MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 3 - SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW3 due date.
Exercise 2. Each of the sets S_{1}, S_{2}, S_{3} contains four vectors in \mathbb{R}^{4}, call them $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. These vectors span \mathbb{R}^{4} if, given any vector $\mathbf{w}=(a, b, c, d)^{T} \in \mathbb{R}^{4}$, we can find scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ such that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=\mathbf{w}
$$

This is just a linear system in the unknowns $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, and so $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ span \mathbb{R}^{4} precisely if this system has a solution for every $\mathbf{w} \in \mathbf{R}^{4}$. Therefore, we can just form an augmented matrix (with columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ and \mathbf{w}) and attempt to solve the system in the usual way.
(a) The augmented matrix is

$$
\begin{aligned}
\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & a \\
2 & -1 & 0 & 2 & b \\
0 & 1 & 3 & -3 & c \\
0 & 0 & 1 & -1 & d
\end{array}\right) & \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & a \\
0 & -1 & 0 & 0 & b-2 a \\
0 & 1 & 3 & -3 & c \\
0 & 0 & 1 & -1 & d
\end{array}\right) R_{2} \rightarrow R_{2}-2 R_{1} \\
& \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & a \\
0 & -1 & 0 & 0 & b-2 a \\
0 & 0 & 3 & -3 & c+b-2 a \\
0 & 0 & 1 & -1 & d
\end{array}\right) R_{3} \rightarrow R_{3}+R_{2} \\
& \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & a \\
0 & -1 & 0 & 0 & b-2 a \\
0 & 0 & 3 & -3 & c+b-2 a \\
0 & 0 & 0 & 0 & d-\frac{1}{3}(c+b-2 a)
\end{array}\right) \xrightarrow{R_{4} \rightarrow R_{4}-\frac{1}{3} R_{3}}
\end{aligned}
$$

From the final row we see that $d-\frac{1}{3}(c+b-2 a)$ must be equal to 0 . Therefore, the vectors in the set S_{1} do not span \mathbb{R}^{4}, because in order for the above system to have a solution, the vector $\mathbf{w}=(a, b, c, d)^{T}$ must at least be chosen in such a way that $d-\frac{1}{3}(c+b-2 a)=0$, i.e. the system will not have a solution for every choice of \mathbf{w}.
(b) The augmented matrix is

$$
\left(\begin{array}{llll|l}
1 & 0 & 0 & 1 & a \\
0 & 1 & 0 & 1 & b \\
0 & 0 & 1 & 1 & c \\
0 & 0 & 0 & 1 & d
\end{array}\right)
$$

from which we immediately see that the system has a unique solution for each choice of $\mathbf{w}=(a, b, c, d)^{T}$: the fourth row says that $\alpha_{4}=d$; then the third row says that $\alpha_{3}+\alpha_{4}=c$, i.e. $\alpha_{3}=c-\alpha_{4}=c-d$; then similarly the second row says that $\alpha_{2}=b-\alpha_{4}=b-d$; and
finally the first row says that $\alpha_{1}=a-\alpha_{4}=a-d$. In other words, we have

$$
\begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) & =\alpha_{1}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+\alpha_{3}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+\alpha_{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \\
& =(a-d)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+(b-d)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+(c-d)\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+d\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) .
\end{aligned}
$$

Therefore, the set S_{2} spans \mathbb{R}^{4}.
(c) The augmented matrix is

$$
\left(\begin{array}{cccc|c}
-1 & 2 & 0 & 1 & a \\
0 & 1 & 1 & 1 & b \\
1 & 0 & -1 & 1 & c \\
0 & 0 & 0 & 0 & d
\end{array}\right)
$$

and we immediately see that the last row forces d to be equal to 0 . Therefore, the vectors in the given set S_{3} do not span \mathbb{R}^{4}, because the above system can only have a solution if the vector $\mathbf{w}=(a, b, c, d)^{T}$ is chosen with $d=0$.

