MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 3 — SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW3 due date.

Exercise 2. Each of the sets S_1 , S_2 , S_3 contains four vectors in \mathbb{R}^4 , call them \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 . These vectors span \mathbb{R}^4 if, given *any* vector $\mathbf{w} = (a, b, c, d)^T \in \mathbb{R}^4$, we can find scalars α_1 , α_2 , α_3 , α_4 such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 = \mathbf{w}.$$

This is just a linear system in the unknowns α_1 , α_2 , α_3 , α_4 , and so \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 span \mathbb{R}^4 precisely if this system has a solution *for every* $\mathbf{w} \in \mathbb{R}^4$. Therefore, we can just form an augmented matrix (with *columns* \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 and \mathbf{w}) and attempt to solve the system in the usual way.

(a) The augmented matrix is

$$\begin{pmatrix} 1 & 0 & 0 & 1 & | & a \\ 2 & -1 & 0 & 2 & | & b \\ 0 & 1 & 3 & -3 & | & c \\ 0 & 0 & 1 & -1 & | & d \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & | & a \\ 0 & -1 & 0 & 0 & | & b - 2a \\ 0 & 0 & 1 & -1 & | & d \end{pmatrix} R_2 \to R_2 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & | & a \\ 0 & -1 & 0 & 0 & | & b - 2a \\ 0 & 0 & 3 & -3 & | & c + b - 2a \\ 0 & 0 & 1 & -1 & | & d \end{pmatrix} R_3 \to R_3 + R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & | & a \\ 0 & -1 & 0 & 0 & | & b - 2a \\ 0 & 0 & 1 & -1 & | & d \end{pmatrix} R_3 \to R_3 + R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & | & a \\ 0 & -1 & 0 & 0 & | & b - 2a \\ 0 & 0 & 3 & -3 & | & c + b - 2a \\ 0 & 0 & 3 & -3 & | & c + b - 2a \\ 0 & 0 & 0 & 0 & | & d - \frac{1}{3}(c + b - 2a) \end{pmatrix} R_4 \to R_4 - \frac{1}{3}R_3$$

From the final row we see that $d - \frac{1}{3}(c+b-2a)$ must be equal to 0. Therefore, the vectors in the set S_1 do *not* span \mathbb{R}^4 , because in order for the above system to have a solution, the vector $\mathbf{w} = (a, b, c, d)^T$ must at least be chosen in such a way that $d - \frac{1}{3}(c+b-2a) = 0$, i.e. the system will not have a solution for *every* choice of \mathbf{w} .

(b) The augmented matrix is

$$\begin{pmatrix} 1 & 0 & 0 & 1 & | & a \\ 0 & 1 & 0 & 1 & | & b \\ 0 & 0 & 1 & 1 & | & c \\ 0 & 0 & 0 & 1 & | & d \end{pmatrix},$$

from which we immediately see that the system has a unique solution for each choice of $\mathbf{w} = (a, b, c, d)^T$: the fourth row says that $\alpha_4 = d$; then the third row says that $\alpha_3 + \alpha_4 = c$, i.e. $\alpha_3 = c - \alpha_4 = c - d$; then similarly the second row says that $\alpha_2 = b - \alpha_4 = b - d$; and

finally the first row says that $\alpha_1 = a - \alpha_4 = a - d$. In other words, we have

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_4 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= (a - d) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (b - d) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + (c - d) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + d \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} .$$

Therefore, the set S_2 spans \mathbb{R}^4 .

(c) The augmented matrix is

$$\begin{pmatrix} -1 & 2 & 0 & 1 & | & a \\ 0 & 1 & 1 & 1 & | & b \\ 1 & 0 & -1 & 1 & | & c \\ 0 & 0 & 0 & 0 & | & d \end{pmatrix},$$

and we immediately see that the last row forces d to be equal to 0. Therefore, the vectors in the given set S_3 do not span \mathbb{R}^4 , because the above system can only have a solution if the vector $\mathbf{w} = (a, b, c, d)^T$ is chosen with d = 0.

Exercise 3. We must show that

$$\mathsf{span}(\mathbf{v}_1,\ldots,\mathbf{v}_n,\mathbf{v})=\mathsf{span}(\mathbf{v}_1,\ldots,\mathbf{v}_n)$$

for every choice of vector $\mathbf{v} \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$, and we will do this by proving that each of these two sets is a subset of the other.

To show that span $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ is a subset of span $(\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v})$, we must take an arbitrary vector \mathbf{u} in span $(\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v})$ and prove that \mathbf{u} is also contained in span $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$. This is easy: since $\mathbf{u} \in \text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$, the definition of "span" says that there exist scalars c_1, \ldots, c_n such that

$$\mathbf{u} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$$

but we can just re-write this equation as

$$\mathbf{u} = (c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n) + 0 \mathbf{v},$$

from which we see that $\mathbf{u} \in \mathsf{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v})$.

