MTH5112 Linear Algebra I
 COURSEWORK 5

WebWork submission of exercise marked (*) due:
11.59am on Wednesday 22November 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 5 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.
Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. Consider the following subsets of \mathbb{R}^{3} :

$$
\mathcal{B}_{1}=\left\{(1,-2,0)^{T},(0,1,1)^{T},(-3,6,1)^{T}\right\} \quad \text { and } \quad \mathcal{B}_{2}=\left\{(1,3,-1)^{T},(2,0,1)^{T},(1,0,1)^{T}\right\} .
$$

(a) Prove that \mathcal{B}_{1} and \mathcal{B}_{2} are bases for \mathbb{R}^{3}.
(b) What is the transition matrix from \mathcal{B}_{2} to the standard basis?
(c) Determine the transition matrix from the standard basis to \mathcal{B}_{1}, and hence determine the transition matrix from \mathcal{B}_{2} to \mathcal{B}_{1}.
(d) If $\mathbf{x} \in \mathbb{R}^{3}$ has coordinate vector $(1,-3,2)^{T}$ with respect to the basis \mathcal{B}_{2}, then what is the coordinate vector of x with respect to \mathcal{B}_{1} ?

Exercise 3. Let $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3} \in P_{2}$ be given by

$$
\mathbf{p}_{1}(t)=t^{2}-4 t+2, \quad \mathbf{p}_{2}(t)=t+3, \quad \mathbf{p}_{3}(t)=1
$$

(a) Prove that $\mathcal{B}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a basis for P_{2}.
(b) If $\mathbf{p} \in P_{2}$ has coordinate vector $[\mathbf{p}]_{\mathcal{B}}=(-1,3,2)^{T}$ with respect to the basis \mathcal{B}, then what is p ?
(c) Consider the polynomial $\mathbf{q} \in P_{2}$ given by $\mathbf{q}(t)=-t^{2}+6$. Find the coordinates of \mathbf{q} with respect to the basis \mathcal{B}.