Exercise 3. We must show that

$$
\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)=\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

for every choice of vector $\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, and we will do this by proving that each of these two sets is a subset of the other.

To show that $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a subset of $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)$, we must take an arbitrary vector \mathbf{u} in $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)$ and prove that \mathbf{u} is also contained in $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. This is easy: since $\mathbf{u} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, the definition of "span" says that there exist scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+\cdots c_{n} \mathbf{v}_{n}
$$

but we can just re-write this equation as

$$
\mathbf{u}=\left(c_{1} \mathbf{v}_{1}+\cdots c_{n} \mathbf{v}_{n}\right)+0 \mathbf{v}
$$

from which we see that $\mathbf{u} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)$.
To show that $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)$ is a subset of $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, we must take an arbitrary vector \mathbf{w} in $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)$ and prove that \mathbf{w} is also contained in $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. We know that

$$
\mathbf{w}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}+\gamma \mathbf{v}
$$

for some scalars $\beta_{1}, \ldots, \beta_{n}, \gamma$. On the other hand, since $\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, there are scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots \alpha_{n} \mathbf{v}_{n}
$$

and so in fact we can write

$$
\begin{aligned}
\mathbf{w} & =\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}+\gamma\left(\alpha_{1} \mathbf{v}_{1}+\cdots \alpha_{n} \mathbf{v}_{n}\right) \\
& =\left(\beta_{1}+\gamma \alpha_{1}\right) \mathbf{v}_{1}+\cdots+\left(\beta_{n}+\gamma \alpha_{1}\right) \mathbf{v}_{n}
\end{aligned}
$$

That is, we have found a way to write \mathbf{w} as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, so we have $\mathbf{w} \in$ $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$.

Exercise 4. (a) Every diagonal 2×2 matrix has $(1,2)$ and $(2,1)$ entries equal to 0 , so every linear combination of diagonal matrices also has $(1,2)$ and $(2,1)$ entries equal to 0 . Hence, for example, the matrix

$$
A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

cannot be written as a linear combination of diagonal matrices because its $(2,1)$ entry is not 0 , and so the set of diagonal matrices does not span $\mathbb{R}^{2 \times 2}$.
(b) Every upper triangular 2×2 matrix has $(2,1)$ entry equal to 0 , so every linear combination of upper triangular matrices also has $(2,1)$ entry equal to 0 . In particular, the matrix A in part (a) cannot be written as a linear combination of upper triangular matrices because its $(2,1)$ entry is not 0 , so the set of upper triangular matrices does not span $\mathbb{R}^{2 \times 2}$.
(c) Every symmetric 2×2 matrix has $(1,2)$ and $(2,1)$ entries that are equal to each other, so every linear combination of symmetric matrices also has this property. Hence, again, the matrix A in part (a) cannot be written as a linear combination of symmetric matrices, because its $(1,2)$ and $(2,1)$ entries are not equal (the former is 0 while the latter is 1). Therefore, the set of symmetric matrices does not span $\mathbb{R}^{2 \times 2}$.

Exercise 5. (a) If \mathbf{p} is any linear combination of \mathbf{p}_{1} and \mathbf{p}_{2}, then we have

$$
\mathbf{p}(x)=\alpha_{1} \mathbf{p}_{1}(x)+\alpha_{2} \mathbf{p}_{2}(x)=\alpha_{1} x^{2}+\alpha_{2} x+\left(\alpha_{1}-\alpha_{2}\right)
$$

for some scalars α_{1}, α_{2}. Therefore, a polynomial $a x^{2}+b x+c$ can only be written as a linear combination of \mathbf{p}_{1} and \mathbf{p}_{2} if the coefficient c is equal to $a-b$. Hence, for example, the polynomial $2 x^{2}+x$ cannot be written a linear combination of \mathbf{p}_{1} and \mathbf{p}_{2}, so $S_{1}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$ does not span P_{2}.
(b) If we want to write a polynomial \mathbf{q} with $\mathbf{q}(x)=a x^{2}+b x+c$ as a linear combination of the given polynomials $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$ then we must find scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that