To show that span $(\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v})$ is a subset of span $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$, we must take an arbitrary vector \mathbf{w} in span $(\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v})$ and prove that \mathbf{w} is also contained in span $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$. We know that

$$\mathbf{w} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n + \gamma \mathbf{v}$$

for some scalars $\beta_1, \ldots, \beta_n, \gamma$. On the other hand, since $\mathbf{v} \in \text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$, there are scalars $\alpha_1, \ldots, \alpha_n$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

and so in fact we can write

$$\mathbf{w} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n + \gamma (\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n)$$
$$= (\beta_1 + \gamma \alpha_1) \mathbf{v}_1 + \dots + (\beta_n + \gamma \alpha_1) \mathbf{v}_n.$$

That is, we have found a way to write \mathbf{w} as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$, so we have $\mathbf{w} \in \text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$.

Exercise 4. (a) Every diagonal 2×2 matrix has (1,2) and (2,1) entries equal to 0, so every linear combination of diagonal matrices also has (1,2) and (2,1) entries equal to 0. Hence, for example, the matrix

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

cannot be written as a linear combination of diagonal matrices because its (2,1) entry is not 0, and so the set of diagonal matrices does not span $\mathbb{R}^{2\times 2}$.

- (b) Every upper triangular 2 × 2 matrix has (2, 1) entry equal to 0, so every linear combination of upper triangular matrices also has (2, 1) entry equal to 0. In particular, the matrix A in part (a) cannot be written as a linear combination of upper triangular matrices because its (2, 1) entry is not 0, so the set of upper triangular matrices does not span R^{2×2}.
- (c) Every symmetric 2×2 matrix has (1,2) and (2,1) entries that are equal to each other, so every linear combination of symmetric matrices also has this property. Hence, again, the matrix A in part (a) cannot be written as a linear combination of symmetric matrices, because its (1,2) and (2,1) entries are not equal (the former is 0 while the latter is 1). Therefore, the set of symmetric matrices does not span $\mathbb{R}^{2\times 2}$.

Exercise 5. (a) If \mathbf{p} is any linear combination of \mathbf{p}_1 and \mathbf{p}_2 , then we have

$$\mathbf{p}(x) = \alpha_1 \mathbf{p}_1(x) + \alpha_2 \mathbf{p}_2(x) = \alpha_1 x^2 + \alpha_2 x + (\alpha_1 - \alpha_2)$$

for some scalars α_1 , α_2 . Therefore, a polynomial $ax^2 + bx + c$ can only be written as a linear combination of \mathbf{p}_1 and \mathbf{p}_2 if the coefficient c is equal to a - b. Hence, for example, the polynomial $2x^2 + x$ cannot be written a linear combination of \mathbf{p}_1 and \mathbf{p}_2 , so $S_1 = {\mathbf{p}_1, \mathbf{p}_2}$ does *not* span P_2 .

(b) If we want to write a polynomial \mathbf{q} with $\mathbf{q}(x) = ax^2 + bx + c$ as a linear combination of the given polynomials $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ then we must find scalars $\alpha_1, \alpha_2, \alpha_3$ such that

$$ax^{2} + bx + c = \alpha_{1}(2x^{2} - 1) + \alpha_{2}(x + 1) + \alpha_{3}(x + 2)$$

for all $x \in \mathbb{R}$. Rearranging the right-hand side, this means that

$$ax^{2} + bx + c = (2\alpha_{1})x^{2} + (\alpha_{2} + \alpha_{3}) + (\alpha_{2} + 2\alpha_{3} - \alpha_{1})$$

for all $x \in \mathbb{R}$. Therefore, the coefficients of the various powers of x must agree on both sides of the equation, and so we obtain a linear system for the (unknown) scalars $\alpha_1, \alpha_2, \alpha_3$:

$$2\alpha_1 = a$$

$$\alpha_2 + \alpha_3 = b$$

$$-\alpha_1 + \alpha_2 + 2\alpha_3 = c.$$

This system has a unique solution for every choice of $(a, b, c)^T$, given by

$$\alpha_1 = \frac{a}{2}, \quad \alpha_2 = -\frac{a}{2} + 2b - c, \quad \alpha_3 = \frac{a}{2} - b + c.$$

In other words, we can always write ${\bf q}$ as a linear combination of ${\bf q}_1, {\bf q}_2, {\bf q}_3$ as follows:

$$ax^{2} + bx + c = \frac{a}{2}(2x^{2} - 1) + \left(-\frac{a}{2} + 2b - c\right)(x + 1) + \left(\frac{a}{2} - b + c\right)(x + 2),$$

and so S_2 does span P_2 .

(c) If \mathbf{r} is any linear combination of \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 then

$$\mathbf{r}(x) = \alpha_1(x^2 + 2) + \alpha_2(x^2 + 5) + \alpha_3 = (\alpha_1 + \alpha_2)x^2 + (2\alpha_1 + 5\alpha_2 + \alpha_3)$$

for some scalars $\alpha_1, \alpha_2, \alpha_3$. Therefore, a polynomial $ax^2 + bx + c$ can only be written as a linear combination of \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 if the coefficient b of x is equal to 0. Hence, for example,

the polynomial x cannot be written as a linear combination of \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 , and so these polynomials do not span P_2 .

