MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

 COURSEWORK 3

 COURSEWORK 3}

WebWork submission of exercise marked (*) due: 11.59am on Wednesday 01 November 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 3 at:

 https://webwork.qmul.ac.uk/webwork2/MTH5112-2023/.Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.
Exercise 2. Determine which of the following sets of vectors span \mathbb{R}^{4}.
(a) $S_{1}=\left\{(1,2,0,0)^{T},(0,-1,1,0)^{T},(0,0,3,1)^{T},(1,2,-3,-1)^{T}\right\}$.
(b) $S_{2}=\left\{(1,0,0,0)^{T},(0,1,0,0)^{T},(0,0,1,0)^{T},(1,1,1,1)^{T}\right\}$.
(c) $S_{3}=\left\{(-1,0,1,0)^{T},(2,1,0,0)^{T},(0,1,-1,0)^{T},(1,1,1,0)^{T}\right\}$.

Exercise 3. Let V be a vector space and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$. Prove that

$$
\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}\right)=\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

for every $\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$.
Exercise 4. Prove that none of the following sets of matrices span $\mathbb{R}^{2 \times 2}$.
(a) The diagonal matrices.
(b) The upper triangular matrices.
(c) The symmetric matrices.

Exercise 5. Determine which of the following sets of polynomials span P_{2}.
(a) $S_{1}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$ where $\mathbf{p}_{1}(x)=x^{2}+1$ and $\mathbf{p}_{2}(x)=x-1$.
(b) $S_{2}=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ where $\mathbf{q}_{1}(x)=2 x^{2}-1, \mathbf{q}_{2}(x)=x+1$ and $\mathbf{q}_{3}(x)=x+2$.
(c) $S_{3}=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right\}$ where $\mathbf{r}_{1}(x)=x^{2}+2, \mathbf{r}_{2}(x)=x^{2}+5$ and $\mathbf{r}_{3}(x)=1$.

Exercise 6. In each of the following cases, prove that H is a subspace of V, and write down a set of n vectors that spans H (justifying your choice of spanning set).
(a) $V=\mathbb{R}^{3}, H=\left\{(x, y, z)^{T}: x+y+z=0\right\}$, and $n=2$.
(b) $V=\mathbb{R}^{2 \times 2}, H$ is the set of all symmetric 2×2 matrices, and $n=3$.
(c) $V=P_{2}, H=\left\{\mathbf{p} \in P_{2}: \mathbf{p}(x)=a x^{2}+c\right.$ for some $\left.a, c \in \mathbb{R}\right\}$, and $n=2$.

Exercise (MATLAB) 7. In this exercise you are encouraged to use the mathematical software MATLAB. This exercise provides you with some of the necessary code/commands needed to complete it, but you will also need to figure some things out for yourself by, e.g. consulting the help/documentation, finding similar examples online, figuring things out with your colleagues, and so on.

Recall Cramer's rule from Vectors and Matrices module: if A is an invertible $n \times n$ matrix, then the unique solution of any linear system $A \mathbf{x}=\mathbf{b}$ is given by

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}(\mathbf{b})\right)}{\operatorname{det}(A)} \quad \text { for } i \in\{1, \ldots, n\}
$$

where

$$
A_{i}(\mathbf{b})
$$

is the $n \times n$ matrix obtained by replacing the i th column of A by the column vector \mathbf{b}.
MATLAB has an in-built command for replacing a column of a matrix by a given column vector. Specifically, if you wish to replace the i th column of a matrix A by a column vector b (of the appropriate size), you can type
A (: , [i]) =b
Use this to verify Cramer's rule for the linear system $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left(\begin{array}{ccc}
0 & 1 & 6 \\
3 & -3 & 9 \\
2 & 2 & 18
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
-3 \\
8
\end{array}\right)
$$

