MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

 COURSEWORK 2 - SOLUTIONS

 COURSEWORK 2 - SOLUTIONS}

Exercise (*) 1. The solutions will appear on WeBWork after CW2 due date.
Exercise 2. We are assuming that

$$
\begin{equation*}
\mathbf{u}+\mathbf{w}=\mathbf{v}+\mathbf{w} \tag{1}
\end{equation*}
$$

and we must show that $\mathbf{u}=\mathbf{v}$. By axiom (A4) there is an element $-\mathbf{w}$ with $\mathbf{w}+(-\mathbf{w})=\mathbf{0}$. Thus
$\mathbf{u} \stackrel{(A 3)}{=} \mathbf{u}+\mathbf{0} \stackrel{(A 4)}{=} \mathbf{u}+(\mathbf{w}+(-\mathbf{w})) \stackrel{(A 2)}{=}(\mathbf{u}+\mathbf{w})+(-\mathbf{w})$

$$
\stackrel{(1)}{=}(\mathbf{v}+\mathbf{w})+(-\mathbf{w}) \stackrel{(A 2)}{=} \mathbf{v}+(\mathbf{w}+(-\mathbf{w})) \stackrel{(A 4)}{=} \mathbf{v}+\mathbf{0} \stackrel{(A 3)}{=} \mathbf{v} .
$$

Exercise 3. (a) $H_{1}=\left\{(r, s, t)^{T} \mid r, s, t \in \mathbb{R}\right.$ and $\left.3 r+s-2 t=0\right\}$ is a subspace of \mathbb{R}^{3}. To prove this, first note that $(0,0,0)^{T} \in H_{1}$, because $3 \cdot 0+0-2 \cdot 0=0$, so H_{1} is non-empty. To prove closure under addition, we must take arbitrary vectors $\mathbf{x}_{1}=\left(r_{1}, s_{1}, t_{1}\right)^{T} \in H_{1}$ and $\mathbf{x}_{2}=\left(r_{2}, s_{2}, t_{2}\right) \in H_{1}$ and show that $\mathbf{x}_{1}+\mathbf{x}_{2}$ must be in H_{1}. Since $\mathbf{x}_{1} \in H_{1}$ and $\mathbf{x}_{2} \in H_{1}$, we have $3 r_{1}+s_{1}-2 t_{1}=0$ and $3 r_{2}+s_{2}-2 t_{2}=0$, so

$$
\mathbf{x}_{1}+\mathbf{x}_{2}=\left(\begin{array}{l}
r_{1}+r_{2} \\
s_{1}+s_{2} \\
t_{1}+t_{2}
\end{array}\right)
$$

is also in H_{1} because $3\left(r_{1}+r_{2}\right)+\left(s_{1}+s_{2}\right)-2\left(t_{1}+t_{2}\right)=\left(3 r_{1}+s_{1}-2 t_{1}\right)+\left(3 r_{2}+s_{2}-2 t_{2}\right)=$ $0+0=0$. To prove closure under scalar multiplication, we must take an arbitrary vector $\mathbf{x}=(r, s, t)^{T} \in H_{1}$ and an arbitrary scalar α and prove that $\alpha \mathbf{x}$ is in H_{1}. Since \mathbf{x} is in H_{1}, we have $3 r+s-2 t=0$, so

$$
\alpha \mathbf{x}=\left(\begin{array}{c}
\alpha r \\
\alpha s \\
\alpha t
\end{array}\right)
$$

is in H_{1} because $3 \alpha r+\alpha s-2 \alpha t=\alpha(3 r+s-2 t)=0$. We have shown that H_{1} is non-empty and closed under addition and scalar multiplication, so H_{1} is a subspace of \mathbb{R}^{3}.
(b) $H_{2}=\left\{(r+1,0, r)^{T} \mid r \in \mathbb{R}\right\}$ is not a subspace of \mathbb{R}^{3} because it is not closed under scalar multiplication. For example, $\mathbf{x}=(1,0,0)^{T}$ is in H_{2} (to see this take $r=0$), but $2 \mathbf{x}=(2,0,0)^{T}$ is not in H_{2} (because there is no r such that $\left.(2,0,0)^{T}=(r+1,0, r)^{T}\right)$.
(c) $H_{3}=\left\{(r, s, t)^{T} \mid r, s, t \in \mathbb{R}\right.$ and $\left.r^{2}+s^{2}+t^{2} \leq 1\right\}$ is not a subspace of \mathbb{R}^{3} because it is not closed under scalar multiplication. For example, $\mathbf{x}=(0,0,1)^{T}$ is in H_{3} because $0^{2}+0^{2}+1^{2} \leq 1$, but $2 \mathbf{x}=(0,0,2)^{T}$ is not in H_{3} because $0^{2}+0^{2}+2^{2}=4 \not 又 1$.
Exercise 4. The zero function $\mathbf{0}$ is differentiable on $[a, b]$ and its derivative $\mathbf{0}^{\prime}=\mathbf{0}$ is continuous on $[a, b]$. Thus $C^{1}[a, b]$ is not empty.

