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COURSEWORK 3 — SOLUTIONS

Exercise (∗) 1. The solutions will appear on WeBWork after CW3 due date.

Exercise 2. Each of the sets S1, S2, S3 contains four vectors in R4, call them v1, v2, v3, v4. These
vectors span R4 if, given any vector w = (a, b, c, d)T ∈ R4, we can find scalars α1, α2, α3, α4 such
that

α1v1 + α2v2 + α3v3 + α4v4 = w.

This is just a linear system in the unknowns α1, α2, α3, α4, and so v1, v2, v3, v4 span R4 precisely
if this system has a solution for every w ∈ R4. Therefore, we can just form an augmented matrix
(with columns v1, v2, v3, v4 and w) and attempt to solve the system in the usual way.

(a) The augmented matrix is
1 0 0 1 a
2 −1 0 2 b
0 1 3 −3 c
0 0 1 −1 d

 ∼

1 0 0 1 a
0 −1 0 0 b− 2a
0 1 3 −3 c
0 0 1 −1 d

R2 → R2 − 2R1

∼


1 0 0 1 a
0 −1 0 0 b− 2a
0 0 3 −3 c+ b− 2a
0 0 1 −1 d

R3 → R3 +R2

∼


1 0 0 1 a
0 −1 0 0 b− 2a
0 0 3 −3 c+ b− 2a
0 0 0 0 d− 1

3
(c+ b− 2a)


R4 → R4 − 1

3
R3

.

From the final row we see that d− 1
3
(c+ b− 2a) must be equal to 0. Therefore, the vectors

in the set S1 do not span R4, because in order for the above system to have a solution, the
vector w = (a, b, c, d)T must at least be chosen in such a way that d− 1

3
(c+ b− 2a) = 0,

i.e. the system will not have a solution for every choice of w.
(b) The augmented matrix is 

1 0 0 1 a
0 1 0 1 b
0 0 1 1 c
0 0 0 1 d

 ,

from which we immediately see that the system has a unique solution for each choice of
w = (a, b, c, d)T : the fourth row says that α4 = d; then the third row says that α3+α4 = c,
i.e. α3 = c− α4 = c− d; then similarly the second row says that α2 = b− α4 = b− d; and



finally the first row says that α1 = a− α4 = a− d. In other words, we have
a
b
c
d

 = α1


1
0
0
0

+ α2


0
1
0
0

+ α3


0
0
1
0

+ α4


1
1
1
1



= (a− d)


1
0
0
0

+ (b− d)


0
1
0
0

+ (c− d)


0
0
1
0

+ d


1
1
1
1

 .

Therefore, the set S2 spans R4.
(c) The augmented matrix is 

−1 2 0 1 a
0 1 1 1 b
1 0 −1 1 c
0 0 0 0 d

 ,

and we immediately see that the last row forces d to be equal to 0. Therefore, the vectors
in the given set S3 do not span R4, because the above system can only have a solution if
the vector w = (a, b, c, d)T is chosen with d = 0.

Exercise 3. We must show that

span(v1, . . . ,vn,v) = span(v1, . . . ,vn)

for every choice of vector v ∈ span(v1, . . . ,vn), and we will do this by proving that each of these
two sets is a subset of the other.

To show that span(v1, . . . ,vn) is a subset of span(v1, . . . ,vn,v), we must take an arbitrary vector
u in span(v1, . . . ,vn,v) and prove that u is also contained in span(v1, . . . ,vn). This is easy: since
u ∈ span(v1, . . . ,vn), the definition of “span” says that there exist scalars c1, . . . , cn such that

u = c1v1 + · · · cnvn,

but we can just re-write this equation as

u = (c1v1 + · · · cnvn) + 0v,

from which we see that u ∈ span(v1, . . . ,vn,v).
To show that span(v1, . . . ,vn,v) is a subset of span(v1, . . . ,vn), we must take an arbitrary vector

w in span(v1, . . . ,vn,v) and prove that w is also contained in span(v1, . . . ,vn). We know that

w = β1v1 + · · ·+ βnvn + γv

for some scalars β1, . . . , βn, γ. On the other hand, since v ∈ span(v1, . . . ,vn), there are scalars
α1, . . . , αn such that

v = α1v1 + · · ·αnvn,

and so in fact we can write

w = β1v1 + · · ·+ βnvn + γ(α1v1 + · · ·αnvn)

= (β1 + γα1)v1 + · · ·+ (βn + γα1)vn.