$$
a x^{2}+b x+c=\alpha_{1}\left(2 x^{2}-1\right)+\alpha_{2}(x+1)+\alpha_{3}(x+2)
$$

for all $x \in \mathbb{R}$. Rearranging the right-hand side, this means that

$$
a x^{2}+b x+c=\left(2 \alpha_{1}\right) x^{2}+\left(\alpha_{2}+\alpha_{3}\right)+\left(\alpha_{2}+2 \alpha_{3}-\alpha_{1}\right)
$$

for all $x \in \mathbb{R}$. Therefore, the coefficients of the various powers of x must agree on both sides of the equation, and so we obtain a linear system for the (unknown) scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$:

$$
\begin{aligned}
2 \alpha_{1} & =a \\
\alpha_{2}+\alpha_{3} & =b \\
-\alpha_{1}+\alpha_{2}+2 \alpha_{3} & =c .
\end{aligned}
$$

This system has a unique solution for every choice of $(a, b, c)^{T}$, given by

$$
\alpha_{1}=\frac{a}{2}, \quad \alpha_{2}=-\frac{a}{2}+2 b-c, \quad \alpha_{3}=\frac{a}{2}-b+c .
$$

In other words, we can always write \mathbf{q} as a linear combination of $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$ as follows:

$$
a x^{2}+b x+c=\frac{a}{2}\left(2 x^{2}-1\right)+\left(-\frac{a}{2}+2 b-c\right)(x+1)+\left(\frac{a}{2}-b+c\right)(x+2),
$$

and so S_{2} does span P_{2}.
(c) If \mathbf{r} is any linear combination of $\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{r}_{3} then

$$
\mathbf{r}(x)=\alpha_{1}\left(x^{2}+2\right)+\alpha_{2}\left(x^{2}+5\right)+\alpha_{3}=\left(\alpha_{1}+\alpha_{2}\right) x^{2}+\left(2 \alpha_{1}+5 \alpha_{2}+\alpha_{3}\right)
$$

for some scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Therefore, a polynomial $a x^{2}+b x+c$ can only be written as a linear combination of $\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{r}_{3} if the coefficient b of x is equal to 0 . Hence, for example,
the polynomial x cannot be written as a linear combination of $\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{r}_{3}, and so these polynomials do not span P_{2}.

Exercise 6. (a) This is very similar to an example from lectures. Essentially, H is a subspace because the condition that defines whether $(x, y, z)^{T}$ is an element of H is a homogeneous linear equation in x, y and z. Let's prove this properly, though. H contains the zero vector $(0,0,0)^{T}$ because the coordinates of this vector certainly satisfy the given equation, i.e. $0+0+0=0$; in particular, H is non-empty. To prove closure of H under addition, we must take two arbitrary vectors $\mathbf{v}=(x, y, z)^{T}$ and $\mathbf{w}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}$ in H, and show that their sum $\mathbf{v}+\mathbf{w}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)^{T}$ is also an element of H, i.e. that $\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=0$. Since \mathbf{v} and \mathbf{w} are in H, we know that $x+y+z=0$ and $x^{\prime}+y^{\prime}+z^{\prime}=0$, so we get what we want pretty easily:

$$
\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=(x+y+z)+\left(z^{\prime}+y^{\prime}+z^{\prime}\right)=0+0=0 .
$$