Let us now show that $C^{1}[a, b]$ is closed under addition. Take arbitrary \mathbf{f} and \mathbf{g} belonging to $C^{1}[a, b]$. Since \mathbf{f} and \mathbf{g} are differentiable on $[a, b]$, their sum $\mathbf{h}=\mathbf{f}+\mathbf{g}$ is also differentiable, because the sum of any two differentiable functions is differentiable. The derivative $\mathbf{h}^{\prime}=(\mathbf{f}+\mathbf{g})^{\prime}=\mathbf{f}^{\prime}+\mathbf{g}^{\prime}$ is
continuous on $[a, b]$, because \mathbf{f}^{\prime} and \mathbf{g}^{\prime} are continuous and the sum of any two continuous functions is continuous. Thus $\mathbf{f}+\mathbf{g}=\mathbf{h} \in C^{1}[a, b]$.

It remains to show that $C^{1}[a, b]$ is closed under scalar multiplication. Take an arbitrary function $\mathbf{f} \in C^{1}[a, b]$ and an arbitrary scalar $\alpha \in \mathbb{R}$. Then $\mathbf{k}=\alpha \mathbf{f}$ is differentiable because a scalar multiple of any differentiable function is differentiable. Its derivative $\mathbf{k}^{\prime}=(\alpha \mathbf{f})^{\prime}=\alpha \mathbf{f}^{\prime}$ is a scalar multiple of the continuous function \mathbf{f}^{\prime}, so it is itself continuous. Thus $\alpha \mathbf{f}=\mathbf{k} \in C^{1}[a, b]$.
(Remark: Here I am assuming that you are familiar with the fact that sums and scalar multiples of continuous, respectively differentiable, functions, are themselves continuous, respectively differentiable. If you don't remember exactly why this is true, you may need to consult a proof in your calculus notes/textbook.)

Exercise 5. Let us first show that $U \cap V$ is a subspace of W. Since U and V are subspaces, they must contain $\mathbf{0}$. Therefore, $\mathbf{0}$ is in $U \cap V$, so $U \cap V$ is non-empty. To prove that $U \cap V$ is closed under addition, consider arbitrary vectors $\mathbf{w}_{1}, \mathbf{w}_{2} \in U \cap V$. Since $\mathbf{w}_{1}, \mathbf{w}_{2} \in U$ and U is closed under addition, we have $\mathbf{w}_{1}+\mathbf{w}_{2} \in U$. Similarly, $\mathbf{w}_{1}+\mathbf{w}_{2} \in V$ because V is closed under addition. Therefore $\mathbf{w}_{1}+\mathbf{w}_{2} \in U \cap V$. To prove that $U \cap V$ is closed under scalar multiplication, consider an arbitrary vector $v \in U \cap V$ and an arbitrary scalar α. Since both U and V are closed under scalar multiplication, we have $\alpha v \in U$ and $\alpha v \in V$. That is, $\alpha v \in U \cap V$ as required. Therefore, $U \cap V$ is indeed a subspace of W.

Now let us show that $U+V$ is a subspace of W. The zero vector can be written as $\mathbf{0}=\mathbf{0}+\mathbf{0}$, so it is an element of $U+V$ (because $\mathbf{0} \in V$ and $\mathbf{0} \in W$). Since U and V are both subspaces, they both contain $\mathbf{0}$. Since they are both closed under addition, they both contain $\mathbf{0}+\mathbf{0}=\mathbf{0}$. Now consider arbitrary vectors $\mathbf{w}_{1}, \mathbf{w}_{2} \in U+V$ and an arbitrary scalar α. Then, by definition of $U+V$, there are vectors $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ such that

$$
\mathbf{w}_{1}=\mathbf{u}_{1}+\mathbf{v}_{1} \quad \text { and } \quad \mathbf{w}_{2}=\mathbf{u}_{2}+\mathbf{v}_{2} .
$$

Thus, by axioms (A1) and (A2), we have

$$
\mathbf{w}_{1}+\mathbf{w}_{2}=\left(\mathbf{u}_{1}+\mathbf{v}_{1}\right)+\left(\mathbf{u}_{2}+\mathbf{v}_{2}\right)=\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) .
$$