That is, we have found a way to write w as a linear combination of v1, . . . ,vn, so we have w ∈
span(v1, . . . ,vn).



Exercise 4. (a) Every diagonal 2 × 2 matrix has (1, 2) and (2, 1) entries equal to 0, so every
linear combination of diagonal matrices also has (1, 2) and (2, 1) entries equal to 0. Hence,
for example, the matrix

A =

(
0 0
1 0

)
cannot be written as a linear combination of diagonal matrices because its (2, 1) entry is
not 0, and so the set of diagonal matrices does not span R2×2.

(b) Every upper triangular 2× 2 matrix has (2, 1) entry equal to 0, so every linear combination
of upper triangular matrices also has (2, 1) entry equal to 0. In particular, the matrix A in
part (a) cannot be written as a linear combination of upper triangular matrices because its
(2, 1) entry is not 0, so the set of upper triangular matrices does not span R2×2.

(c) Every symmetric 2 × 2 matrix has (1, 2) and (2, 1) entries that are equal to each other,
so every linear combination of symmetric matrices also has this property. Hence, again,
the matrix A in part (a) cannot be written as a linear combination of symmetric matrices,
because its (1, 2) and (2, 1) entries are not equal (the former is 0 while the latter is 1).
Therefore, the set of symmetric matrices does not span R2×2.

Exercise 5. (a) If p is any linear combination of p1 and p2, then we have

p(x) = α1p1(x) + α2p2(x) = α1x
2 + α2x+ (α1 − α2)

for some scalars α1, α2. Therefore, a polynomial ax2+ bx+ c can only be written as a linear
combination of p1 and p2 if the coefficient c is equal to a − b. Hence, for example, the
polynomial 2x2 + x cannot be written a linear combination of p1 and p2, so S1 = {p1,p2}
does not span P2.

(b) If we want to write a polynomial q with q(x) = ax2 + bx+ c as a linear combination of the
given polynomials q1,q2,q3 then we must find scalars α1, α2, α3 such that

ax2 + bx+ c = α1(2x
2 − 1) + α2(x+ 1) + α3(x+ 2)

for all x ∈ R. Rearranging the right-hand side, this means that

ax2 + bx+ c = (2α1)x
2 + (α2 + α3) + (α2 + 2α3 − α1)

for all x ∈ R. Therefore, the coefficients of the various powers of x must agree on both
sides of the equation, and so we obtain a linear system for the (unknown) scalars α1, α2, α3:

2α1 = a

α2 + α3 = b

−α1 + α2 + 2α3 = c.

This system has a unique solution for every choice of (a, b, c)T , given by

α1 =
a

2
, α2 = −

a

2
+ 2b− c, α3 =

a

2
− b+ c.

In other words, we can always write q as a linear combination of q1,q2,q3 as follows:

ax2 + bx+ c =
a

2
(2x2 − 1) +

(
−a
2
+ 2b− c

)
(x+ 1) +

(a
2
− b+ c

)
(x+ 2),

and so S2 does span P2.
(c) If r is any linear combination of r1, r2 and r3 then

r(x) = α1(x
2 + 2) + α2(x

2 + 5) + α3 = (α1 + α2)x
2 + (2α1 + 5α2 + α3)

for some scalars α1, α2, α3. Therefore, a polynomial ax2 + bx + c can only be written as a
linear combination of r1, r2 and r3 if the coefficient b of x is equal to 0. Hence, for example,



the polynomial x cannot be written as a linear combination of r1, r2 and r3, and so these
polynomials do not span P2.

