MTH5112 Linear Algebra I

 COURSEWORK 4

 COURSEWORK 4}

WebWork submission of exercise marked (*) due: 11.59am on Wednesday 01 November 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 4 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.
Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.
Exercise 2. Determine which of the following sets of vectors in \mathbb{R}^{3} are linearly independent, and which of the linearly independent sets are bases for \mathbb{R}^{3} :
(a) $(1,1,1)^{T},(3,4,3)^{T},(2,1,3)^{T},(1,1,3)^{T}$;
(b) $(2,-1,5)^{T},(1,3,2)^{T},(3,2,7)^{T}$;
(c) $(3,3,-6)^{T},(-2,-1,4)^{T},(1,4,-1)^{T}$;
(d) $(1,2,3)^{T},(4,5,0)^{T}$.

Exercise 3. Prove the following statements.
(a) If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for a vector space V, then the set $S \cup\{\mathbf{v}\}$ is linearly dependent for every vector $\mathbf{v} \in V \backslash S$.
(b) If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set of vectors in a vector space V, then the set $S \backslash\left\{\mathbf{v}_{1}\right\}$ does not span V.
(c) If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are linearly independent vectors in \mathbb{R}^{n}, and A is an invertible $n \times n$ matrix, then the vectors $A \mathbf{x}_{1}, \ldots, A \mathbf{x}_{k}$ are also linearly independent.

Exercise 4. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V, and let $\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. Prove that \mathbf{v} can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a unique way (that is, with uniquely determined weights/coefficients) if and only if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Exercise 5. In each of the following cases, find a basis for the subspace H of the vector space V (and prove that it is a basis), and thereby determine the dimension of H.
(a) $V=P_{3}$ and $H=\left\{\mathbf{p} \in P_{3}: \mathbf{p}(1)=0\right\}$. (Hint: every polynomial in H can be written in the form $\mathbf{p}(t)=(t-1)\left(a t^{2}+b t+c\right)$ for some $a, b, c \in \mathbb{R}$.)
(b) $V=\mathbb{R}^{4}$ and $H=\left\{(r, s, t, u)^{T}: r-2 s+t+3 u=0\right.$ and $\left.s+t-4 u=0\right\}$.
(c) $V=\mathbb{R}^{3 \times 3}$ and H is the set of upper triangular matrices.

