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COURSEWORK 4 — SOLUTIONS

Exercise (∗) 1. The solutions will appear on WeBWork after CW4 due date.

Exercise 2. (a) Theorem 4.38 from lectures says that every set of more than 3 vectors in R3

is linearly dependent, so in particular these 4 vectors are linearly dependent.
(b) Theorem 4.12 from lectures says that 3 vectors v1,v2,v3 ∈ R3 are linearly independent if

and only if the matrix whose columns are v1,v2,v3 has non-zero determinant. Since∣∣∣∣∣∣
2 1 3
−1 3 2
5 2 7

∣∣∣∣∣∣ = 0,

as you should be able to check, we see that the given vectors are linearly dependent.
(c) The given vectors are linearly independent because∣∣∣∣∣∣

3 3 −6
−2 −1 4
1 4 −1

∣∣∣∣∣∣ = 3 6= 0.

Since there are 3 vectors and R3 has dimension 3, the vectors form a basis for R3

(d) A set of two vectors is linearly dependent if and only if one of the vectors is a scalar multiple
of the other. Since this is clearly not the case for the two given vectors, they are linearly
independent. However, they do not form a basis for R3, because R3 has dimension 3 > 2.

Exercise 3. (a) Since v1, . . . ,vn span V , every other vector v ∈ V can be written as a linear
combination of v1, . . . ,vn, and so by definition of linear independence, the set {v,v1, . . . ,vn}
cannot be linearly independent.

(b) The set S \ {v1} = {v2, . . . ,vn} does not span V because v1 cannot be written as a linear
combination of v2, . . . ,vn. (If v1 could be written as such a linear combination, then S
would not have been linearly independent, contrary to our assumption.)

(c) Write vi = Axi for each i ∈ {0, . . . , n}, and suppose that

c1v1 + · · ·+ cnvn = 0

for some scalars c1, . . . , cn. We are trying to show that v1, . . . ,vn are linearly independent,
so we must show that c1, . . . , cn are all equal to 0. We can re-write the above equation as

0 = c1(Ax1) + · · ·+ cn(Axn) = A(c1x1 + · · · cnxn).

Since A is invertible, the system Ax = 0 has only the trivial solution, and so we may
conclude that the vector

c1x1 + · · ·+ cnxn

must be 0. However, the vectors x1, . . . ,xn are linearly independent (by assumption), so
this implies that c1 = · · · = cn = 0, which is what we were trying to prove.



Exercise 4. Note that this is Theorem 4.32 from the lecture notes. Suppose that we can write v
as two linear combinations:

v = α1v1 + · · ·+ αnvn,(1)

v = β1v1 + · · ·+ βnvn.(2)

Note that subtracting (2) from (1) gives

(3) (α1 − β1)v1 + · · ·+ (αn − βn)vn = 0.

Now suppose that v1, . . . ,vn are linearly independent. We must prove that the linear combinations
(1) and (2) are actually the same. Since v1, . . . ,vn are linearly independent, we know that the
system (3) has only the trivial solution, i.e. α1 − β1 = · · · = αn − βn = 0. Hence, αi = βi for each
i ∈ {1, . . . , n}, and so the two linear combinations are indeed the same.

Conversely, if the linear combinations (1) and (2) are actually different, then we must have αi 6= βi
for some i, and hence (3) has a non-trivial solution (because the weight αi − βi of vi is not 0),
which means that v1, . . . ,vn are not linearly independent.

Exercise 5. (a) Using the hint, we can write every p ∈ H in the form

p(t) = (t− 1)(at2 + bt+ c)

= at2(t− 1) + bt(t− 1) + c(t− 1)

for some scalars a, b, c. From this we immediately see that H is spanned by the polynomials
p1,p2,p3 given by

p1(t) = t2(t− 1), p2(t) = t(t− 1), p3(t) = t− 1.

If we can show that p1,p2,p3 are linearly independent, then we will have found a basis for
H and be able to conclude that H has dimension 3. Suppose therefore that

c1p1 + c2p2 + c3p3 = 0

for some scalars c1, c2, c3. We must prove that c1 = c2 = c3 = 0. The above equation says
that, for every t ∈ R, we have

c1t
2(t− 1) + c2t(t− 1) + c3(t− 1) = 0,

or in other words,

c1t
3 + (c2 − c1)t2 + (c3 − c2)t− c3 = 0.

Since the polynomial on the left-hand side above must evaluate to 0 for every t ∈ R, it
must be that case that all of its coefficients are equal to 0. This gives us a system of four
equations for the three unknowns c1, c2, c3, and you can easily check that this system has
only the trivial solution c1 = c2 = c3 = 0 (indeed, two of the equations say that c1 = 0 and
c3 = 0, and then either of the remaining two equations gives c2 = 0). Therefore, p1,p2,p3

are indeed linearly independent, and hence form a basis for H. In particular, dim(H) = 3.
(b) By definition, the subspace H is the solution set of the linear system

r − 2s+ t+ 3u = 0

s+ t− 4u = 0.



The free variables are t and u, and the leading variables are r and s. Writing α = t and
β = u, we find that s = −α+4β and then r = 2(4β−α)−α−3β = −3α+5β. Therefore,

H = {(−3α + 5β,−α + 4β, α, β)T : α, β ∈ R}
= {α(−3,−1, 1, 0)T + β(5, 4, 0, 1)T : α, β ∈ R}
= span((−3,−1, 1, 0)T , (5, 4, 0, 1)T ).

Moreover, the vectors (−3,−1, 1, 0)T and (5, 4, 0, 1)T are linearly independent because they
are not scalar multiples of each other, so in fact they form a basis for H. Hence, H has
dimension 2.

(c) The set H of upper triangular matrices in R3×3 is spanned by the six matrices

E11 =

1 0 0
0 0 0
0 0 0

 , E12 =

0 1 0
0 0 0
0 0 0

 , E13 =

0 0 1
0 0 0
0 0 0

 ,

E22 =

0 0 0
0 1 0
0 0 0

 , E23 =

0 0 0
0 0 1
0 0 0

 , E33 =

0 0 0
0 0 0
0 0 1

 ,

because any upper triangular matrixc11 c12 c13
0 c22 c23
0 0 c33


can be written as the linear combination

c11E11 + c12E12 + c13E13 + c22E22 + c23E23 + c33E33.

Moreover, E11, E12, E13, E22, E23, E33 are linearly independent (and hence a basis for H),
because if we attempt to set the above linear combination equal to the zero matrix then we
must clearly have c11, c12, c13, c22, c23, c33 all equal to 0. In particular, dim(H) = 6.