Exercise 6. (a) This is very similar to an example from lectures. Essentially, H is a subspace
because the condition that defines whether (x, y, z)T is an element of H is a homogeneous
linear equation in x, y and z. Let’s prove this properly, though. H contains the zero vector
(0, 0, 0)T because the coordinates of this vector certainly satisfy the given equation, i.e.
0+0+0 = 0; in particular, H is non-empty. To prove closure of H under addition, we must
take two arbitrary vectors v = (x, y, z)T and w(x′, y′, z′)T in H, and show that their sum
v+w = (x+x′, y+y′, z+z′)T is also an element of H, i.e. that (x+x′)+(y+y′)+(z+z′) = 0.
Since v and w are in H, we know that x+ y + z = 0 and x′ + y′ + z′ = 0, so we get what
we want pretty easily:

(x+ x′) + (y + y′) + (z + z′) = (x+ y + z) + (z′ + y′ + z′) = 0 + 0 = 0.

Therefore, H is closed under addition. To show that H is closed under scalar multiplication,
we must take an arbitrary vector v = (x, y, z)T in H and an arbitrary scalar α, and show
that the vector αv = (αx, αy, αx)T is an element of H, i.e. that its components satisfy the
equation (αx) + (αy) + (αz) = 0. Again, this is easy once we realise that we can use the
fact that x+ y + z = 0 (based on the assumption that v ∈ H):

(αx) + (αy) + (αz) = α(x+ y + z) = α · 0 = 0.

Therefore, H is closed scalar multiplication. This completes the proof that H is a subspace.
Now let’s write down a spanning set for H. By definition, the vectors in H have the form

(x, y,−x − y)T , because they must satisfy the equation x + y + z = 0, which says that
z = −x− y. However, every vector of the form (x, y,−x− y)T can be written as

(x, y,−x− y)T = x(1, 0,−1)T + y(0, 1,−1)T ,

i.e. a linear combination of the two vectors (1, 0,−1)T and (0, 1,−1)T with weights/coefficients
x and y, respectively. Therefore, {(1, 0,−1)T , (0, 1,−1)T} is a spanning set for H.

(b) The 2 × 2 zero matrix is certainly symmetric, so H is non-empty. We stated in lectures
that the sum of any two symmetric matrices is symmetric (Proposition 2.16), and you were
asked to prove this as an exercise, so we already know that H is closed under addition. It
is also immediate from the definition of “scalar multiplication” of matrices that H is closed
under scalar multiplication, because if a matrix A = (aij)2×2 is symmetric then a12 = a21,
and so the (1, 2) and (2, 1) entries αa12 and αa21 of any scalar multiple αA of A are also
equal to each other. Hence, H is indeed a subspace of R2×2.

Let’s now write down a spanning set for H. Every symmetric 2× 2 matrix has the form(
a b
b c

)
for some a, b, c ∈ R. However, we can re-write this as(

a b
b c

)
= a

(
1 0
0 0

)
+ b

(
0 1
1 0

)
+ c

(
0 0
0 1

)
,

i.e. as a linear combination of the matrices(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
with weights a, b, c respectively. Therefore, these three matrices span H.



(c) Note that the polynomials in H are simply those whose x coefficient equals 0. H contains
the zero polynomial (and so in particular is non-empty) because the zero polynomial can be
written in the required form ax2 + c if we choose a = c = 0. H is closed under addition
because if we take any p,q ∈ H, say p(x) = ax2 + c and q(x) = a′x2 + c′, then p + q is
also in H because

(p+ q)(x) = (ax2 + c) + (a′x2 + c′) = (a+ a′)x2 + (c+ c′),

which is the required form for a polynomial to be in H. Similarly, H is closed under scalar
multiplication because for any scalar α we have

(αp)(x) = (αa)x2 + (αc).

Therefore, H is a subspace of P2.
It remains to write down a spanning set for H that contains two vectors. Consider the

polynomials p1, p2 given by p1(x) = x2 and p2(x) = 1. Both are elements of H because
both have the form ax2 + c for some a and c (take a = 1 and c = 0 for p1, and take a = 0
and c = 1 for p2). Moreover, an arbitrary polynomial ax2 + c in H can be expressed as a
linear combination of p1 and p2 because

ax2 + c = ap1(x) + cp2(x),

i.e. the weights of the linear combination are a and c, respectively. Therefore, H =
span(p1,p2).


