MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

 COURSEWORK 4 - SOLUTIONS

 COURSEWORK 4 - SOLUTIONS}

Exercise (*) 1. The solutions will appear on WeBWork after CW4 due date.
Exercise 2. (a) Theorem 4.38 from lectures says that every set of more than 3 vectors in \mathbb{R}^{3} is linearly dependent, so in particular these 4 vectors are linearly dependent.
(b) Theorem 4.12 from lectures says that 3 vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$ are linearly independent if and only if the matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ has non-zero determinant. Since

$$
\left|\begin{array}{ccc}
2 & 1 & 3 \\
-1 & 3 & 2 \\
5 & 2 & 7
\end{array}\right|=0
$$

as you should be able to check, we see that the given vectors are linearly dependent.
(c) The given vectors are linearly independent because

$$
\left|\begin{array}{ccc}
3 & 3 & -6 \\
-2 & -1 & 4 \\
1 & 4 & -1
\end{array}\right|=3 \neq 0
$$

Since there are 3 vectors and \mathbb{R}^{3} has dimension 3 , the vectors form a basis for \mathbb{R}^{3}
(d) A set of two vectors is linearly dependent if and only if one of the vectors is a scalar multiple of the other. Since this is clearly not the case for the two given vectors, they are linearly independent. However, they do not form a basis for \mathbb{R}^{3}, because \mathbb{R}^{3} has dimension $3>2$.

Exercise 3. (a) Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span V, every other vector $\mathbf{v} \in V$ can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, and so by definition of linear independence, the set $\left\{\mathbf{v}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ cannot be linearly independent.
(b) The set $S \backslash\left\{\mathbf{v}_{1}\right\}=\left\{\mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ does not span V because \mathbf{v}_{1} cannot be written as a linear combination of $\mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. (If \mathbf{v}_{1} could be written as such a linear combination, then S would not have been linearly independent, contrary to our assumption.)
(c) Write $\mathbf{v}_{i}=A \mathbf{x}_{i}$ for each $i \in\{0, \ldots, n\}$, and suppose that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

for some scalars c_{1}, \ldots, c_{n}. We are trying to show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent, so we must show that c_{1}, \ldots, c_{n} are all equal to 0 . We can re-write the above equation as

$$
\mathbf{0}=c_{1}\left(A \mathbf{x}_{1}\right)+\cdots+c_{n}\left(A \mathbf{x}_{n}\right)=A\left(c_{1} \mathbf{x}_{1}+\cdots c_{n} \mathbf{x}_{n}\right)
$$

Since A is invertible, the system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, and so we may conclude that the vector

$$
c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}
$$

must be $\mathbf{0}$. However, the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are linearly independent (by assumption), so this implies that $c_{1}=\cdots=c_{n}=0$, which is what we were trying to prove.

Exercise 4. Note that this is Theorem 4.32 from the lecture notes. Suppose that we can write \mathbf{v} as two linear combinations:

$$
\begin{align*}
& \mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n} \tag{1}\\
& \mathbf{v}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n} \tag{2}
\end{align*}
$$

Note that subtracting (2) from (1) gives

$$
\begin{equation*}
\left(\alpha_{1}-\beta_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha_{n}-\beta_{n}\right) \mathbf{v}_{n}=\mathbf{0} \tag{3}
\end{equation*}
$$

Now suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent. We must prove that the linear combinations (1) and (2) are actually the same. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent, we know that the system (3) has only the trivial solution, i.e. $\alpha_{1}-\beta_{1}=\cdots=\alpha_{n}-\beta_{n}=0$. Hence, $\alpha_{i}=\beta_{i}$ for each $i \in\{1, \ldots, n\}$, and so the two linear combinations are indeed the same.

Conversely, if the linear combinations (1) and (2) are actually different, then we must have $\alpha_{i} \neq \beta_{i}$ for some i, and hence (3) has a non-trivial solution (because the weight $\alpha_{i}-\beta_{i}$ of \mathbf{v}_{i} is not 0), which means that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are not linearly independent.

