MTH5112 Linear Algebra I

COURSEWORK 4

WebWork submission of **exercise marked** (*) due: 11.59am on Wednesday 01 November 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork **Set 4** at:

```
https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.
```

Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. Determine which of the following sets of vectors in \mathbb{R}^3 are linearly independent, and which of the linearly independent sets are bases for \mathbb{R}^3 :

- (a) $(1,1,1)^T$, $(3,4,3)^T$, $(2,1,3)^T$, $(1,1,3)^T$;
- (b) $(2,-1,5)^T$, $(1,3,2)^T$, $(3,2,7)^T$; (c) $(3,3,-6)^T$, $(-2,-1,4)^T$, $(1,4,-1)^T$; (d) $(1,2,3)^T$, $(4,5,0)^T$.

Exercise 3. Prove the following statements.

- (a) If $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is a spanning set for a vector space V, then the set $S \cup {\mathbf{v}}$ is linearly dependent for every vector $\mathbf{v} \in V \setminus S$.
- (b) If $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is a linearly independent set of vectors in a vector space V, then the set $S \setminus \{\mathbf{v}_1\}$ does not span V.
- (c) If $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are linearly independent vectors in \mathbb{R}^n , and A is an invertible $n \times n$ matrix, then the vectors $A\mathbf{x}_1, \ldots, A\mathbf{x}_k$ are also linearly independent.

Exercise 4. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors in a vector space V, and let $\mathbf{v} \in \text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$. Prove that v can be written as a linear combination of v_1, \ldots, v_n in a *unique* way (that is, with uniquely determined weights/coefficients) if and only if $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Exercise 5. In each of the following cases, find a basis for the subspace H of the vector space V(and *prove* that it is a basis), and thereby determine the dimension of H.

- (a) $V = P_3$ and $H = \{ \mathbf{p} \in P_3 : \mathbf{p}(1) = 0 \}$. (Hint: every polynomial in H can be written in the form $\mathbf{p}(t) = (t-1)(at^2 + bt + c)$ for some $a, b, c \in \mathbb{R}$.)
- (b) $V = \mathbb{R}^4$ and $H = \{(r, s, t, u)^T : r 2s + t + 3u = 0 \text{ and } s + t 4u = 0\}.$
- (c) $V = \mathbb{R}^{3 \times 3}$ and H is the set of upper triangular matrices.