vector $[\mathbf{p}]_{\mathcal{B}} = (-1, 3, 2)^T$ with respect to the basis \mathcal{B} , then what is \mathbf{p} ?
- (c) Consider the polynomial $\mathbf{q} \in P_2$ given by $\mathbf{q}(t) = -t^2 + 6$. Find the coordinates of \mathbf{q} with respect to the basis \mathcal{B} .