Therefore, H is closed under addition. To show that H is closed under scalar multiplication, we must take an arbitrary vector $\mathbf{v}=(x, y, z)^{T}$ in H and an arbitrary scalar α, and show that the vector $\alpha \mathbf{v}=(\alpha x, \alpha y, \alpha x)^{T}$ is an element of H, i.e. that its components satisfy the equation $(\alpha x)+(\alpha y)+(\alpha z)=0$. Again, this is easy once we realise that we can use the fact that $x+y+z=0$ (based on the assumption that $\mathbf{v} \in H$):

$$
(\alpha x)+(\alpha y)+(\alpha z)=\alpha(x+y+z)=\alpha \cdot 0=0
$$

Therefore, H is closed scalar multiplication. This completes the proof that H is a subspace.
Now let's write down a spanning set for H. By definition, the vectors in H have the form $(x, y,-x-y)^{T}$, because they must satisfy the equation $x+y+z=0$, which says that $z=-x-y$. However, every vector of the form $(x, y,-x-y)^{T}$ can be written as

$$
(x, y,-x-y)^{T}=x(1,0,-1)^{T}+y(0,1,-1)^{T}
$$

i.e. a linear combination of the two vectors $(1,0,-1)^{T}$ and $(0,1,-1)^{T}$ with weights/coefficients x and y, respectively. Therefore, $\left\{(1,0,-1)^{T},(0,1,-1)^{T}\right\}$ is a spanning set for H.
(b) The 2×2 zero matrix is certainly symmetric, so H is non-empty. We stated in lectures that the sum of any two symmetric matrices is symmetric (Proposition 2.16), and you were asked to prove this as an exercise, so we already know that H is closed under addition. It is also immediate from the definition of "scalar multiplication" of matrices that H is closed under scalar multiplication, because if a matrix $A=\left(a_{i j}\right)_{2 \times 2}$ is symmetric then $a_{12}=a_{21}$, and so the $(1,2)$ and $(2,1)$ entries αa_{12} and αa_{21} of any scalar multiple αA of A are also equal to each other. Hence, H is indeed a subspace of $\mathbb{R}^{2 \times 2}$.

Let's now write down a spanning set for H. Every symmetric 2×2 matrix has the form

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

for some $a, b, c \in \mathbb{R}$. However, we can re-write this as

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

i.e. as a linear combination of the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

with weights a, b, c respectively. Therefore, these three matrices span H.
(c) Note that the polynomials in H are simply those whose x coefficient equals $0 . H$ contains the zero polynomial (and so in particular is non-empty) because the zero polynomial can be written in the required form $a x^{2}+c$ if we choose $a=c=0 . H$ is closed under addition because if we take any $\mathbf{p}, \mathbf{q} \in H$, say $\mathbf{p}(x)=a x^{2}+c$ and $\mathbf{q}(x)=a^{\prime} x^{2}+c^{\prime}$, then $\mathbf{p}+\mathbf{q}$ is also in H because

$$
(\mathbf{p}+\mathbf{q})(x)=\left(a x^{2}+c\right)+\left(a^{\prime} x^{2}+c^{\prime}\right)=\left(a+a^{\prime}\right) x^{2}+\left(c+c^{\prime}\right)
$$

which is the required form for a polynomial to be in H. Similarly, H is closed under scalar multiplication because for any scalar α we have

$$
(\alpha \mathbf{p})(x)=(\alpha a) x^{2}+(\alpha c) .
$$

Therefore, H is a subspace of P_{2}.
It remains to write down a spanning set for H that contains two vectors. Consider the polynomials $\mathbf{p}_{1}, \mathbf{p}_{2}$ given by $\mathbf{p}_{1}(x)=x^{2}$ and $\mathbf{p}_{2}(x)=1$. Both are elements of H because both have the form $a x^{2}+c$ for some a and c (take $a=1$ and $c=0$ for \mathbf{p}_{1}, and take $a=0$ and $c=1$ for \mathbf{p}_{2}). Moreover, an arbitrary polynomial $a x^{2}+c$ in H can be expressed as a linear combination of \mathbf{p}_{1} and \mathbf{p}_{2} because

$$
a x^{2}+c=a \mathbf{p}_{1}(x)+c \mathbf{p}_{2}(x),
$$

i.e. the weights of the linear combination are a and c, respectively. Therefore, $H=$ $\operatorname{span}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$.