Exercise 5. (a) Using the hint, we can write every $\mathbf{p} \in H$ in the form

$$
\begin{aligned}
\mathbf{p}(t) & =(t-1)\left(a t^{2}+b t+c\right) \\
& =a t^{2}(t-1)+b t(t-1)+c(t-1)
\end{aligned}
$$

for some scalars a, b, c. From this we immediately see that H is spanned by the polynomials $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ given by

$$
\mathbf{p}_{1}(t)=t^{2}(t-1), \quad \mathbf{p}_{2}(t)=t(t-1), \quad \mathbf{p}_{3}(t)=t-1
$$

If we can show that $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ are linearly independent, then we will have found a basis for H and be able to conclude that H has dimension 3. Suppose therefore that

$$
c_{1} \mathbf{p}_{1}+c_{2} \mathbf{p}_{2}+c_{3} \mathbf{p}_{3}=\mathbf{0}
$$

for some scalars c_{1}, c_{2}, c_{3}. We must prove that $c_{1}=c_{2}=c_{3}=0$. The above equation says that, for every $t \in \mathbb{R}$, we have

$$
c_{1} t^{2}(t-1)+c_{2} t(t-1)+c_{3}(t-1)=0
$$

or in other words,

$$
c_{1} t^{3}+\left(c_{2}-c_{1}\right) t^{2}+\left(c_{3}-c_{2}\right) t-c_{3}=0
$$

Since the polynomial on the left-hand side above must evaluate to 0 for every $t \in \mathbb{R}$, it must be that case that all of its coefficients are equal to 0 . This gives us a system of four equations for the three unknowns c_{1}, c_{2}, c_{3}, and you can easily check that this system has only the trivial solution $c_{1}=c_{2}=c_{3}=0$ (indeed, two of the equations say that $c_{1}=0$ and $c_{3}=0$, and then either of the remaining two equations gives $c_{2}=0$). Therefore, $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ are indeed linearly independent, and hence form a basis for H. In particular, $\operatorname{dim}(H)=3$.
(b) By definition, the subspace H is the solution set of the linear system

$$
\begin{aligned}
r-2 s+t+3 u & =0 \\
s+t-4 u & =0 .
\end{aligned}
$$

The free variables are t and u, and the leading variables are r and s. Writing $\alpha=t$ and $\beta=u$, we find that $s=-\alpha+4 \beta$ and then $r=2(4 \beta-\alpha)-\alpha-3 \beta=-3 \alpha+5 \beta$. Therefore,

$$
\begin{aligned}
H & =\left\{(-3 \alpha+5 \beta,-\alpha+4 \beta, \alpha, \beta)^{T}: \alpha, \beta \in \mathbb{R}\right\} \\
& =\left\{\alpha(-3,-1,1,0)^{T}+\beta(5,4,0,1)^{T}: \alpha, \beta \in \mathbb{R}\right\} \\
& =\operatorname{span}\left((-3,-1,1,0)^{T},(5,4,0,1)^{T}\right)
\end{aligned}
$$

Moreover, the vectors $(-3,-1,1,0)^{T}$ and $(5,4,0,1)^{T}$ are linearly independent because they are not scalar multiples of each other, so in fact they form a basis for H. Hence, H has dimension 2.
(c) The set H of upper triangular matrices in $\mathbb{R}^{3 \times 3}$ is spanned by the six matrices

$$
\begin{array}{ll}
E_{11}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & E_{12}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{13}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
E_{22}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), & E_{23}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad E_{33}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),
\end{array}
$$

because any upper triangular matrix

$$
\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
0 & c_{22} & c_{23} \\
0 & 0 & c_{33}
\end{array}\right)
$$

can be written as the linear combination

$$
c_{11} E_{11}+c_{12} E_{12}+c_{13} E_{13}+c_{22} E_{22}+c_{23} E_{23}+c_{33} E_{33} .
$$

Moreover, $E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33}$ are linearly independent (and hence a basis for H), because if we attempt to set the above linear combination equal to the zero matrix then we must clearly have $c_{11}, c_{12}, c_{13}, c_{22}, c_{23}, c_{33}$ all equal to 0 . In particular, $\operatorname{dim}(H)=6$.