Since $\mathbf{u}_{1}+\mathbf{u}_{2} \in U$ and $\mathbf{v}_{1}+\mathbf{v}_{2} \in V$ (because U and V are closed under addition), it follows that $\mathbf{w}_{1}+\mathbf{w}_{2}$ is an element of $U+V$. That is, $U+V$ is closed under addition. Moreover, by axiom (A5), we have

$$
\alpha \mathbf{w}_{1}=\alpha\left(\mathbf{u}_{1}+\mathbf{v}_{1}\right)=\alpha \mathbf{u}_{1}+\alpha \mathbf{v}_{1} .
$$

Since U and V are closed under scalar multiplication, we have $\alpha \mathbf{u}_{1} \in U$ and $\alpha \mathbf{v}_{1} \in V$, and so it follows that $\alpha \mathbf{w}_{1}$ is an element of $U+V$. Therefore, $U+V$ is closed under scalar multiplication. This completes the proof that $U+V$ is a subspace of W.

Exercise 6. (a) This is true. To prove it, first note that $(0,0,0,0)^{T} \in H_{1}$, so H_{1} is not empty. Moreover, if $\mathbf{x}_{1}=\left(r_{1}, s_{1}, t_{1}, u_{1}\right)^{T} \in H_{1}$ and $\mathbf{x}_{2}=\left(r_{2}, s_{2}, t_{2}, u_{2}\right)^{T} \in H_{1}$ then $r_{1}+s_{1}-3 t_{1}+5 u_{1}=0$ and $r_{2}+s_{2}-3 t_{2}+5 u_{2}=0$ so

$$
\mathbf{x}_{1}+\mathbf{x}_{2}=\left(\begin{array}{c}
r_{1}+r_{2} \\
s_{1}+s_{2} \\
t_{1}+t_{2} \\
u_{1}+u_{2}
\end{array}\right)
$$

is in H_{1} because $\left(r_{1}+r_{2}\right)+\left(s_{1}+s_{2}\right)-3\left(t_{1}+t_{2}\right)+5\left(u_{1}+u_{2}\right)=\left(r_{1}+s_{1}-3 t_{1}+5 u_{1}\right)+$ $\left(r_{2}+s_{2}-3 t_{2}+5 u_{2}\right)=0+0=0$. Furthermore, if $\mathbf{x}=(r, s, t, u)^{T} \in H_{1}$ and α is a scalar
then $r+s-3 t+5 u=0$, so

$$
\alpha \mathbf{x}=\left(\begin{array}{c}
\alpha r \\
\alpha s \\
\alpha t \\
\alpha u
\end{array}\right)
$$

in H_{1} because $\alpha r+\alpha s-3 \alpha t+5 \alpha u=\alpha(r+s-3 t+5 u)=\alpha 0=0$. Thus H_{1} is non-empty and closed under addition and scalar multiplication, so it is a subspace of \mathbb{R}^{4}.
(b) This is also true. To prove it, first observe that H_{2} is not empty (for example, the zero matrix is symmetric, so belongs to H_{2}). Suppose now that A and B belong to H_{2}. Then $A^{T}=A$ and $B^{T}=B$, and

$$
(A+B)^{T}=A^{T}+B^{T}=A+B
$$

so $A+B$ is in H_{2}. Furthermore, if $A \in H_{2}$ and α is a scalar, then $A^{T}=A$ and

$$
(\alpha A)^{T}=\alpha A^{T}=\alpha A,
$$

so αA is in H_{2}. Thus H_{2} is non-empty and closed under addition and scalar multiplication, so it is a subspace of $\mathbb{R}^{n \times n}$.
(c) This is false. The set H_{3} is not a subspace of $C[0,1]$, because it does not contain the zero function.

Exercise 7. The definition of "subspace" guarantees that H is closed under addition and scalar multiplication, and since these operations are the same as those in V, we already know that they satisfy all of the vector space axioms $\left(A_{1}\right),\left(A_{2}\right),\left(A_{5}\right),\left(A_{6}\right),\left(A_{7}\right)$ and $\left(A_{8}\right)$ from lectures. We just need to check that $\left(A_{3}\right)$ and $\left(A_{4}\right)$ hold in H.

For $\left(A_{3}\right)$, we must show that the zero vector of V is an element of H. Since H is non-empty, we can take any vector $\mathbf{v} \in H$ and multiply it by the scalar 0 to give $0 \mathbf{v}=\mathbf{0}$ (this equality is from Lemma 4.2 in lectures, which you should have proved as a separate exercise). But H is closed under scalar multiplication, so $0 \mathbf{v}=\mathbf{0}$ is indeed an element of H.

For $\left(A_{4}\right)$, we must show that $-\mathbf{v}$ is in H whenever \mathbf{v} is in H. However, we know from lectures (Lemma 4.2 again) that $-\mathbf{v}=(-1) \mathbf{v}$, so again we may conclude that $-\mathbf{v} \in H$ because H is closed under scalar multiplication.