Exercise 6. (a) This is very similar to an example from lectures. Essentially, H is a subspace because the condition that defines whether $(x, y, z)^T$ is an element of H is a homogeneous linear equation in x, y and z. Let's prove this properly, though. H contains the zero vector $(0, 0, 0)^T$ because the coordinates of this vector certainly satisfy the given equation, i.e. 0+0+0=0; in particular, H is non-empty. To prove closure of H under addition, we must take two arbitrary vectors $\mathbf{v} = (x, y, z)^T$ and $\mathbf{w}(x', y', z')^T$ in H, and show that their sum $\mathbf{v}+\mathbf{w} = (x+x', y+y', z+z')^T$ is also an element of H, i.e. that (x+x')+(y+y')+(z+z')=0. Since \mathbf{v} and \mathbf{w} are in H, we know that x + y + z = 0 and x' + y' + z' = 0, so we get what we want pretty easily:

$$(x + x') + (y + y') + (z + z') = (x + y + z) + (z' + y' + z') = 0 + 0 = 0.$$

Therefore, H is closed under addition. To show that H is closed under scalar multiplication, we must take an arbitrary vector $\mathbf{v} = (x, y, z)^T$ in H and an arbitrary scalar α , and show that the vector $\alpha \mathbf{v} = (\alpha x, \alpha y, \alpha x)^T$ is an element of H, i.e. that its components satisfy the equation $(\alpha x) + (\alpha y) + (\alpha z) = 0$. Again, this is easy once we realise that we can use the fact that x + y + z = 0 (based on the assumption that $\mathbf{v} \in H$):

$$(\alpha x) + (\alpha y) + (\alpha z) = \alpha (x + y + z) = \alpha \cdot 0 = 0.$$

Therefore, H is closed scalar multiplication. This completes the proof that H is a subspace. Now let's write down a spanning set for H. By definition, the vectors in H have the form $(x, y, -x - y)^T$, because they must satisfy the equation x + y + z = 0, which says that z = -x - y. However, every vector of the form $(x, y, -x - y)^T$ can be written as

$$(x, y, -x - y)^T = x(1, 0, -1)^T + y(0, 1, -1)^T,$$

i.e. a linear combination of the two vectors $(1, 0, -1)^T$ and $(0, 1, -1)^T$ with weights/coefficients x and y, respectively. Therefore, $\{(1, 0, -1)^T, (0, 1, -1)^T\}$ is a spanning set for H.

(b) The 2×2 zero matrix is certainly symmetric, so H is non-empty. We stated in lectures that the sum of any two symmetric matrices is symmetric (Proposition 2.16), and you were asked to prove this as an exercise, so we already know that H is closed under addition. It is also immediate from the definition of "scalar multiplication" of matrices that H is closed under scalar multiplication, because if a matrix $A = (a_{ij})_{2\times 2}$ is symmetric then $a_{12} = a_{21}$, and so the (1, 2) and (2, 1) entries αa_{12} and αa_{21} of any scalar multiple αA of A are also equal to each other. Hence, H is indeed a subspace of $\mathbb{R}^{2\times 2}$.

Let's now write down a spanning set for H. Every symmetric 2×2 matrix has the form

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

for some $a, b, c \in \mathbb{R}$. However, we can re-write this as

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

i.e. as a linear combination of the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

with weights a, b, c respectively. Therefore, these three matrices span H.

(c) Note that the polynomials in H are simply those whose x coefficient equals 0. H contains the zero polynomial (and so in particular is non-empty) because the zero polynomial can be written in the required form $ax^2 + c$ if we choose a = c = 0. H is closed under addition because if we take any $\mathbf{p}, \mathbf{q} \in H$, say $\mathbf{p}(x) = ax^2 + c$ and $\mathbf{q}(x) = a'x^2 + c'$, then $\mathbf{p} + \mathbf{q}$ is also in H because

$$(\mathbf{p} + \mathbf{q})(x) = (ax^2 + c) + (a'x^2 + c') = (a + a')x^2 + (c + c'),$$

which is the required form for a polynomial to be in H. Similarly, H is closed under scalar multiplication because for any scalar α we have

$$(\alpha \mathbf{p})(x) = (\alpha a)x^2 + (\alpha c).$$

Therefore, H is a subspace of P_2 .

It remains to write down a spanning set for H that contains two vectors. Consider the polynomials \mathbf{p}_1 , \mathbf{p}_2 given by $\mathbf{p}_1(x) = x^2$ and $\mathbf{p}_2(x) = 1$. Both are elements of H because both have the form $ax^2 + c$ for some a and c (take a = 1 and c = 0 for \mathbf{p}_1 , and take a = 0 and c = 1 for \mathbf{p}_2). Moreover, an *arbitrary* polynomial $ax^2 + c$ in H can be expressed as a linear combination of \mathbf{p}_1 and \mathbf{p}_2 because

$$ax^2 + c = a\mathbf{p}_1(x) + c\mathbf{p}_2(x),$$

i.e. the weights of the linear combination are a and c, respectively. Therefore, $H = \text{span}(\mathbf{p}_1, \mathbf{p}_2)$.